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– Library and Archives Canada, 2018

GERAD HEC Montréal
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Abstract: Genetic algorithms are used for feature selection through a fitness function that drives the
evolution of populations. With parallel universes, an importance score may be produced for each feature to
determine subjectively from a plot which to retain. The authors derive the distribution of those importance
scores under the null hypothesis that none of the features has predictive power and they determine an
objective threshold for feature selection. The authors discuss the parameters for which the theoretical results
hold. They illustrate their method on real data and run simulation studies to describe its performance.
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1 Introduction

In predictive models, feature selection can boost performance and help avoiding overfitting. Classical ap-

proaches such as stepwise regression, and all subset selection based on penalized statistics such as AIC and

BIC are routinely taught (see e.g. (Draper and Smith, 2014)). Penalized regression methods such as the

lasso select features and fit a model simultaneously (see e.g. (Tibshirani, 1996)). Genetic algorithms have

also been proposed, including a parallel version by Zhu and Chipman (2006) who was revisited by Zhang

et al. (2015) and Wang and Zhang (2015).

Biomimetics consists in imitating nature to solve complex human problems. For instance, genetic algo-

rithms are inspired from natural selection. For feature selection, models are seen as individuals whose DNA

is a vector of binary markers that indicate whether or not each feature is used in the model. Successive

generations of models are generated by selecting among the fittest parents of the current population, and

creating offsprings by selecting randomly the genes from both parents, a step called crossover. To improve

the richness of the population, models may undergo mutation (where a bit is flipped). While the general

steps of a genetic algorithm are clear, the actual recipe for each is chosen from numerous options.

Genetic algorithms often involve a single population that evolves until the fittest individual is found. A

generalization proposed by Zhu and Chipman (2006) considers a fixed number of parallel populations who

evolve independently of one another. After a number of steps that could be predetermined, the frequency

of a feature in the last generation of all populations is used as a measure of its importance. A bubble plot

allows to visually identify where the importance drops to separate important features from those who should

be dismissed.

To illustrate the bubble plot, let us consider the Pollution dataset of McDonald and Schwing (1973) where

a measure of mortality is predicted with linear regression from 15 features on 60 data points. The left panel

of Figure 1 shows a bubble plot, a tool proposed by Zhu and Chipman (2006). The associated order plot is

shown on the right panel. The order plot is identical to the bubble plot, except that the features are ranked

in order of decreasing importance. The figure suggests the selection of features x1, x9 and x14. Although

Zhu and Chipman (2006) analyzed the Pollution dataset, Figure 1 was generated with a different genetic

algorithm hence the different figure. While the bubble plot is interesting and intuitive, it requires a visual

inspection, which makes the method subjective and limits its automation as a human intervention is required

to complete the selection.
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Figure 1: Example of a bubble plot and its associated ordered plot as suggested by Zhu and Chipman (2006). The importance of
each feature is measured by its prevalence among the individuals of the last populations generated by parallel genetic algorithms.

To make parallel genetic algorithms more objective, we derive the distribution of the importance score

of every feature under the null hypothesis that none of the features are good predictors of the response.

To increase the richness of the parallel populations and their ability to detect truly important features, we

also add a step of bagging, providing every parallel universe with a bootstrap sample of the data. The null

distribution of the importance is used to determine an objective threshold at the global level α. Drawing the
bubble plot then becomes optional since feature selection can be automatized by comparing the importance

of each feature against the threshold.
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Section 2 of the paper introduces the basics of genetic algorithms for model selection as well as some

notation. Our method which we call Baggeg Genetic Algorithm (BGA) is described in Section 3 along with

the mathematical results that support it. Case studies and Monte Carlo simulations are analyzed in Section 4.

Section 5 discusses the choice of parameters in a bagged genetic algorithm. Section 6 offers a conclusion.

2 Genetic algorithms for model selection

Genetic algorithms are meta-heuristic optimization techniques mimicking a darwinian vision of evolution in

order to solve complex, numerically intractable problems (see e.g. Shonkwiler and Mendivil (2009)). The

general functioning of genetic algorithms consists of the successive application of three genetic operators –

selection, crossover and mutation – to an initial population of candidate solutions or individuals. For model

selection, each individual is encoded using a binary string which indicates whether or not each feature is

present in the model. At every generation, the likelihood of an individual generating an offspring depends

on its fitness, and the process is iterated a number of times.

We first describe the genetic operator in the more classic setting of a single-thread genetic algorithm,

where the evolution of only one population is generated. We then extend the notation to the parallel

universes proposed by Zhu and Chipman (2006).

2.1 Single-thread genetic algorithm (SGA)

In a single-thread algorithm, individual i ∈ {1, . . . , I} of generation g ∈ {1, . . . , G} is represented by the

binary vector Big = [b1ig, . . . , bDig] where bdig is one when feature d ∈ {1, . . . , D} is active for this individual

and zero otherwise. A typical application for model selection is to consider linear regression where each

explanatory variable is included or not in the model as coded by bdig.

2.1.1 Initial population

The initial population of individuals is generated randomly. The bdi0 are hence drawn from independent

Bernoullis with probability of success π0, the activation rate.

2.1.2 Fitness

In a general genetic algorithm, the fitness function f(Big) measures the ability of an individual to “solve the
problem”. In a model selection setting, f should measure the predictive ability of the corresponding model.

An ideal measure of fitness should not be biased by the number of features present in a model. Zhu and

Chipman (2006) used a leave-one-out cross-validated residual sum of squares, but we prefer to use a validation

subset to evaluate a properly scaled residuals sum of squares (RSS). Since better individuals should have a

larger fitness, we use a negative power of our rescaled RSS.

2.1.3 Selection

At generation g, I individuals are available to become parents. To create an offspring, two individuals

are selected randomly, with replacement (parthenogenesis is allowed). The probability of selection of an

individual is proportional to its fitness. That is, for g fixed, the probability of selection of individual i′ is

f(Bi′g)/{
∑I
i=1 f(Big)}.

2.1.4 Crossover

Crossover determines how the genes of the two selected parents are combined to generate one offspring. Zhu

and Chipman (2006) used one point crossover where an integer is chosen randomly between 1 and D − 1.

The genes of the father are used up to that integer, and the genes of the mother are used for the rest. One

disadvantage of this approach is that the arbitrary order in which the variables are coded has an influence on

the models that are possible to generate. We have a preference for uniform crossover where each gene of the
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offspring is taken randomly from its mother or father. Let Cig be a diagonal matrix where the diagonal entries

are independent Bernoullis with probability of success 1/2. Then if individuals i1 and i2 of generation g are

selected as the parents of individual i in generation g + 1, the crossover will first generate the embryo

B∗ig = CigBi1g + (I−Cig)Bi2g

where I is the D × D identity matrix. The embryo B∗ will become an individual in generation g + 1 once

the mutation step is complete.

2.1.5 Mutation

Mutation helps maintaining genetic diversity by making each gene of the embryo subject to a flip. Let Mig

be a diagonal matrix whose diagonal is filled with independent Bernoullis with parameter θg, the probability

of a mutation, which could vary as generations evolve or be held fix. A decreasing θg, for instance, is akin

to simulated annealing (see e.g. (Kirkpatrick et al., 1983)). Individual i of generation g + 1 may then be

obtained as

Bi(g+1) = (I−Mig)B
∗
ig + Mig(1−B∗ig).

2.1.6 Evolution

The process described is repeated recursively. While it is possible to iterate until a convergence criterion is

met, we suppose a fixed number of generations, G. For a single-thread algorithm, the fittest individual of

the last generation, arg max f(BiG), is usually outputed as the solution.

As a meta-heuristic algorithm, there exists a very large number of variants for the genetic operators to

which additional parameters may also be added. Our description of the operators is focused towards the

method that we develop, but readers that are interested in learning more about the numerous uses of genetic

algorithms and many variants of the genetic operators may consult, e.g. Mitchell (1998), Cantú-Paz (2000),

Haupt and Haupt (2004) or Poli et al. (2008).

2.2 Parallel genetic algorithms (PGA)

Zhu and Chipman (2006) suggest to create U universes in which populations evolve in parallel. New indices

need to be added to the notation introduced previsouly to account for the universe. Namely,

Genes: Bigu = [b1igu, . . . , bDigu] is a binary vector with the genetic code of individual i of generation g in

universe u ∈ {1, . . . , U}.
Fitness: Since we use out-of-sample validation, the fitness function in parallel universes will be based on

different hold-out datasets. The notation fu shows this dependence of the fitness function on the

universe.

Selection, crossover and mutation: The genetic operators are identical in the parallel universes. They are

applied independently in each of the parallel populations, from initial generations that are created in

the same fashion previsouly described.

With parallel worlds, the output is not a single fittest individual, but an importance score based on the

frequency of each gene in the final population. For feature d, the importance score is the proportion

π̂d =
1

IU

I∑
i=1

U∑
u=1

bdiGu

and we note π̂ = [π̂1, . . . , π̂d] the vector of those values for all features. The bubble and order plots of Figure 1
are a graphical representation of π̂.

In the next section, we describe how to derive a threshold for the values of π̂ to determine which features

should be kept, and which should be dismissed.
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3 Bagged genetic algorithms (BGA)

Using PGA for feature selection yields importance score for the variables rather than a single solution as does

SGA. The final decision of which variables to include is however based on the visual inspection of a figure.

The purpose of this paper is to offer an objective and automatizable way to make that final decision.

Let us focus on a linear model setting where predictor d has a parameter βd and where βd = 0 means

that the feature has no effect on the target. To establish a threshold value, we derive the distribution of π̂d
for d ∈ {1, . . . , D} under a null hypothesis that implies some symmetry between individuals. Namely, under

H0 : β1 = · · · = βD = 0, the fitness of any individual is assumed to be approximately equal since they all have

an equally low ability to predict the target variable. At the selection step, this means that all individuals

are equally fit, hence have an equal probability of being selected. This hypothesis of symmetry is reinforced

through careful choices in the design of the genetic algorithm which are described next.

3.1 Hold out sample and bootstrap

In each universe, the dataset with N data is split into a training and a validation set. The ñ data from the

training set are stored in the vector of response Ỹu, and the predictors in the ñ× (D+ 1) design matrix X̃u

whose first column is filled with ones to account for the intercept. The rest of the data become the validation

set and we denote the correspoding values n, Yu and Xu. When working with a very large dataset, sample

sizes may be chosen so that n + ñ < N . For smaller samples, n + ñ is likely equal to N , so we may use

bootstrap instead to increase the diversity between universes. Sampling with replacement is then used to

generate bootstraped versions of the data (of the same sizes ñ and n) that are also denoted by Ỹu, X̃u, Yu

and Xu. Since we combine the output of all universes in the end, this is a form of bagging (see (Breiman,

1996b)) and is likely to boost the performance of the algorithm. This was observed, e.g. by by Zhang et al.

(2015) and Wang and Zhang (2015) who add noise to the parallel universes in a PGA.

An additional benefit of bagging is the dilution of the spurious correlations that could occur just by chance.

Such correlations could be amplified through the generations of the genetic algorithm, but the bootstrapping

makes it unlikely to occur simultaneously for the same variables in multiple parallel universes.

3.2 Choice of fitness function

The derivation of the distribution of the importance in the next section is based on the assumption that the

fitness of all models is approximately equal under the null hypothesis. Using out-of-sample validation yields

a fitness that is not influenced by the number of active features. The fitness we use is based on a rescaled

sum of residuals calculated on the validation sample, but other choices would also be acceptable.

Consider an arbitrary individual B with p active features, i.e. ||B||2 = p. Let B be a (D+1)×(p+1) matrix

generated by removing some columns from the (D+1)× (D+1) identity matrix. Namely, column one always

remains for the intercept, and the following are matched to the binary values in B, all columns associated

to a null value being removed. The B matrix allows to select appropriate columns from the design matri-

ces. In universe u, the out-of-sample predictions from the linear regression model associated with B are then

Ŷu(B) = XuB(BᵀX̃ᵀ
uX̃uB)−1B̃ᵀX̃ᵀ

uYu

which yields the unscaled residuals ε̂(B) = Yu − Ŷu(B). By the independence of the error in the training

and the validation datasets, this vector of residuals is a multivariate normal with mean zero and covariance

Σu(B) = σ2
{
I + XuB(BᵀX̃ᵀ

uX̃uB)−1BᵀXᵀ
u

}
(1)

where I is the n × n identity matrix. Since the selection is based on the relative value of the fitness, the

actual value of σ2 is irrelevant in the calculation of the fitness function

fu(B) ∝
[
ε̂(B)ᵀ {Σu(B)}−1 ε̂(B)

]−γ
(2)

where γ is a positive scalar that can enhance the peakedness of the function. We found empirically that

γ = 1.5 seems to work well.
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Since the residuals are asymptotically normal, the distribution of the expression inside the brackets in

Equation 2 up to a multiplicative constant is chi-square with n degrees of freedom. Most importantly, the

degrees of freedom do not depend on p, the number of active features.

There are numerous other possible fitness functions in the literature. As long as a fitness function is

sufficiently unbiased to offer an approximately equal fitness to all models under the null hypothesis, then the

results of the next section should hold.

3.3 Distribution under the null hypothesis

In generation g = 0, all genes are generated at random, hence yielding DIU independent Bernoulli variates

with probability of success π0. As the populations evolve, these genes are recombined into new offsprings.

We look into the distribution of those genes at generation G, when all populations are fully evolved.

Note that under the null hypothesis, the expected value of the genes of an embryo B∗ is equal to that of

its parents since all generated genes have the same probability of being selected. The mutation step, however,

has an effect on the expected proportion of ones. Fixing d and u, then conditioning on the presence of a

mutation, we get the recurrence

πg = E(bdigu) = (1− πg−1)θg + πg−1(1− θg)

that may be written alternatively as ∆g+1 = (1 − 2θg)∆g if we define ∆g = 1/2 − πg. Iterating yields

∆G = ∆0

∏G
g=1(1− 2θg), or

πG =
1

2

{
1− (1− 2π0)

G∏
g=1

(1− 2θg)

}
(3)

which converges to 1/2 if G→∞ and θg ∈ (0, 1/2) infinitely often.

Remark 1 If the probability of mutation is fixed for all generations such that θg = θ, then equation 3 simplifies

into πG = {1− (1− 2π0)(1− 2θ)G}/2.

Since there is no exchange between parallel universes, bits bdiGu1
and bdiGu2

will always be independent

when they come from different universes. By the virtues of uniform crossover as well as the assumption

that all models are equally likely to be chosen, genes in different positions, bd1iGu and bd2iGu should also be

uncorrelated. For fixed d and u, two different individuals may however be correlated as they are likely to

share common ancestors. In the process of creating generation g = 1, we may condition on having inherited

gene d from a common parent to get c∗0 = cov(b∗di10u, b
∗
di20u

) = π0(1−π0)/I for the embryo, or more generally,

when creating embryos from generation g,

c∗g = cov(b∗di1gu, b
∗
di2gu) =

1

I
vg +

I − 1

I
cg (4)

where vg = var(bdigu) = πg(1− πg) and cg = cov(bdi1gu, bdi2gu) for arbitrary i, d and u, and with c0 = 0 for

the initial population. Let mdigu identify the diagonal elements of Migu, and note for simplicity m1 = mdi1gu,

b∗1 = b∗di1gu and similarly for m2 and b∗2. We can then write explicitely

cg+1 = cov{(1−m1)b∗1 +m1(1− b∗1), (1−m2)b∗2 +m2(1− b∗2)}
= (1− 2θg)

2c∗g (5)

after simplifications due to the independence of the mutation binary markers and properties of the covariance.

Substituting Equation 4 in 5 yields the recurrence

cg+1 = (1− 2θg)
2

{
1

I
πg(1− πg) +

I − 1

I
cg

}
.

Despite their unwieldy expressions, the sequences cg and vg are easy to determine numerically with a simple

loop.
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The decision of which features to keep is made from the importance scores, π̂d who can be seen as the

average of U independent and identically distributed random variables. As the number of parallel universes U

increases, the central limit theorem (see e.g. (Casella and Berger, 2002)) guarantees the convergence of√
U(π̂d − πG) to a normal distribution with mean 0 and variance

σ2
π̂ =

1

I
πG(1− πG) +

I − 1

I
cG.

The decision to retain any given variable may therefore be made from a normal quantile. Since all variables

are simultaneously tested, and since their indivdual tests are uncorrelated, a S̆idák correction (see (Šidák,

1967)) is applied to account for multiple comparisons. After choosing a global level α, the user should thus

keep those variables for which

π̂d > πd + z1−αS
σπ̂/
√
U

where αS = 1− (1− α)1/D is the S̆idák corrected level.

Except for π̂d itself, none of those values need to be estimated. They are deterministic functions of the

parameters of the genetic algorithm. This result does not depend on the fitness function either, as long as

it has the ability to make all models approximately equally fit under the null hypothesis. In particular, a

constant fitness function will yield this result, but would display no ability for detecting relevant variables

when they are present. A more useful extension is to determine a fitness function with appropriate properties

for Generalized Linear Models (GLM), which we do next.

3.4 Extension to generalized linear models

Let us consider GLM as described in McCullagh and Nelder (1989) for a response variable Y that follows an

exponential family whose density may be written as

fY (y; θ, φ) = exp

{
yθ − b(θ)
a(φ)

+ c(y, φ)

}
where θ is called the canonical or location parameter, φ the dispersion parameter, and the functions a, b and c

are family specific known functions. Following simple calculations (see e.g. Section 2.2.2 of (McCullagh and

Nelder, 1989)), the following expressions for the mean and variance may be derived, namely, E(Y ) = µ = b′(θ)

and var(Y ) = b′′(θ)a(φ). These equations are used to find the variance function, V (µ) = var(Y )/a(φ) which

must be expressed as a function of µ. Actual values of those functions for known families may be found in

different references, including Table 2.1 of McCullagh and Nelder (1989).

In the definition of GLM, a linear combination η of the predictors is linked to an independent observation Y

from an exponential family through a link function. The expression can also be reversed to have µ = `(η)

where ` is the inverse link function. With the convention that ` is applied componentwise to a vector, we

can write µ = `(Xβ) for a model with all features on the whole dataset, where β = (β0, β1, . . . , βD) is the

vector of parameters of the model. For some families, φ may be a known constant, but in other cases, it is a

nuisance parameter.

For exponential family GLM, the estimate of β may be found through maximum likelihood and usual

properties thereof are retained. In the context of this paper, we only consider canonical link functions that

provide additional simplifications, including the fact that θ = η.

Moving to the context of BGA with the notation previsouly introduced, universe u has the bootstrapped

samples Ỹu and X̃u and the p active features are indicated by B. The maximum likelihood equation is then

based on the relation E(Ỹ) = `(X̃BBᵀβ) which depends only on a subset of p + 1 elements of β, namely

βB. The MLE β̂u(B) is therefore an asymptotically normal vector of p+ 1 elements with limiting mean βB

and variance {BᵀX̃ᵀ
uṼu(B)X̃uB}−1 where Ṽu(B) is a diagonal matrix with the variance function V applied

componentwise to µ̃ = `(X̃BBᵀβ) on its diagonal. The dependence on B does not change the dimension

of Ṽu(B), but it affects the values therein. The same applies to Vu(B) who is based on µ = `(XBBᵀβ).

The distributional result follows from the properties of the MLE and arithmetics to determine the Fisher

information for βB. Applying the chain rule for second-order derivatives helps those calculations that are
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further simplified by properties emerging from the choice of the canonical link. In practice, µ̃ may need to

be estimated by replacing β with its MLE β̂u(B).

Building towards a fitness function based on a rescaled residual sum of squares, we may write out of

sample predictions as

Ŷu(B) = `
{
XuBβ̂u(B)

}
.

From an application of the multivariate delta method, Ŷu(B) is asymptotically multivariate normal with

mean µu(B) and variance

a(φ)Vu(B)XuB{BᵀX̃ᵀ
uṼu(B)X̃uB}−1BᵀXuVu(B).

The jacobian of the link function appears as Vu(B) due to their equality resulting from the use of the

canonical link. The unscaled residuals ε̂(B) = Yu − Ŷu(B) then have mean 0 and variance

Σu(B) = a(φ)

[
Vu(B) + Vu(B)XuB

{
BᵀX̃ᵀ

uṼu(B)X̃uB
}−1

BᵀXuVu(B)

]
(6)

which will be required up to a multiplicative constant, hence the nuisance parameter φ may be ignored.

Pearsons X2 statistic uses a sum of squared rescaled residuals to measure the goodness-of-fit. With out-of-

sample validation, Equation 6 provides the appropriate factor. For GLM, we therefore use the same fitness

function shown in Equation 2, but with modified values for ε̂(B) and Σu(B) which must be calculated up to

a multiplicative constant.

The results of Section 3 do not depend on the actual models, only on the assumption that the fitness of

any model is approximately equal under the null hypothesis of no predictive power. No modifications need

be made to the threshold once an appropriate fitness function has been developped. Similarly, it would be

possible to use other goodness-of-fit methods as fitness functions, as long as they treat fairly models that

have different number of variables.

3.5 Notable differences with PGA

While we adopt the parallel populations of Zhu and Chipman (2006), some of the choices they make in the

parameters of their genetic algorithms are not suitable for BGA as they violate the assumptions that we use

to derive the null distribution of the importance scores. Namely, the following elements are different.

Crossover: Zhu and Chipman (2006) use one-point crossover, but we explained in the description of crossover

our preference for uniform crossover to make the arbitrary order of the features in the algorithm

irrelevant.

Early-stopping: Using a finite predetermined number of generations yields importance scores that are aver-

ages of U independent values of equal variance. Early-stopping means that the the number of generation

depends on their diversity. While the theoretical complications are significant, the benefits of early-

stopping are less clear.

Elitism: Zhu and Chipman (2006) copy the fittest half of a generation directly to the following generation.

The derivation of the null distribution for the importance scores assumes no such elitism.

Selection: At each generation of Zhu and Chipman (2006), half the population survives, and all parents are

picked at random from that survival pool. The expected value and variance of the importance score

are based on a different mechanism where the probability of selection is proportionnal to the fitness.

Fitness function: To enhance the symmetry between all possible models under the null, we use out-of-

sample validation. One challenge with in-sample measures of fitness is to ensure that it does not

display systematic preference (e.g. have bias toward models with more active features).

Bootstrap: We use bootstrap to enhance the symmetry between models under the null by diluting spurious

links that could appear out of luck and hence avoiding to reproduce them in all the universes.

In the next section, case studies and Monte Carlo methods are used to explore the behaviour of the

importance scores under the null hypothesis.
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4 Empirical exploration

We use real datasets and Monte Carlo studies to explore the behaviour of BGA in practice. The definition of

“best” model is subject to debates and could be based, for instance, on the predictive abilities of the selected

model according to different metrics. We rather adopt the same view as Zhu and Chipman (2006), and look

at the ability of the models to detect the true active features. Part of the exploration is also designed to

verify that the distribution of π̂ under the null derived in Section 3.3 is observed empirically.

4.1 Illustrative data and harder problem

In the illustrative example of Zhu and Chipman (2006), 20 features labeled x1 to x20 are simulated as

independent normal variates with mean zero and variance one. We took the liberty to increase the sample

size from their 40 to N = 200 points who were generated along with the response

Y = x5 + 2x10 + 3x15 + ε (7)

where ε are independent normal variables with mean zero and variance one. We use the same parameters

as Zhu and Chipman (2006) for the genetic algorithm, namely: I = 20, G = 8, U = 25, and θg = 1/D

for all g. The value of the activation rate does not seem to be reported in their paper; we used π0 = 0.3.

The validation set is drawn as 20% of the sample. Figure 2 displays the boxplots of the importance scores

obtained by one run of BGA on each of 1000 datasets generated following Equation 7. The horizontal plain

line shows πG, the expected importance. The plain dots are for the empirical 95th quantile of the importance

scores for each feature and can be compared to the dashed line who show their theoretical values under the

null on the left panel. On the right panel, the correction for multiple comparisons is applied. The null model

was obtained by setting all regression coefficients to zero in the same equation when simulating Y .
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Figure 2: Importance scores obtained from the BGA of 1000 different samples generated from the same “Illustrative Example”
scenario. The left panel shows the importance scores under the null hypothesis, where Y is independent from the features. The
right panel shows the importance score when the signal described in Equation 7 is present. While the plain line shows the expected
importance πG, the dashed line displays the threshold πd + z0.95σπ̂/

√
U on the left panel, and its S̆idák adjusted equivalent on

the right panel. The plain dots show the empirical 95th quantile of the importance scores for each variable to compare against
that theoretical bound. The boxplot of the active features are coloured in gray.

Under the null, both the expected value and the 95th quantile of the importance scores match their

theoretical values remarquably well. When a signal is present, we note that the correct relevant variables

are always detected, but also, that the values of the empirical 95th quantiles are reasonnably close to their

expected values under the null.

Let us now consider the hard problem that Zhu and Chipman (2006) attribute to George and McCulloch

(1993). We preserve the sample size of 120 for the training set by simulating samples of 150 data of which a

proportion of 20% is dedicated to validation. A total of 60 features of variance 2 with a compound symmetry

correlation structure are simulated. A correlation of 0.5 is present between any two variables. The error term

has mean 0 and variance 4. The regression parameters have four different values with βi = b(i − 1)/15c,
making 45 of the 60 features active. Figure 3 displays the same boxplots values as before, under the null and
with a signal. The parameters of the genetic algorithm were set to I = 60, G = 15, U = 100, π0 = 0.9 and

θg = 1/D for all g.
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Figure 3: Importance scores obtained from the BGA of 1000 different samples generated from the same “Hard problem” scenario.
The left panel shows the importance scores under the null hypothesis, where Y is independent from the features. The right panel
shows the importance score when βi = b(i − 1)/15c. While the plain line shows the expected importance πG, the dashed line
displays the threshold πd + z0.95σπ̂/

√
U on the left panel, and its S̆idák adjusted equivalent on the right panel. The plain dots

show the empirical 95th quantile of the importance scores for each variable to compare against that theoretical bound. The
boxplot of the active features are coloured in gray.

Under the null, the values of the 95th quantile and their expected value match fairly well as do the

expected scores. On the right panel, the 45 active features are found all the time with very few exceptions

of the smallest signals being very occasionnally left out – less than 4% of the time. The inactive variables

sometimes get picked up, but not more often than under the null, with a false positive rate of about 3%

when using the S̆idák corrected level. These results are as good as Figure 3 of Zhu and Chipman (2006).

Interestingly, those figures are obtained with large π0 and smaller values show excellent performances that

are however less stellar for variables 1 to 30 who see their rates of errors increases. The ideal π0 seems to

be linked with the true number of active features – if the initial population has too few or too many active

features, the genetic algorithm is more likely to miss its target as the required genes take longer to become

avaialbel, if they do. Note that we ran the PGA of Zhu and Chipman (2006), with their crossover and

selection mechanism, and we obtained similar peformances for all values of π0 we tried. Intuitively, their

choice of pointwise crossover could be thought to help detect the unactive features that all come first, but it

did not seem to be a driving factor.

4.2 Pollution data

Let us consider the pollution data used in Example 4.1 of Zhu and Chipman (2006) and based on data used by

Miller (2002) but initially published by McDonald and Schwing (1973). Let us assume that the three-variable

model suggested by Figure 1 is correct and use the estimates of regression with these three variables as the

ground truth. The same genetic parameters are used as for Figure 1, namely I = 50, G = 20, U = 75, π0 = .3

and θg = 1/D for all g. Figure 4 displays the boxplot of the importance scores of each features obtained

from 1000 datasets with the original values of the covariates and a new Y generated from a linear regression

model with all regression coefficients equal 0 except for β0 = 796.5, β1 = 2.347, β9 = 2.961, and β14 = 0.3911.

The standard deviation of the error term is set to 38.58. Those parameters were determined from a fit on

the whole original dataset, then deemed true values for the simulation. The lines and solid points have the

same meaning as Figure 2 presented in Section 4.1. The left panel under the null is obtained by randomly

permuting the values of Y .

The theoretical mean under the null matches the empirical median closely, but contrarily to the illustrative

example, we observe discrepancies between the theoretical and empirical values of the 95th quantiles. While

the correlation between the features and the presence of some outliers may play a role, an investigation led

us to conclude that the small sample size was the real culprit here. We first ran the same simulation, but

with features simulated as multivariate normal with the same mean and covariance as the original data.

The ensuing plot was qualitatively identical to Figure 4. However, with a sample size of 300 instead of 60,

the empirical 95th quantiles are aligned on their theoretical value similarly as Figure 2. Digging further,

we observed that the small sample size caused even smaller training and validation sets that are a lot more
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prone to spurious correlations, making the assumption of equal fitness fail strongly within some universes.

Although the variables are equally likely to be favoured by chance, they are globally picked more often in their

respective wrongly favourable universes, hence the increased importance. In cases where the sample is small,

it may be advisable to consider a fitness function that does not rely on a validation set. The distributional

results that we obtained depend on the approximate equality of the fitness under the null, not on the specific

choice that we proposed.
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Figure 4: Importance scores obtained from the BGA of 1000 different samples generated from the same scenario based on
the Pollution dataset. The left panel shows the importance scores under the null hypothesis, where Y is independent from the
features. The right panel shows the importance score when the signal depends on covariates 1, 9 and 14. While the plain line
shows the expected importance πG, the dashed line displays the threshold πd + z0.95σπ̂/

√
U on the left, and the S̆idák adjusted

equivalent on the right. The plain dots show the empirical 95th quantile of the importance scores for each variable to compare
against that theoretical bound. The boxplot of the active features are coloured in gray.

Looking at the right panel of Figure 4, we note that the discrepancies under the null did not affect notably

the ability of BGA to detect the active features who are rightly selected over 90% of the time. Other variables

however get wrongly picked between 12% and 37% of the time as a consequence of the artificially increased

importance.

4.3 Wisconsin breast cancer dataset

Consider now the Wisconsin breast cancer dataset from Street et al. (1993) that we obtained from Dheeru

and Karra Taniskidou (2017). A binary response variable indicating that the tumor is malignant (rather than

bening) is explained with logistic regression using 30 features derived from medical imaging. The parameter

α of BGA can be used to control the number of features that are selected. To simulate a simpler model, we

choosee a conservative value of α = 0.005. The other parameters of the BGA are I = 20, G = 15, U = 50,

π0 = .3 and θg = 1/D for all g. Figure 5 shows the bubble plot of this BGA with the theoretical mean

importance and threshold as dotted and plain lines respectively. Variables 8 and 21 are selected: they are

above the objective threshold, but we may also note that there is a gap between them and the following

variable, so the subjective decision from a bubble plot would have been the same in this case.

To assess the ability of BGA to detect the active features in a realistic logistic regression setting, we use

the original features of the Wisconsin breast cancer dataset, but we generate new responses that follow a

logistic regression model with parameters βi = 0, except for β0 = −18.38, β8 = 75.25 and β21 = 0.8797 that

we obtained from a fit on the original dataset. We create 1000 simulated dataset reusing the same features,

but generating a new response. We use the same genetic parameters as for Figure 5. The right panel of

Figure 6 shows the boxplots of the importance scores obtained. The left panel was obtained under the null

by randomly permuting the binary values in the simulated response, hence breaking any predictive power of

the features.

The left panel shows that the importance scores behave as expected under the null, even in the case of a

GLM. On the right panel, the two active features are the ones who get picked up most often, for 79% and

32% of the simulated repetitions. Variable 24 wrongly gets picked up 29% of the time, but its correlation

is 0.83 with X8 and 0.984 with X21. All other features are wrongly selected less than 9% of the time even
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though some have correlations exceeding 0.96 with the active features. In some way, this is a doubly hard

problem: the covariates are correlated, and the model is a GLM. Yet, the BGA that we proposed shows a

good performance.
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Figure 5: Bubble plot for the Wisconsin breast cancer dataset obtained from a BGA with parameters I = 20, G = 15, U = 50,
π0 = .3 and θg = 1/D for all g. The level global level was set to α = 0.005. The plain line shows πG, the theoretical mean of the
importance when no features are active. The dashed line shows the threshold that was derived to decide what features to retain.
The retained factors are shown as a dot rather, the dismissed as a cross.
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Figure 6: Importance scores obtained from the BGA of 1000 different samples generated from a scenario based on the Wisconsin
breat cancer dataset. The left panel shows the importance scores under the null hypothesis, where the malingness of the tumor
is independent from the features. The right panel shows the importance score when the signal depends on covariates 8 and 21.
While the plain line shows the expected importance πG, the dashed line displays the threshold πd + z0.95σπ̂/

√
U on the left, and

the S̆idák adjusted equivalent on the right. The plain dots show the empirical 95th quantile of the importance scores for each
variable to compare against that theoretical bound.

5 Tuning of parameters

Genetic algorithms in general depend on many parameters that must be somewhat arbitrarily fixed and so

does BGA. Experience helps in chosing appropriate values, as does occasional simulations to explore the

behaviour of the method. There are however general guidelines that may help.

5.1 Fitness function

Under the null, the fitness function must yield approximately equal probability of selection to all possible

models. The construction of Equation 2 was designed with this property in mind and the Monte Carlo

studies in section 4 verified that the assumption is reasonnably valid in a realistic setting. A similar empirical

endeavour could contribute to validating newly proposed fitness functions. As long as this property is

preserved, the choice of fitness has no bearings on the distribution of selection ratios under the null hypothesis.

Of course, the ability of the fitness to identify desirable models outside to the null hypothesis is also key to

good performances.



12 G–2018–70 Les Cahiers du GERAD

The peakedness parameter (γ) highlights fitter individuals further, helping to speed up evolution. As

such, it may help when computational resources are limited. A large γ may however highlight naturally

occuring fortuitous fluctuations as well, so larger values are not systematically better. We mostly used values

of γ in the neighborhood of 1.5, although we experimented with values as high as γ = 4 which reminded us

of the ARCX4 algorithm of (Breiman, 1996a), but a fourth power did not have the same beneficial effect for

the fitness.

5.2 Rates

The generation and evolution of populations depend on random elements that appear at some rates.

Activation rate (π0): The values of π0 has an effect on the expected values of the importance scores. Values

close to 0 or 1 should be avoided as they lower the diversity of the initial population who then relies

on mutation to explore numerous models. A rate of π0 = 0.5 seems a good choice that maximizes

that initial diversity, but in practice, best results are obtained when πG is close to the true proportion

of active features in the models. If prior information is known about the expected number of active

features, it would make most sense to start π0 just below that porportion when it is less than 0.5, and

larger than the expected proportion otherwise. Since models are oftent expected to be sparse, smaller

values of π0 seem more appropriate.

Mutation rates (θg, g ∈ {1, . . . , G}): Mutation breaks stagnation by infusing diversity in each generation.

It helps exploring the space of all possible models, but also precludes the convergence of a population.

While a lack of convergence is detrimental for single-thread genetic algorithms, it helps BGA who seeks

diversity between the universes and look for a signal in the aggregation of all individuals. With a finite

number of generations, a large mutation is approriate, but it should stay far below θg = 1/2 who would

make the next generation random, with no genetic memory. As Zhu and Chipman (2006) pointed out,

many instances in the literature suggest θg = 1/D, which we also found to work properly. Although

we allow for a changing rate of mutation, those seem especially appropriate for single-thread genetic

algorithm where diversity has value for the initial generations, but convergence eventually requires low

mutation rates. Hence for BGA, we typically kept the mutation rate constant.

5.3 Number of individuals, universes and generations

The computational cost of a BGA depends highly on the number of individuals that will be generated,

namely IGU .

Number of parallel universes (U): Universes are independent by design of the algorithm, and the accuracy

of the selection ratios is improved by a larger number of universes. To justify the central limit theorem,

using no less than 30 universes is advised, but that number could be far greater if the computational

resources are available. Note also that the computation of the universes is embarassingly parallel, so it

provides a trivial way to scale the algorithm on multi-core platforms.

Number of generations (G): A large number of generations may be detrimental as the covariance between

two individuals (cg) will tend to increase as g increases, yielding a larger threshold. On the other

hand, too few generations might not give enough time to the genetic operators to detect the truly best

models under the alternative when some features are good predictors. To complicate things, the speed

of convergence to fit individuals also depends on the probability of activation and the mutations rates,

especially if the mutation varies with g. Values of 10 to 15 seemed to work well for G.

Population size (I): Contrary to the intuition, larger population sizes do not yield better results. In a

very large population, the probability of selection of an individual twice as fit as anybody else may be

so diluted that his genes will not be passed on to the next generation. In a smaller population, his

relative competitive advantage will be much larger. The population size (I) should thus be as small as

possible, but not to the point of being detrimental to the exploration of the possible models. Zhu and

Chipman (2006) suggested having a population size (I) of the same magnitude as the dimension of de

data (D) and we found that guideline worked well, although I < D also has merits when the number

of dimensions gets large.
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With the total computational cost of BGA being O(IGU), and G which is losely linked to D, it seems

advisable to find a moderate value of I, then make U as large as possible.

6 Conclusion

The parallel genetic algorithm of Zhu and Chipman (2006) is an embarassingly parallel approach to feature

selection. It computes importance scores for each variable from a summary of all models in a number of

universes that are purposefully not fully evolved. We derive the distribution of the importance score when

none of the predictors are active, which yields an objective criterion for variable selection. Simulations show

that the distributional results hold well under the null hypothesis, both for linear regression and GLM.

Telling apart which variables are active or not when the predictors are higly correlated is more challenging,

as inactive features may have a proxy effect – they are a good alternatives when an active feature is missing

in the model – but BGA performs well in those circumstances as well. The distribution of the importance

scores under the null do not depend on the actual fitness function. The out-of-sample RSS that we use

proposed works well for linear regression and GLM. Better fitness functions are certainly possible and could

be the topic of future research.
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