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3000, chemin de la Côte-Sainte-Catherine
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Canada, H3C 1K3

bo.rostami@gmail.com

guy.desaulniers@gerad.ca

fausto.errico@etsmtl.ca

andrea.lodi@polymtl.ca

August 2018
Les Cahiers du GERAD
G–2018–61
Copyright c© 2018 GERAD, Borzou, Desaulniers, Errico, Lodi
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Abstract: This paper addresses combinatorial optimization problems under uncertain and correlated data
where the mean-covariance information of the random data is assumed to be known. Such a problem can be
modeled as an integer non-linear program. We reformulate the problem using spectral decomposition and
apply principal component analysis (PCA) to approximate the reformulation. The quality of the resulting
approximate solutions is assessed by determining a worst-case optimality gap. We apply our results to the
capacitated vehicle routing problem with uncertain and statistically correlated travel times (CVRP-SCT).
The CVRP-SCT seeks vehicle routes whose observed travel times are not excessively dispersed with respect
to their expected value. To solve the approximate models to optimality, we develop exact branch-price-and-
cut algorithms. Our experimental results on a rich collection of instances show that good quality feasible
solutions can be found using the proposed approximate models. In particular, solving the PCA-based model,
even with a very small number of components, provides solutions that are optimal for all instances with
known optimal values in less computational times than an exact method.
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1 Introduction

Decision-making problems are plagued with uncertain data which affect price, demand, reliability, etc. Iden-

tifying the sources of uncertainty, understanding how they contribute to decisions, and the management of

uncertainties within the decision-making process are therefore essential. Nowadays impressive capabilities in

terms of data collection and analysis enable us to describe the stochastic behavior of many random processes.

Decision-making activities have the potential to exploit this information to provide better and more robust

operations planning.

In many planning problems, because of some common trigger factors (e.g., weather, congestion, festivals),

individual events are likely to be correlated, rather than statistically independent. For example, in passenger

and freight transportation, if the costs are proportional to fuel consumption or travel times, then events

such as rush hours, road works, and accidents can lead to road correlated costs, since congestion on one

road is likely to cause congestion on nearby roads. Other examples include the portfolio selection problem,

in which the risk-averse investor has to take into account the correlations among multiple risky assets as

well as their individual performances, and the stochastic facility location problem, in which the supplier

needs to consider the correlations among demands from different retailers. Given the fact that correlation

between the uncertain data makes the decision-making problems computationally challenging, assuming the

independence of random variables is very common. This creates a considerable gap between research and

reality in situations where significant correlations among the uncertain data parameters may occur (see, for

instance, Agrawal et al. 2012).

Incorporating uncertainty in decision-planning leads to the challenging issue of how to model the un-

certainty in a proper way such that, on the one hand, it reflects the real-world concerns and, on the other

hand, be computationally tractable. There are different solution approaches for dealing with uncertainty.

One approach that has been widely used is stochastic programming (see, for instance, Birge and Louveaux

2011, and references therein), where the decision maker optimizes the expected value of an objective function

that involves random parameters. This approach is typically applied to the case where uncertainty can be

described by known distributions. One alternative approach is robust optimization (RO) (see, e.g., Ben-Tal

and Nemirovski 1998, Buchheim and Kurtz 2017) that handles cases where such probability distributions

are hard to justify or estimate. Distributionally robust stochastic programming (DRSP) (see, for instance,

Delage and Ye 2010, Wiesemann et al. 2014) is an intermediate approach that minimizes the expected cost

over the worst joint distribution among all probability distributions consistent with the available information.

Another relevant track of research on decision-making under uncertainty is to develop methodologies to

construct the uncertainty sets based on past observations of the random variables and the concept of risk.

The “risk” is broadly defined as a quantitative expression of a system of attitudes, or preferences with respect

to a set of random outcomes. In utility-based models, the risk attitude determines the curvature of the utility

function, thereby influencing the evaluation process of risky choice alternatives. Value-at-Risk (VaR) and

the Markowitz mean-variance framework proposed by Markowitz (1952) in the context of portfolio are two

popular approaches to address the risk. By definition with respect to a specified probability level β, the

β-VaR of a portfolio is the lowest amount α such that, with probability β, the loss will not exceed α. The

Markowitz mean-variance framework identifies risk with the volatility (variance) of the random outcome of

the decision. This approach evaluates a decision under uncertainties in terms of trade-off between its risk and

reward. The computational tractability of this approach, along with its intuitively appealing interpretation,

have contributed to widespread its popularity in finance and economics, as well as in operations research,

management science, and engineering (see, for instance, Steinbach 2001, and references therein).

The purpose of this paper is to provide approximate models for combinatorial optimization problems under

uncertain and correlated data. To model the uncertainty, we use the mean-covariance information about the

distributions underlying the random data. Let us consider a cost vector ξ as a random variable from the

class Mm
(µ,C) of m−variate distributions with mean µ and covariance C. More precisely, for i ∈ {1, . . . ,m},

let ξi be a random variable representing the random cost of decision i with mean µi and standard deviation

σi. Moreover, let ρij represent the correlation coefficient between ξi and ξj for i, j ∈ {1, . . . ,m}. The

entries of C for each pair of i, j ∈ {1, . . . ,m} are given by Cij = ρijσiσj where the principal diagonal
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elements represent the variance of random variables ξi, i ∈ {1, . . . ,m}. Note that for a given data matrix

T ∈ Rp×m, where each column gives the observations of ξi, the sample covariance matrix can be computed

as C = 1
p [(T − µ)(T − µ)T ] ∈ Rm×m.

Let B = {0, 1}, A ∈ Rn×m be a real matrix, and b ∈ Rn a real vector. For some 0 ≤ α < 1 and q ∈ {1, 2},
we consider the following parametric non-linear combinatorial optimization problem:

PNLCOP: min (1− α)µTx+ α (xTCx)1/q

s.t. x ∈ Fx ∩ Bm,
(1)

with

Fx = {x ∈ [0, 1]m | Ax = b}. (2)

Since the covariance matrix C is positive semidefinite, PNLCOP is a convex binary quadratic program

for q = 1 and a second-order cone program with binary requirements for q = 2. In the first case, the

non-linear term of the objective function represents the variance, while in the second case, it denotes the

standard deviation.

By defining a new parameter δ = α/(1−α) as a “risk factor,” we can rewrite the objective function as the

conic combination of mean and dispersion (variance or standard deviation), which is known as a risk-averse

objective function in the literature (see, for instance, Björk et al. 2014, for more details).

1.1 Relationship to other models

Although PNLCOP can be viewed as a mean-dispersion model that evaluates the combinatorial optimization

problem under uncertainty in terms of a trade-off between the risk and the cost, it can be shown that different

RO, DRSP, and VaR models can be reformulated as PNLCOP.

In particular, PNLCOP with q = 2 and δ = α/(1 − α) turns out to be equivalent (see, e.g., Bertsimas

and Sim 2004, Buchheim and De Santis 2018) to the following RO problem

min max
ξ∈U

ξTx

s.t. x ∈ Fx ∩ Bm,
(3)

where the worst-case is taken over the uncertainty set U , which is an ellipsoid defined by the mean µ and

covariance C of ξ.

Moreover, when the distribution of random variables ξ is Gaussian, problem PNLCOP with q = 2 is

equivalent (see, e.g., Ghaoui et al. 2003) to the following VaR problem

min t

s.t. Prob(ξTx ≥ t) < ε

x ∈ Fx ∩ Bm,
(4)

where the VaR is defined as the minimal level t such that the probability that the cost ξTx exceeds t is less

than ε. Note that, in general, the VaR problem, in contrast to PNLCOP, which only requires the knowledge

of the first and second moments of the distribution of ξ, assumes that the entire distribution is known.

Furthermore, solving the continuous relaxation of the PNLCOP with q = 1 is equivalent (see, for instance,

Geoffrion 1967, Popescu 2007) to solving the continuous relaxation of the following DRSP problem

min max
ξ

E[f(ξTx)]

s.t. x ∈ Fx ∩ Bm,
(5)

where f is an increasing and concave function (i.e., the decision maker is risk averse) with one- or two-point

support.
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1.2 Scientific contributions

Since the covariance matrix C is positive semidefinite, the continuous relaxation of PNLCOP is either a

convex quadratic program or a second-order cone program, which can be solved by state-of-the-art continuous

optimization solvers. However, it is generally very difficult to solve the PNLCOP when it models even small-

sized real-life contexts. In fact, not only it is NP-hard, but it has been shown that even some particular cases,

such as the shortest path problem with a convex quadratic objective function, are APX-hard (see Rostami

et al. 2018a). For an overview of solution methods for the general binary quadratic program, we refer the

interested reader to Rostami et al. (2018b) and references therein.

In this paper, we show how PNLCOP beyond providing optimal solutions can be suitably exploited in an

approximate solution framework. Our main contributions are summarized as follows:

• We show how the covariance matrix C can be exploited to reformulate PNLCOP in the projected space

of eigenvectors of C. Then, we apply the principal component analysis (PCA) to obtain a family of

approximations of the problem and analyze the quality of the approximate solutions in terms of a

worst-case optimality gap.

• To demonstrate the effectiveness of the proposed methodology, we apply our results to the capacitated

vehicle routing problem with stochastic and correlated travel times (CVRP-SCT, see Rostami et al.

2017), which is known to be a very hard combinatorial optimization problem. We develop a branch-

price-and-cut algorithm to solve the approximate formulations. A PCA-based approximation yields

a column generation master problem with a quadratic objective function, while the subproblems are

classical elementary shortest path problems with resource constraints (ESPPRCs).

• We perform an extensive computational study on known datasets from the literature. Our results

indicate the effectiveness of the proposed models with a large number of customers. The PCA-based

approximate solutions turn out to be identical to the optimal solutions of the original problem on all

instances with known optimal values.

• Results also confirm the benefits of the proposed models in handling variability. Indeed, the obtained

approximate solutions display an expected cost that is only marginally higher than that obtained by

deterministic models, but with significant less dispersion. Finally, the approximate models provide

solutions with different values of expected cost and associated risk, which in turn allows the decision

maker (planner) to choose solutions according to her risk attitude.

1.3 Organization of the paper

The remainder of the paper is organized as follows. In Section 2, we detail the PCA-based approximate models

and analyze the solution quality. In Section 3, we present the CVRP-SCT and provide the proposed branch-

price-and-cut algorithm. In Section 4, we present the data, the experimental settings, the implementation

details and the computational results. Conclusions are drawn in Section 5.

2 PCA-based reformulation and approximation

In this section, we present an approximation scheme for PNLCOP. We show how to use the principal com-

ponent analysis technique to find a low-rank approximation of the covariance matrix C in such a way that

the resulting low-rank matrix provides a good approximation of C. Moreover, we analyze the behavior of the

algorithm in the worst case.

The PCA is one of the oldest and most widely used techniques to reduce the dimensionality of a dataset

while preserving as much variability as possible (see, for instance, Abdi and Williams 2010, Jolliffe and Cadima

2016). The main idea of PCA is to choose a new coordinate system for the dataset by transforming some

(possibly) correlated variables into a smaller number of uncorrelated variables, called principal components

that are linear functions of the original ones. The greatest variance by any projection of the dataset comes

to lie on the first axis (the first principal component), the second greatest variance on the second axis, and so

on. If the number of components retained is equal to the number of original variables, all variability will be
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accounted for. However, the goal is to keep as few components as possible to explain the substantive amount

of variance.

Consider a data matrix T and let Tj represents its jth column. The goal is to find a transformation

(direction) ν ∈ Rm such that νT T =
∑m
j=1 νjTj captures as much variance of T as possible. Note that the

variance of νT T is computed as follows:

var(νT T ) = E[(νT (T − µ))2] = E[νT (T − µ)(T − µ)T ν] = νTCν. (6)

It can be shown (see, for instance, Abdi and Williams 2010) that the best transformation is obtained by

solving the equation

C ν = λ ν for some real number λ.

Hence, ν must be an eigenvector and λ the corresponding eigenvalue of the covariance matrix C. Therefore,

every PCA axis has an eigenvalue associated with it, which is proportional to the amount of variation

explained by that axis.

2.1 A reformulation

We present how to exploit the covariance matrix C to reformulate PNLCOP in the projected space of eigen-

vectors. Because eigenvectors corresponding to different eigenvalues of C are orthogonal, it is possible to

store all the eigenvectors in an orthogonal matrix (recall that a matrix is orthogonal when the product of

this matrix by its transpose is a diagonal matrix). Using spectral decomposition (see, for instance, Golub

and Van Loan 2012), we can express matrix C as

C = V ΛV T (7)

where columns of V represent the normalized eigenvectors v1, . . . , vm of C, and Λ is a diagonal matrix such

that the diagonal elements are the eigenvalues λ1, . . . , λm.

The right-hand side of (7) can be replaced by UT U , where U ∈ Rr×m and r is the rank of C. Note that

the rank of a matrix can be defined as being the number of non-zero eigenvalues of the matrix. Therefore, if

we define Ux = y, with y ∈ Rr×1, we can rewrite the PNLCOP as

RPNLCOP: min (1− α)µTx+ α (yT y)1/q

s.t. (x, y) ∈ Fxy ∩ (Bm × Rr),
(8)

with

Fxy = {(x, y)| x ∈ Fx, Ux = y}. (9)

Note that, if r � m, model RPNLCOP might be easier to solve than PNLCOP because the number of

non-zero terms in the objective function considerably decreases at the cost of introducing only r continuous

variables and r linear constraints. However, in general, solving RPNLCOP can be as difficult as PNLCOP.

2.2 An approximate approach

Given the fact that the covariance matrix is positive semidefinite, its eigenvalues are always positive or null,

and its eigenvectors are pairwise orthogonal when their eigenvalues are different. The eigenvectors are also

composed of real values. Without loss of generality we assume that λ1 ≥ λ2,≥ . . . ≥ λm with corresponding

eigenvectors v1, v2, . . . , vm. Our aim, in this section, is to construct an approximation of RPNLCOP in an

`-dimensional subspace (` ≤ r) that captures as much variance as possible. The following proposition is a

known result providing indications on how to suitably chose directions with higher variance.

Proposition 1 Let C be a covariance matrix with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λm and corresponding eigen-

vectors v1, v2, . . . , vm. The direction ν of maximum variance is v1 and that of minimum variance is vm.
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Proof. The results ensue using the Rayleigh quotient R(ν) = νT Cν
νT ν

(see, for instance, Golub and Van Loan

2012), the definition of νTCν provided in (6), and the fact that

max
‖ν‖=1

R(ν) = max
ν∈Rm\{0}

R(ν) = λ1 (10)

min
‖ν‖=1

R(ν) = min
ν∈Rm\{0}

R(ν) = λm. (11)

As a consequence of Proposition 1, we can project RPNLCOP to a subspace spanned by the top `

eigenvectors v1, v2, . . . , v`. Let Ū ` ∈ R`×m be the submatrix of U corresponding to the top eigenvectors

v1, v2, . . . , v` and define U ` =
[
Ū ` | 0

]T
with 0 ∈ R(r−`)×m as a null matrix. We consider the following

approximate model:

RPNLCOP` : w` = min (1− α)µTx+ α (yT y)1/q

s.t. (x, y) ∈ F`xy ∩ (Bm × Rr),
(12)

with

F`xy = {(x, y)| x ∈ Fx, U `x = y}. (13)

Note that, the dimension of y is still r. However, equation U `x = y and the definition of U ` force

y`+1 = . . . , yr = 0. The following proposition formally shows that solving RPNLCOP` gives a valid lower

bound for RPNLCOP.

Proposition 2 Let (x̂, ŷ) and (x̄, ȳ) be optimal solutions of RPNLCOP` and RPNLCOP with objective values

of w` and w, respectively. Then, w` ≤ w.

Proof. Feasibility of (x̄, ȳ) for RPNLCOP implies that (x̄, ỹ) with ỹ = (ȳ1, ȳ2, . . . , ȳ`, 0, . . . , 0) is feasible for

RPNLCOP`. Since (x̂, ŷ) is an optimal solution of RPNLCOP`, we have

w` =(1− α)µT x̂+ α (ŷT ŷ)1/q ≤ (1− α)µT x̄+ α (ỹT ỹ)1/q

≤(1− α)µT x̄+ α (ȳT ȳ)1/q = w.

Corollary 1 w` ≤ w`+1 for all ` ∈ {1, . . . , r − 1}.

One of the main advantages of solving RPNLCOP` is that it includes the original set of constraints Fx.

Thus, any feasible solution to RPNLCOP` is also feasible for PNLCOP. Once a solution to RPNLCOP` is

found, one can also evaluate the value of this solution for the objective function of PNLCOP to obtain an

upper bound to the problem, thereby obtaining an optimality gap.

2.3 Worst-case bound analysis

Given an optimal solution of RPNLCOP`, we would like to assess the quality of this solution in terms of the

objective function of PNLCOP with respect to the optimal value of PNLCOP. To this end, let us consider

the covariance matrix C. Using the decomposition C = UTU with U ∈ Rr×m as described in Section 2.1 and

the definition of U ` given in Section 2.2, we can express the covariance matrix C as C = C` + Cr−`, where

C` ∈ Rm×m = (U `)TU ` and Cr−` ∈ Rm×m = (Ur−`)TUr−`. (14)

In other words, we partition the covariance matrix with respect to the top ` eigenvectors v1, v2, . . . , v`
and the remaining r − ` eigenvectors. Note that we do not consider the eigenvectors corresponding to zero

eigenvalues. In the following theorem, we analyze the quality of the optimal solution of RPNLCOP`.
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Theorem 1 Let (x̂, ŷ) and (x̄, ȳ) be optimal solutions of RPNLCOP` and RPNLCOP, respectively. Moreover,

let val(x̂, ŷ) and val(x̄, ȳ) represent the values of the objective function of RPNLCOP at (x̂, ŷ) and (x̄, ȳ),

respectively. Then

val(x̂, ŷ) ≤ (1 + ε) val(x̄, ȳ),

where ε = α (mλ`+1)
1/q

w` and λ`+1 is the largest eigenvalue of Cr−`.

Proof. Let q = 1. Then,

val(x̂, ŷ) = (1− α)µT x̂+ α ŷT ŷ = (1− α)µT x̂+ α x̂TCx̂
= (1− α)µT x̂+ α x̂TC`x̂+ α x̂TCr−`x̂
= w` + α x̂TCr−`x̂.

Diving both sides of the above equality by w` we obtain

val(x̂, ŷ)

w`
= 1 +

α x̂TCr−`x̂
w`

. (15)

Using the Rayleigh quotient (see Equations (10) and (11)) and the fact that x̂T x̂ ≤ m, we obtain

x̂TCr−`x̂ ≤ λ`+1 x̂
T x̂ ≤ mλ`+1. (16)

According to (15) and (16), and the fact that

val(x̂, ŷ)

val(x̄, ȳ)
≤ val(x̂, ŷ)

w`

the result of the theorem for q = 1 follows.

For q = 2, we have

val(x̂, ŷ) = (1− α)µT x̂+ α (ŷT ŷ)1/2 = (1− α)µT x̂+ α (x̂TCx̂)1/2

≤ (1− α)µT x̂+ α (x̂TC`x̂)1/2 + α (x̂TCr−`x̂)1/2

= w` + α (x̂TCr−`x̂)1/2,

where the inequality follows from the fact that C` and Cr−` are positive semidefinite and that (a + b)1/2 ≤
a1/2 + b1/2 for a, b ≥ 0. The rest of the proof is the same as for q = 1.

Note that one can provide a tighter bound than the one proposed in Theorem 1 if the specific problem

structure allows us to infer a bound on the value of x̂T x̂ (see, for instance, Section 3.1).

Corollary 2 Let lost(x̂) = x̂TCr−`x̂ be a function representing the lost dispersion of solution x̂. Then,

(mλm)1/q ≤ lost(x̂) ≤ (mλ`+1)1/q.

This shows that for small λ`+1, the approximate covariance matrix C` provides a very good approximation

of the original covariance matrix C.
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3 Application to the CVRP-SCT

The purpose of this section and the next one is to demonstrate the practical applicability and impact of the

proposed PCA-based approximation scheme. To this end, we choose the CVRP-SCT which is of interest for

a large community of researchers because accounting for stochasticity can potentially improve the quality of

the solutions. While we show in this section how to apply our method to the CVRP-SCT, the computational

study is developed in the next section.

The classical CVRP is known to be a very hard combinatorial optimization problem and has been exten-

sively studied in the literature (see, for instance, Baldacci et al. 2012, Toth and Vigo 2014). The CVRP-SCT

is a variant of the CVRP where travel times between locations are assumed to be stochastic and statistically

correlated. Consequently, the total time of each potential vehicle route, which is the sum of the travel times

between each pair of locations visited consecutively is also stochastic and can be affected by a large variability.

Taking into account the correlation between the travel times, the objective of the CVRP-SCT consists of

planning optimal vehicle routes whose travel times are reliable, in the sense that observed travel times are

not excessively dispersed with respect to their expected value.

Let us describe the CVRP-SCT using the set partitioning formulation proposed in Rostami et al. (2017).

Let K be a set of identical vehicles with capacity Q and G = (V,E) be a graph with vertex set V =

{0, 1, 2, . . . , n} and arc set E, with |E| = m. Each vertex i ∈ Vc = V \ {0} represents a customer having a

nonnegative demand qi, while vertex 0 corresponds to a depot. In E, there exists an arc (i, j) linking vertex

i to vertex j if the sum of the demands at these vertices does not exceed Q. Let [tij ](i,j)∈E be a vector of

random variables (representing the random travel times) from the class Mm
(µ,C) of m−variate distributions

with mean µ and covariance C.

The CVRP-SCT consists of finding a set of |K| routes, where both the total expected travel times and the

total variance are minimized in such a way that each customer is visited exactly once, each route starts and

ends at the depot, and the vehicle capacity is respected for each route. Let Rk be the set of feasible routes

for vehicle k ∈ K. For each k ∈ K, let µk ∈ R|Rk| be the vector of expected travel times for routes in Rk,

i.e., µkp =
∑

(i,j)∈p µij for each route p ∈ Rk. Furthermore, let Ak ∈ B|Vc|×|Rk| be an incident matrix such

that for each customer i ∈ Vc, the entry akip takes value 1 if route p ∈ Rk visits customer i and 0 otherwise.

In the same way, we also define an incident matrix Bk ∈ Bm×|Rk|, where each of its entries bkijp, (i, j) ∈ E,

p ∈ Rk, takes value 1 if route p traverses arc (i, j), and 0, otherwise.

For each vehicle k ∈ K, we define two sets of binary variables zk = (zk1 , z
k
2 , . . . , z

k
|Rk|)

T and xk =

(xk1 , x
k
2 , . . . , x

k
m)T . In the former, each binary variable zkp is equal to 1 if vehicle k uses route p and 0 otherwise,

while in the latter, each binary variable xkh is equal to 1 if arc h = (i, j) is traversed by vehicle k, and 0

otherwise. The CVRP-SCT is formulated as the following convex binary quadratic mean-variance model:

Pxz : min (1− α)
∑
k∈K

(µk)T zk + α
∑
k∈K

(xk)TCxk

s.t. (x, z) ∈ Fxz,
(17)

with

Fxz =
{

(x, z) |∑
k∈K A

k
i z
k = 1 ∀ i ∈ Vc (18)

Bkzk = xk ∀ k ∈ K (19)

(ek)T zk = 1 ∀ k ∈ K (20)

zk ∈ {0, 1}|R
k| ∀ k ∈ K (21)

xk ∈ {0, 1}|E| ∀ k ∈ K
}
,

where Aki is the ith row of matrix Ak and ek is a vector of ones. For a given value of α (0 ≤ α < 1), the

first term of the objective function (17) minimizes the total expected travel time, while the second term
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minimizes the total variance. Constraints (18) ensure that each customer is visited once. Constraints (19)

link the original arc-flow variables x to the route variables z. Constraints (20) impose to select only one route

for each vehicle.

Note that Pxz contains a huge number of variables, one binary variable zkp for each feasible route p ∈ Rk,

k ∈ K and |K| × |E| binary variables x. To solve the problem to optimality, Rostami et al. (2017) develop a

branch-price-and-cut algorithm in which the continuous relaxation of Pxz is solved by column generation at

each node of the search tree.

3.1 Approximate models

Following the PCA approximation described in Section 2.2, we define for each k ∈ K, Uxk = yk with

yk ∈ Rr×1 and project out variables xk from Pxz to obtain the following reformulation:

Pyz : w = min (1− α)
∑
k∈K

µkzk + α
∑
k∈K

(yk)T yk

s.t. (y, z) ∈ Hyz, (22)

with

Hyz =
{

(y, z) | (18), (20), (21), and U Bkzk = yk ∀k ∈ K
}
.

As a consequence of Proposition 1, if we project Pyz to a subspace spanned by the top ` eigenvectors

v1, v2, . . . , v` of C, we obtain the following approximate model:

P`yz : w` = min (1− α)
∑
k∈K

µkzk + α
∑
k∈K

(yk)T yk

s.t. (y, z) ∈ H`yz, (23)

with

H`yz =
{

(y, z) | (18), (20), (21), and

U `Bkzk = yk ∀k ∈ K
}
. (24)

In the following proposition, we show how to obtain a tighter worst-case optimality gap for the solution

provided by P`yz.

Proposition 3 The value of ε in Theorem 1 for q = 1 is given by ε = α λ`+1(|K|+n)
w` .

Proof. In the definition of ε in Theorem 1, m is an upper bound for x̂T x̂. Here, we show how to exploit the

problem’s structure to obtain the exact value of x̂T x̂. We have

x̂T x̂ =
∑
k∈K

(x̂k)T x̂k =
∑
k∈K

(
(x̂ke1)2 + . . .+ (x̂kem)2

)
,

where e1, . . . , em represent the m arcs in G. Since routes are elementary, only one arc leaves each customer,

but |K| arcs leave the depot. Therefore,

x̂T x̂ = |K|+ n,

and this completes the proof.
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3.2 A branch-price-and-cut algorithm

In this section, we develop a branch-price-and-cut algorithm for solving P`yz, ` ≤ r described in Section 3.1.

At any node of the branch-and-bound tree, the continuous relaxation of P`yz, possibly enhanced by generated

rounded capacity cuts (see Rostami et al. 2017, for more details), is solved to obtain a lower bound. Given

that P`yz has an exponential number of binary variables z, its continuous relaxation cannot be solved directly.

Hence, an iterative column generation procedure is applied in such a way that at each iteration a restricted

master problem (RMP), i.e., the continuous relaxation of P`yz restricted to a relatively small subset of the

z variables, is solved. To verify the optimality of a given solution of the RMP with respect to the original

master problem, we then solve one subproblem per vehicle that corresponds to an elementary shortest path

problem with resource constraints. The goal of these subproblems is to find negative reduced cost routes. If

some are found, the current RMP solution is not optimal and the variables provided by the subproblems are

added to the RMP before starting a new iteration. Otherwise, the algorithm stops, and the current primal

solution yields a lower bound for the current branch-and-bound node.

Each ESPPRC subproblem can be solved using a standard labeling algorithm (see, for instance, Feillet

et al. 2004, Irnich and Desaulniers 2005). However, given that solving an ESPPRC subproblem is very time-

consuming, we use the ng−route relaxation introduced by Baldacci et al. (2011). For each vertex i ∈ V , let

Vi ⊂ V be a subset of vertices with a priori fixed size (set to 10 in our experiments) that contains vertex i

and its “closest” neighbors. In an ng−route, a customer i ∈ Vc may be visited more than once if between

any two visits to i at least one vertex j ∈ V such that i /∈ Vj is visited.

To derive integer solutions, we branch on the total flow of an arc in E that is not incident to vertex 0. The

total flow is computed by vehicle, that is, for each subproblem. When the arc flow is fractional for several

arcs, we branch on the flow on an arc e ∈ E which is not incident to vertex 0 and whose total flow is the

closest to 0.5. On one branch, the flow on e is set to 0 by simply removing e from E in all subproblems.

On the other branch, the flow on e is set to 1 by removing from E all the other arcs with the same tail or

head vertex as e. The columns of the current RMP are then updated accordingly. Finally, the enumeration

process applies a best-first search strategy to explore the search tree.

3.2.1 Reduced cost computation

Let us consider the RMP of P`yz for a given ` ≤ r and denote by R̄k ⊆ Rk the subset of routes already

generated for vehicle k ∈ K, i.e., those for which there exists a route variable zkp in the current RMP. Because

of the convexity of the objective function, the RMP is a convex quadratic program that can be solved by a

state-of-the-art commercial solver. Let (z̄, ȳ) be an optimal primal solution of the RMP. In order to verify

the optimality of (z̄, ȳ) for the original problem P`yz, one has to compute the reduced cost of variables zk,

k ∈ K. The following theorem formally shows how to compute these reduced costs.

Theorem 2 Given a solution (z̄, ȳ) for the continuous relaxation of P`yz, ` ≤ r, the vector of reduced costs of

variables zk, k ∈ K is expressed as

(µ̄k)T = (µk)T − 1

1− α
∑
i∈Vc

πiA
k
i −

1

1− α
βk(ek)T +

2α

1− α
(ȳk)TU `Bk, (25)

where π and β are the Lagrangian vectors associated with constraints (18) and (20), respectively.

Proof. Let us consider the continuous relaxation of P`yz with ` ≤ r and suppose (π, β, σ, γ) are the Lagrangian

vectors corresponding to constraints (18), (20), (24), and constraints z ≥ 0, respectively. The Lagrangian

function is given as follows:

L(z, y, π, σ, β, γ) =(1− α)
∑
k∈K

(µk)T zk + α
∑
k∈K

(yk)T yk −
∑
i∈Vc

∑
k∈K

(πiA
k
i z
k − 1)

−
∑
k∈K

βk((ek)T zk − 1)−
∑
k∈K

σk(U `Bkzk − yk)−
∑
k∈K

γkzk.
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The stationarity conditions with respect to z and y read as

(1− α)(µk)T −
∑
i∈Vc

πiA
k
i − βk(ek)T − σkU `Bk − γk = 0 ∀k ∈ K (26)

2α (yk)T + σk = 0 ∀k ∈ K. (27)

By replacing σk with −2α (yk)T in (26) for each k ∈ K and rearranging the Lagrangian function, the

Lagrangian dual problem can be written as follows:

D`
yπβ : max

∑
i∈Vc

πi +
∑
k∈K

βk − α
∑
k∈K

(yk)T yk

s.t. (1− α)(µk)T −
∑
i∈Vc

πiA
k
i − βk(ek)T + 2α (yk)TU `Bk ≥ 0 ∀k ∈ K. (28)

Notice that, because γk ≥ 0 for all k ∈ K, variables γk play the role of slack variables in (26), and, hence,

have been removed from D`
yπβ .

According to (28), the vector of the reduced costs µ̄k of variables zk, k ∈ K is given by

(1− α)µ̄k = (1− α)(µk)T −
∑
i∈Vc

πiA
k
i − βk(ek)T + 2α (ȳk)TU `Bk (29)

which completes the proof.

Observe that for each k ∈ K, finding a component of µ̄k with minimum reduced cost corresponds to

solving an ESPPRC defined on graph G = (V,E) with arc costs

µkij −
1

1− α
πi +

2α

1− α

r∑
s=1

(ȳks )U `hs ∀h = (i, j) ∈ E.

4 Computational results

In this section, we present our computational experiments to evaluate the performance of the proposed

algorithms on CVRP-SCT. We first show how increasing the number of the top principal components affects

the lower bounds as well as the worst-case optimality gaps. Then, we compare the PCA-based algorithm

with the exact branch-price-and-cut algorithm of Rostami et al. (2017) in terms of the solution quality and

computing time. For simplification, we denote by Exact-BPC the branch-price-and-cut algorithm of Rostami

et al. (2017) applied to Pxz and by Qapp-BPC the developed branch-price-and-cut algorithm in Section 3.2

applied to P`yz, ` ≤ r.

All the algorithms were coded in C/C++ using CPLEX 12.6 as a solver for the linear and convex quadratic

programs and the GENCOL 4.5 library for the implementation of the branch-price-and-cut algorithms. The

experiments were performed on a machine running Linux Intel Xeon(R) CPU E3-1270 (2 quad core CPUs

with 3.60 GHz) with 64 gigabytes of RAM. To solve each instance, we considered a time limit of 5 hours for

the Exact-BPC and 2 hours for Qapp-BPC.

To compare the algorithms empirically, we used some datasets introduced in Rostami et al. (2017).

These datasets are clustered in three groups of instances C101, RC101, and R101 which are derived from

the Solomon (1987) dataset for the vehicle routing problem with time windows. Time windows have been

discarded. As common in the literature, we consider instances with reduced size n < 100 obtained from the

original instances by considering only their first n customers. In all three groups of instances, the expected

travel times for each arc (i, j) ∈ E is equal to the cost of arc (i, j) given in the classical instances, i.e., µij = cij ,

the standard deviations of the arc travel times is σij = cvij×µij , where cvij is a random coefficient of variation

in the range [0.01, 0.2], and the covariance matrix C is a positive semidefinite matrix with Cijls = ρijlsσijσls
for each pair of arcs (i, j), (l, s) ∈ E with ρijls ∈ [0, 1]. We remark that matrices C are dense and full rank,

which makes the resulting optimization problems very difficult.
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4.1 Worst-case optimality gap vs. true optimality gap

In this section we investigate the quality of the lower bounds obtained by solving P`yz, ` ≤ r and compare the

optimality gaps with the worst-case gaps described in Theorem 1. To this end, we ran Qapp-BPC to solve

P`yz with α = 0.1 and different number of components, i.e., ` ∈ {1, 3, 5, 10, 20, 30, 40, 50} on all three groups

of instances with n = 25. Table 1 reports the results. The first column shows the number of components (`).

The next columns give the results of Qapp-BPC for C101, R101, and RC101. For each group of instances

and for each `, we report the objective value of P`yz (w`), the true gap (gap) between the best known feasible

solution (UB) and the lower bound w`, and the worst-case gap (ε) computed by the formula described in

Theorem 1. The formula used to compute the true gap is (UB − w`)/UB, where UB is set to the optimal

value of Pxz obtained by Exact-BPC.

As we can observe, when the number of components used to approximate the model increases, both the

true gaps and worst-case gaps decrease. However, the true gaps are much smaller than the worst-case gaps

when ` is small and get closer as ` increases. Moreover, the results indicate that among all 600 principal

components, only a few of the top principal components are required to compute a good solution.

Table 1: Worst-case optimality gaps vs. the true gaps on instances with n = 25 and α = 0.1.

C101 R101 RC101

` w` gap ε w` gap ε w` gap ε

1 1786.42 0.0045 3.619 4956.05 0.0043 6.660 2824.37 0.0060 7.063
3 1786.49 0.0045 3.258 4957.56 0.0040 5.931 2824.61 0.0060 6.742
5 1783.63 0.0044 2.844 4957.88 0.0040 5.387 2825.36 0.0057 5.881

10 1787.41 0.0038 2.320 4963.48 0.0028 3.923 2827.17 0.0050 4.583
20 1789.54 0.0028 1.433 4970.22 0.0015 2.317 2830.18 0.0040 2.891
30 1790.80 0.0021 0.024 4975.91 0.0003 0.011 2836.00 0.0019 0.010
40 1790.90 0.0020 0.016 4977.21 0.0001 0.009 2836.20 0.0019 0.009
50 1793.20 0.0007 0.006 4977.24 0.0001 0.008 2837.60 0.0014 0.006

4.2 PCA as an approximate scheme

In this section, we evaluate the performance of Qapp-BPC applied to P`yz with ` = 1, 3, 5, and 10 principal

components. We ran experiments on all three groups of instances with sizes ranging from 15 to 60 customers,

and compare the results with those of Exact-BPC reported in Rostami et al. (2017).

Tables 2 to 4 report the results for C101, R101, and RC101, respectively. Each table gives the results

for three values of α = 0.1, 0.3 and 0.5. In all tables, the first two columns indicate the number of customers

(n) and the number of required vehicles (|K|). The next two columns show the optimal value (Opt.) and the

total time in seconds to solve the instances to optimality using Exact-BPC. The next columns give the results

obtained by Qapp-BPC with ` = 1, 3, 5, and 10 principal components. For each `, we report the value of the

objective function of Pxz at the solution found by Qapp-BPC (UB), the gaps in percentage (g(%)) between

the UB and the optimal value of Qapp-BPC, and the total time in seconds (t(s)) to solve P`yz to optimality.

The formula used to compute the gap is 100(UB −w`)/UB where w` is the optimal value of P`yz. We recall

that w` is a valid lower bound for CVRP-SCT. We used “−” if the respective algorithm was not able to find

any feasible solution within the time limit.

As we can observe from Table 2, Exact-BPC is able to solve C101 instances with up to 30 customers

when α = 0.1 and 0.3, and up to 20 customers when α = 0.5. However, Qapp-BPC with ` = 1, 3, 5 and 10 is

able to solve all instances with up to 50 customers for all values of α within a shorter time limit. Instances

with 60 customers and α = 0.1 and 0.3 are also solved by Qapp-BPC except for α = 0.3 and ` = 5 and 10.

Overall, the difficulty of solving P `yz is directly proportional to the values of α and `, i.e., by increasing the

values of these parameters the problem is more difficult to solve. On the other hand, and from the solution

quality perspective, we can observe that Qapp-BPC is able to obtain an optimal solution for all instances

whose optimal value is known. Interestingly, the upper bounds provided by Qapp-BPC for each instance are

identical for all values of `, except for two cases marked by asterisks for which the best upper bounds are
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Table 2: Results of Exact-BPC and Qapp-BPC on C101 instances.

Instance Exact-BPC Qapp-BPC (` = 1) Qapp-BPC (` = 3) Qapp-BPC (` = 5) Qapp-BPC (` = 10)

n |K| Opt. t(s) UB g(%) t(s) UB g(%) t(s) UB g(%) t(s) UB g(%) t(s)

α = 0.1
15 2 1352.9 61.8 1352.9 0.5 2.4 1352.9 0.5 4.0 1352.9 0.5 4.6 1352.9 0.3 3.6
20 2 1528.0 203.1 1528.0 0.5 6.3 1528.0 0.4 5.2 1528.0 0.4 5.5 1528.0 0.4 8.0
25 3 1794.6 1667.4 1794.6 0.5 12.8 1794.6 0.5 11.9 1794.6 0.4 15.4 1794.6 0.4 18.2
30 3 1997.7 10783.8 1997.7 0.6 23.0 1997.7 0.6 22.5 1997.7 0.6 20.2 1997.7 0.6 20.4
40 4 − 18,000.0 3107.8 0.5 99.9 3107.8 0.4 149.7 3107.8 0.4 121.9 3107.8 0.4 155.2
50 5 − 18,000.0 3414.4 0.6 758.3 3414.4 0.6 794.7 3414.4 0.6 1194.1 3414.4 0.5 1129.1
60 6 − 18,000.0 4391.9 0.7 5368.8 4391.9 0.6 5089.3 4390.9 0.6 5756.5 4390.9 0.6 6338.6

α = 0.3
15 2 1197.9 94.4 1204.8 1.8 2.6 1204.8 1.8 3.6 1197.9 1.2 4.2 1197.9 0.8 4.0
20 2 1293.9 257.2 1293.9 1.6 3.4 1293.9 1.5 3.1 1293.9 1.4 3.3 1293.9 1.2 4.7
25 3 1507.3 5004.2 1507.3 1.7 11.4 1507.3 1.7 15.4 1507.3 1.6 16.2 1507.3 1.4 18.4
30 3 1712.0 17037.7 1712.0 1.5 15.8 1712.0 1.4 10.9 1712.0 1.4 10.7 1712.0 1.3 14.6
40 4 − 18,000.0 2561.8 1.7 100.5 2561.8 1.6 138.6 2561.8 1.6 97.2 2561.8 1.5 327.1
50 5 − 18,000.0 2836.0 1.9 1636.4 2836.0 1.8 2123.0 2836.0 1.8 1706.7 2836.0 1.7 4737.5
60 6 − 18,000.0 3594.7 2.0 5581.6 3594.7 1.9 6716.5 3594.7 1.9 7200.0 − − 7200.0

α = 0.5
15 2 1010.6 261.0 1010.6 3.0 1.2 1010.6 2.9 3.5 1010.6 2.8 3.5 1010.6 2.3 2.6
20 2 1052.9 266.4 1052.9 4.0 3.0 1052.9 3.9 1.8 1052.9 3.5 2.9 1052.9 3.0 3.8
25 3 − 18,000.0 1192.6 4.3 21.4 1192.6 4.3 25.6 1192.6 4.3 25.2 1187.1 3.5 30.0
30 3 − 18,000.0 1359.3 3.0 26.1 1359.3 2.9 20.3 1359.3 2.9 24.9 1359.3 2.7 44.7
40 4 − 18,000.0 1955.3 3.6 546.3 1955.3 3.6 390.6 1955.3 3.5 643.0 1955.3 3.4 943.0
50 5 − 18,000.0 2160.8 4.4 2037.8 2160.8 4.3 2031.7 2150.8 3.7 3701.3 2150.8 3.4 3116.6
60 6 − 18,000.0 2733.7 4.0 7200.0 2733.7 4.0 7200.0 − − 7200.0 − − 7200.0

obtained when ` = 5 or 10. Overall, Qapp-BPC even with ` = 1 performs fairly well on all instances, with

small gap values especially when α = 0.1 and 0.3.

For the R101 instances, as we can see from Table 3, Exact-BPC is able to solve instances with up to

25 customers for all values of α within the time limit of 5 hours. Qapp-BPC, on the other hand, is able to

solve instances with up to 60 customers for some values of α and obtain an optimal solution for all instances

whose optimal value is known. When both algorithms are able to solve an instance within the time limit,

Qapp-BPC is significantly faster, especially when the number of components is smaller. For the instances

solved to optimality by Qapp-BPC within the time limit, the upper bounds provided for each instance are

identical for all values of `. However, for instances that are not solved to optimality within the time limit,

the upper bounds are not always the same. For example, for n = 60 and α = 0.5, the upper bound provided

by Qapp-BPC with ` = 1 is better than the one provided by Qapp-BPC with ` = 3. Overall, Qapp-BPC

even with ` = 1 performs fairly well on all instances; with ` = 1 the average percentage gaps on instances

with unknown optimal values are 0.47%, 1.1%, and 1.95% for α = 0.1, 0.3, 0.5, respectively.

The results for the RC101 instances are not too different from those for C101 and R101. By inspecting

the third column of Table 4, we can see that Exact-BPC is able to solve instances with up to 30 customers for

α = 0.1 and up to 25 customers for the other values of α. Qapp-BPC again obtains an optimal solution for all

instances whose optimal value is known, and faster than Exact-BPC . For the instances solved to optimality

by Qapp-BPC within the time limit, the upper bounds provided for each instance are identical for all values

of `, except one case marked by an asterisk for which the best upper bound is obtained when ` = 10.

4.3 PCA solution quality

As we mentioned earlier, one of the main advantages of solving the approximate model P`yz, ` ≤ r is to

provide a feasible solution for the original problem Pxz. In this section, we investigate the solutions obtained

by Qapp-BPC with ` = 1 and compare them with those obtained from the deterministic CVRP and a mixed-

integer linear approximation of Pxz. In the following subsections, we first present this mixed-integer linear

approximation, compare its performance with the PCA-based model, and analyze the quality of solutions in

terms of price of robustness and reliability benefits. These criteria will be defined in Subsection 4.3.2.
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Table 3: Results of Exact-BPC and Qapp-BPC on R101 instances.

Instance Exact-BPC Qapp-BPC (` = 1) Qapp-BPC (` = 3) Qapp-BPC (` = 5) Qapp-BPC (` = 10)

n |K| Opt. t(s) UB g(%) t(s) UB g(%) t(s) UB g(%) t(s) UB g(%) t(s)

α = 0.1
15 2 3796.4 363.6 3796.4 0.8 9.0 3796.4 0.8 6.0 3796.4 0.6 8.0 3796.4 0.5 7.6
20 2 3825.6 2321.9 3825.6 0.4 34.3 3825.6 0.4 30.2 3825.6 0.3 31.2 3825.6 0.3 30.6
25 2 4977.8 18000.0 4977.8 0.4 105.3 4977.8 0.4 111.0 4977.8 0.4 95.4 4977.8 0.3 107.3
30 3 − 18,000.0 4531.1 0.4 40.1 4531.1 0.4 37.5 4531.1 0.4 33.4 4531.1 0.3 53.3
40 3 − 18,000.0 6524.4 0.5 833.9 6524.4 0.5 815.0 6524.4 0.5 940.8 6524.4 0.4 618.3
50 4 − 18,000.0 6519.9 0.5 274.5 6519.9 0.5 232.7 6519.9 0.5 301.0 6519.9 0.4 371.2
60 5 − 18,000.0 7104.2 0.5 7200.0 7129.5 0.5 7200.0 7109.6 0.5 7200.0 − − 7200.0

α = 0.3
15 2 4459.7 105.8 4459.7 0.8 6.7 4459.7 0.8 3.2 4459.7 0.7 4.3 4459.7 0.4 4.7
20 2 4580.5 3007.0 4580.5 0.9 24.2 4580.5 0.8 30.6 4580.5 0.8 20.1 4580.5 0.7 21.9
25 2 5783.6 5181.6 5783.6 0.9 26.6 5783.6 0.8 57.6 5783.6 0.7 34.5 5783.6 0.5 42.1
30 3 − 18,000.0 4901.5 1.0 14.3 4901.5 1.0 14.8 4901.5 0.9 18.6 4901.5 0.8 34.8
40 3 − 18,000.0 7484.8 1.0 375.0 7484.8 1.0 334.2 7484.8 0.9 298.3 7484.8 0.7 494.5
50 4 − 18,000.0 7032.2 1.3 7200.0 7138.1 1.3 7200.0 7032.2 1.2 7200.0 7032.2 1.1 7200.0
60 5 − 18,000.0 − − 7200.0 7471.2 1.3 7200.0 7276.0 1.2 7200.0 7245.0 1.2 7200.0

α = 0.5
15 2 4458.1 57.7 4458.1 1.4 6.2 4458.1 1.4 3.0 4458.1 1.2 4.1 4458.1 0.7 4.4
20 2 4954.9 1771.1 4954.9 1.4 19.3 4954.9 1.3 20.8 4954.9 1.2 11.2 4954.9 1.1 14.3
25 2 6149.1 4673.3 6149.1 1.0 19.7 6149.1 0.9 58.6 6149.1 0.8 27.7 6149.1 0.6 42.6
30 3 − 18,000.0 5019.8 1.6 2280.4 5019.8 1.5 1799.5 5019.8 1.7 1767.8 5019.8 1.2 1759.9
40 3 − 18,000.0 7535.4 1.5 421.0 7535.4 1.5 308.5 7535.4 1.4 304.2 7535.4 1.3 355.0
50 4 − 18,000.0 6693.8 2.6 7200.0 6693.8 2.5 7200.0 6693.8 2.4 7200.0 6693.8 2.2 7200.0
60 5 − 18,000.0 6514.2 2.1 7200.0 6592.8 2.0 7200.0 6356.7 2.4 7200.0 6356.7 2.3 7200.0

Table 4: Results of Exact-BPC and Qapp-BPC on RC101 instances.

Instance Exact-BPC Qapp-BPC (` = 1) Qapp-BPC (` = 3) Qapp-BPC (` = 5) Qapp-BPC (` = 10)

n |K| Opt. t(s) UB g(%) t(s) UB g(%) t(s) UB g(%) t(s) UB g(%) t(s)

α = 0.1
15 2 1884.1 17.0 1884.1 0.7 0.4 1884.1 0.7 0.5 1884.1 0.6 0.4 1884.1 0.5 0.6
20 3 2726.9 492.9 2726.9 0.6 2.6 2726.9 0.6 3.8 2726.9 0.5 4.2 2726.9 0.5 6.1
25 3 2841.6 1552.1 2841.6 0.6 2.4 2841.6 0.6 3.5 2841.6 0.6 3.8 2841.6 0.5 6.7
30 4 3918.0 12326.8 3918.0 0.5 18.6 3918.0 0.5 18.0 3918.0 0.5 21.9 3918.0 0.5 20.9
40 5 − 18,000.0 4776.9 0.6 97.7 4776.9 0.6 117.6 4776.9 0.6 153.0 4776.9 0.5 154.0
50 5 − 18,000.0 5017.4 0.7 3785.0 5017.4 0.7 3294.4 5017.4 0.7 2943.8 5017.4 0.6 4668.6

α = 0.3
15 2 1793.8 84.5 1793.8 2.3 0.4 1793.8 2.2 0.7 1793.8 2.1 0.7 1793.8 1.4 1.4
20 3 2334.7 568.3 2334.7 1.7 2.4 2334.7 1.7 4.4 2334.7 1.7 3.1 2334.7 1.6 9.3
25 3 2484.0 3395.7 2484.0 2.0 3.0 2484.0 2.0 4.4 2484.0 1.9 4.9 2484.0 1.8 7.3
30 4 − 18,000.0 3281.5 2.0 16.9 3281.5 1.9 20.7 3281.5 1.9 22.1 3281.5 1.8 34.8
40 5 − 18,000.0 3924.6 2.2 389.1 3924.6 2.2 417.6 3924.6 2.1 515.2 3924.6 2.0 790.0
50 5 − 18,000.0 4206.6 1.8 7200.0 4197.4 1.8 7200.0 4252.0 2.1 7200.0 4242.6 2.0 7200.0

α = 0.5
15 2 1589.7 113.6 1592.2 3.2 0.6 1592.2 3.0 0.5 1592.2 2.9 0.6 1589.7 2.3 1.0
20 3 1860.8 1100.8 1860.8 3.3 2.6 1860.8 3.3 3.3 1860.8 3.2 4.3 1860.8 3.1 6.3
25 3 2060.6 18,000.0 2060.6 3.6 7.1 2060.6 3.5 11.7 2060.6 3.4 11.3 2060.6 3.2 16.6
30 4 − 18,000.0 2525.8 4.2 9.4 2525.8 4.2 12.7 2525.8 4.1 15.4 2525.8 3.9 20.0
40 5 − 18,000.0 2991.2 4.7 1003.1 2991.2 4.6 1120.2 2991.2 4.5 1571.2 2991.2 4.2 3004.2
50 5 − 18,000.0 3278.8 3.9 7200.0 3279.8 3.9 7200.0 3279.2 3.9 7200.0 3278.8 3.6 7200.0

4.3.1 A mixed-integer linear approximation

To obtain an alternative feasible solution for Pxz, we exploit the convexity of the problem and construct a

mixed-integer linear approximation. To this end, let us consider Pxz and represent the quadratic part of the

objective function by

g(x) =
∑
k∈K

gk(xk) =
∑
k∈K

(xk)TCxk.
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Given a feasible solution (x̄, z̄) of Pxz, because of the convexity, g(x) can be underestimated by a sup-

porting hyperplane in x̄, i.e.

g(x) ≥
∑
k∈K

(
gk(x̄k) +5gk(x̄k)(xk − x̄k)

)
=
∑
k∈K

g
k
(xk),

where for each k ∈ K, 5gk(x̄k) = (2Cx̄k)T is the gradient of g(x) at x̄. This leads to the following approxi-

mation of Pxz

P′xz : min (1− α)
∑
k∈K

(µk)T zk + α
∑
k∈K

g
k
(xk)

s.t. (x, z) ∈ Fxz,

This problem is a CVRP with a heterogeneous fleet for which exact and heuristic approaches have been

proposed in the literature (see, for instance, Baldacci and Mingozzi 2009, Pessoa et al. 2009).

To solve P′xz, we develop a branch-price-and-cut algorithm denoted by Lapp-BPC in the sequel. The

Lapp-BPC is similar to Qapp-BPC. Although in Lapp-BPC, the master problem is a linear program we still

need to solve for each k ∈ K, an ESPPRC subproblem defined on graph G = (V,E) with arc costs

µkij + 2
α

1− α
∑

(r,s)∈E

Cijrsx̄krs −
1

1− α
πi ∀(i, j) ∈ E,

where for each k ∈ K, x̄k is the feasible solution used to construct g
k
(xk). For our tests, we set x̄ to the

computed optimal solution of the deterministic CVRP.

Table 5 reports computational results for the mixed-integer linear approximation on all three groups of

instances C101, R101 and RC101. We ran experiments on all three groups of instances with 20, 30, 40, and

50 customers and compare the results with those of Qapp-BPC with ` = 1 in terms of the provided upper

bounds and the computational times. The rows labeled by UB and t(s) report the upper bounds and the

total times in seconds obtained by Lapp-BPC, while rows labeled by gapUB(Q,L)(%) and t(Q/L) compare

the provided upper bounds and the total times of Lapp-BPC with those obtained by Qapp-BPC. The former

shows the gap between the two upper bounds computed as gapUB(Q,L)(%) = 100(UBL−UBQ)/UBL where

UBQ and UBL are the upper bounds obtained by Qapp-BPC and Lapp-BPC, respectively. t(Q/L) shows

the ratio between the running times of Qapp-BPC and Lapp-BPC. A value greater than one means that

Lapp-BPC was faster than Qapp-BPC.

As we expected, since P′xz is a CVRP, Lapp-BPC is faster than Qapp-BPC. However, one can observe

that the upper bounds given by Lapp-BPC are not as tight as those provided by Qapp-BPC. For the C101

and RC101 instances the average gaps in percentage between upper bounds given by the two algorithms are

1.05% and 0.2%, respectively, but for the R101 instances, the average gap is 8.35%.

Table 5: Results of Lapp-BPC on all three groups of instances.

C101 RC101 R101

20 30 40 50 20 30 40 50 20 30 40 50

UB 1535.0 2052.9 3115.8 3437.0 2726.9 3936.3 4789.2 5017.3 4179.3 4917.9 7256.0 7005.6
t(s) 4.9 2.8 9.4 14.4 0.4 1.6 5.2 11.6 13.0 14.1 50.3 168.4

gapUB(Q,L)(%) 0.5 2.7 0.3 0.7 0.0 0.5 0.3 0.0 8.5 7.9 10.1 6.9
t(Q/L) 1.3 8.2 10.6 52.6 6.5 11.6 18.8 326.3 2.6 2.8 16.6 1.6

4.3.2 Price of robustness and reliability benefits

In this section, we investigate other characteristics of the solutions obtained by the two algorithms Qapp-BPC

with ` = 1 and Lapp-BPC. For each algorithm, we analyze the solutions from two different perspectives: price

of robustness and reliability benefits. We define price of robustness as the increased expected travel time with
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respect to the solutions of the CVRP and reliability benefits as the decreased variance with respect to the

solutions of the CVRP. Note that, for α = 0, both models P`yz, ` ≤ r, and P′xz reduce to the CVRP, which

minimizes the expected total travel time without considering time variability. This can only be interesting

for a planner who has a risk-neutral behavior when planning the operations. However, by increasing the

value of α, the chosen models can capture the planner’s risk attitude to control time variability and yield

different routing solutions.

Figures 1 and 2 show the prices of robustness and the reliability benefits on all three groups of instances

with α = 0.1. In both figures, Qapp.I and Lapp.I represent the results of algorithms Qapp-BPC with ` = 1

and Lapp-BPC on instances I ∈ {C101, RC101, R101}, respectively. As we can see, the travel time variance

of the solutions provided by both algorithms has been significantly reduced with respect to the variance of the

optimal routes of the CVRP. It can be seen that Lapp-BPC also provides good solutions though with more

deviations than the solutions given by Qapp-BPC. In terms of price of robustness, Qapp-BPC outperforms

Lapp-BPC. The price of robustness for Qapp-BPC and Lapp-BPC deviates between 1.5 - 3.0 % and 2.5 - 3.5

% for the C101 instances, between 1.5 - 3.0 % and 2.5 - 3.5 % for the RC101 instances, and between 12.0 -

16.0 % and 10.0 - 27.0 % for the R101 instances.

Figure 1: Price of robustness measured as increased expected travel time with respect to the solutions of the CVRP. The results
are shown for all three groups of instances with α = 0.1. Note that the y-axes in the left and right parts are shown using two
different scales.

Figure 2: Reliability benefits measured as decreased variance with respect to the solutions of the CVRP. The results are shown
for all three groups of instances with α = 0.1.

From Figures 1 and 2, one can see that with the current setting of α = 0.1, the approximate solutions

for the R101 instances appear to be more costly than the approximate solutions for the C101 and RC101

instances. To decrease the price of robustness on R101 instances, we decreased the value of α to 0.01. Figure 3
shows the new results. As we can observe, with the new setting, both algorithms yield reasonably good

solutions from both the price of robustness and reliability perspectives. The decreased travel time variance

deviates between 34.5 − 47.2% for Qapp-BPC and between 29.5 − 43.5% for Lapp-BPC with respective

increases in the total expected travel time ranging from 0.0− 2.0% and 0.0− 2.7%, respectively. Overall, the

results suggest that Qapp-BPC and Lapp-BPC offer a good degree of flexibility to compute routes with with

different values of the total expected travel time and variance, which in turn allows the planner to choose

routes according to her risk attitude.
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Figure 3: Price of robustness and reliability benefit in terms of increased expected travel time and decreased variance with respect
to the solutions of the CVRP on R101 instances with α = 0.01.

5 Conclusions

In this paper, we have developed an approximation scheme for combinatorial optimization problems under

uncertain and correlated data. To model the uncertainty, we have used the mean-covariance information of

the distributions underlying the random data and modeled the problem as a parametric non-linear combina-

torial optimization problem. We have proposed a new reformulation based on spectral decomposition of the

covariance matrix and applied the PCA to obtain some approximations of the problem. Moreover, we have

discussed the quality of the approximate solutions and provided a worst-case optimality gap. To evaluate

the robustness and efficiency of our approximate model, we have applied our results to the CVRP-SCT.

Our results indicate the effectiveness of the proposed algorithm in solving instances with a large number of

customers. In particular, the PCA-based approximate solutions turned out to be identical to the optimal

solutions of the original problem on all instances with known optimal values. Solving the approximate model

with suitable parameter setting produced routes with a total expected travel time slightly larger than the

routes computed by solving the standard CVRP, but with significantly less variance. One possible future

research is to combine some polyhedral approximations with the PCA-based approach in an exact solution

framework to solve decision-making problems under uncertain and correlated data.
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