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Abstract: We consider a two-stage stochastic discrete program in which some of the second stage constraints
involve expectations that cannot be computed easily and are approximated by simulation. We study a
sample average approximation (SAA) approach that uses nested sampling, in which a number of second
stage scenarios are examined, and a number of simulation replications are performed for each scenario to
estimate the second stage constraints. This approach provides an approximate solution to the two-stage
problem. We show that in the second-stage problem, given a scenario, the optimal values and solutions of
the SAA converge to those of the true problem with probability one when the sample sizes go to infinity.
In the two-stage problem, these convergence results of the second-stage problem do not hold uniformly over
all possible scenarios, and this complicates convergence proofs. We are nevertheless able to prove that the
optimal values and solutions of the SAA converge to the true ones with probability one when the sample
sizes at both stages increase to infinity. As an illustration, we apply this SAA method to a staffing problem
in a call center, in which the goal is to optimize the numbers of agents of each type under some constraints
on the quality of service (QoS). The staffing allocation has to be decided under an uncertain arrival rate with
a prior distribution in the first stage, and can be adjusted at some additional cost when better information
on the arrival rate becomes available in the second stage.

Keywords: Sample average approximation, two-stage stochastic program, expected value constraints,
convergence rate, staffing optimization
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1 Introduction

We are interested in a class of two-stage stochastic optimization problems in which at each stage, a decision

must be taken among a finite set of possibilities, under uncertainty. After making the decision x at the first

stage, some information ξ is revealed, then the second-stage decision y is made, under a set of constraints

that depend on x and ξ. Some of these constraints at the second stage involve mathematical expectations

that cannot be computed exactly and are estimated by Monte Carlo simulation. We pay a cost that depends

on x in the first stage, plus a cost that depends on (x, ξ, y) in the second stage. Our first goal is to find an

optimal decision x∗ for the first stage, to minimize the expected total cost, under the assumption that we

will be able to make an optimal decision y in the second stage. Then, given x = x∗ and the observation of ξ,

our second goal is to select an optimal y = y∗(x, ξ) for that pair (x, ξ).

More formally, the problem can be formulated as follows:

(P1)


min
x∈X

f(x) = f1(x) + Eξ[Q(x, ξ)]

where Q(x, ξ) = min
y∈A(x,ξ)

f2(x, ξ, y)

subject to g(x, ξ, y) = Ew[G(x, ξ, y, w)] ≥ 0,

(1)

(2)

where ω = (ξ, w) ∈ Ω = Ξ × W is distributed according to some probability measure P over the sample

space Ω, and Eξ and Ew denote the expectations with respect to ξ and w. In the applications we have in

mind, ξ and w can be taken as independent. In particular, both ξ and w can be viewed as infinite sequences

of independent random variables uniformly distributed over (0, 1) and the required randomness is extracted

from them (in a Monte Carlo context, these will be the random numbers that drive the simulation), but this

interpretation is not essential. The first-stage decision x must be taken from the finite set X. Then ξ is

observed and the second-stage recourse decision must be taken from the set A(x, ξ) ⊆ Y , which may depend

on x and ξ, where Y is a finite set. This set A(x, ξ) could be specified by a set of linear inequalities, for

example, as will be the case in our illustrations. We also define Y (x, ξ) as the set of second-stage feasible

solutions given the pair (x, ξ), i.e., Y (x, ξ) = {y ∈ A(x, ξ) | g(x, ξ, y) ≥ 0}. The functions f1 : X → R and

f2 : X × Ξ × Y → R are measurable, while G = G(x, ξ, y, w) = (G1, . . . , GK) is a random vector for which

Ew[|G(x, ξ, y, w)|] <∞ for all (x, ξ, y) such that y ∈ A(x, ξ). We are interested in the situation in which the

expected value functions Eξ[Q(x, ξ)] and Ew[G(x, ξ, y, w)] cannot be written in a closed form or computed

numerically, and are estimated by Monte Carlo.

The stochastic optimization problem considered here occurs in several real-life situations. It was motivated

by a staffing optimization problem in telephone call centers, in which one must select a staffing, i.e., decide

how many agents of each type to have in the center for each time period of the day, to minimize the operating

cost while satisfying some quality of service (QoS) constraints, under uncertainty in the arrival rate process.

In the first stage, the manager selects a staffing x for the given day some time in advance, based on an initial

forecast of the arrival rate of calls. This staffing has cost f1(x). Later on, for example in the morning of

the given day, an updated (better) forecast of the arrival rate, represented by ξ, becomes available. Based

on this new information, the manager can modify the initial staffing by adding or removing some agents to

better match the updated forecast by paying some penalty cost f2(x, ξ, y), where y represents the staffing

modification. This y must satisfy a set of linear constraints that generally involve x, ξ, and y, captured here

by y ∈ A(x, ξ), and also some QoS constraints expressed as expectations: Ew[G(x, ξ, y, w)] ≥ 0, where w

represents all the uncertainty that remains after ξ is known (e.g., the arrival times and service times of calls,

abandonments, etc.). For example, one may ask that the expected total waiting time of all calls during the

day does not exceed the expected number of calls multiplied by 30 seconds, or that the probability p that at

least 95% of calls during the day are answered within 6 seconds is at least 0.90. The choice of these chance

constraints reflects the decision maker’s risk preferences. We assume that the arrival rate is bounded and

that the finite set A(x, ξ) always contains a staffing large enough to satisfy the QoS constraints, uniformly

over x and ξ. For more details on this application, see for example Cez̧ik and L’Ecuyer (2008); Chan et al.

(2014, 2016); Ta et al. (2016).



2 G–2018–59 Les Cahiers du GERAD

In this paper, we study a sample average approximation (SAA) approach to solve (P1). The general

idea of SAA is to use Monte Carlo sampling to construct sample average functions that approximate the

expectations Eξ[Q(x, ξ)] and Ew[G(x, ξ, y, w)] as functions of x and of (x, ξ, y), respectively. In the SAA

version of the problem (P1), the expectations are replaced by the sample averages, or equivalently, the exact

distributions of ξ and w are approximated by empirical distributions. This permits one to easily compute

the expectations as functions of x and y in the SAA problem, and then solve this problem.

The SAA approach itself is not new; see, e.g., Ahmed and Shapiro (2008); Bastin et al. (2006); Robinson

(1996); Rubinstein and Shapiro (1993); Shapiro (2003); Shapiro et al. (2014). It is widely used and has been

studied at length for solving various types of stochastic optimization problems. A common simple setting is

a stochastic programming problem of the form

(P2) min
x∈X
{f(x) := Eω[F (x, ω)]} (3)

where F (x, ω) is a random variable defined over a probability space (Ω,F ,P), the expectation over ω is with

respect to the measure P, and X is a set of admissible decisions, often a subset of Rn. The corresponding

SAA program is

min
x∈X

{
f̂N (x) :=

1

N

N∑
i=1

F (x, ωi)

}
(4)

where ω1, . . . , ωN is an independent random sample from P. This independence assumption is relaxed in

some papers (not here), e.g., to allow randomized quasi-Monte Carlo sampling (Kim et al., 2015). We

refer to (3) and (4) as the true and SAA problems, respectively. An optimal solution x̂N ∈ arg minx∈X f̂N (x)

for (4) and the corresponding optimal value v̂N = f̂N (x̂N ) are approximations of an optimal solution x∗ and

of the optimal value v∗ for the true problem (3). Typically, one has E[v̂N ] < v∗; see Shapiro (2003). Another

important quantity (perhaps the most relevant) is f(x̂N ), the exact value of a solution x̂N obtained from the

SAA. The difference f(x̂N ) − v∗ ≥ 0 represents the gap between the value of the retained solution and the

optimal value. In general there could be multiple optimal solutions x∗ and x̂N . We denote by X∗ and X∗N
the sets of optimal solutions to (3) and (4), respectively. In the following, x∗ and x̂N denote any of those

solutions, in the respective sets. We assume that X∗ is not empty and that a finite minimum is attained.

In settings where the space X of solutions is infinite (which is not the case for our problem (P1)), it is

typically assumed that X has a norm ‖ · ‖ (e.g., the Euclidean norm if X is in the real space), so that the

distance between two solutions is well defined, and then one can define the distance from a given solution x

to optimality as dist(x,X∗) = infx∗∈X∗ ‖x− x∗‖. .

Convergence to zero with probability one (w.p.1) for the three error measures dist(x̂N , X
∗), f(x̂N )−v∗, and

v̂N−v∗ when the sample size N →∞ has been proved under different sets of (mild) conditions; see Dupacová

and Wets (1988); Robinson (1996); Shapiro (2003); Shapiro et al. (2014), for instance. This holds for example

if X∗ is contained in a compact set C ⊂ Rn, f is bounded and continuous on C, supx∈C |f̂N (x)− f(x)| → 0

when N →∞, and ∅ 6= X∗N ⊂ C for N large enough, also w.p.1; see (Shapiro, 2003, Theorem 4). There are

also other sets of sufficient conditions.

Knowing that we have convergence w.p.1 is good, but knowing how fast it occurs is better. The speed of

convergence of x̂N to X∗ can be measured and studied in various ways. Central limit theorems give estimates

of order Op(N
−1/2) for the three error measures mentioned above when x∗ is unique, X ⊂ Rn contains a

neighborhood of x∗, and F (·, ω) is a sufficiently smooth function with bounded variance (Shapiro, 1993).

For ε ≥ 0, a solution x ∈ X is said to be ε-optimal for the true problem if f(x) ≤ v∗ + ε, and ε-optimal

for the SAA if f̂N (x) ≤ v∗N + ε. Let Xε and Xε
N denote the sets of ε-optimal solutions to the true problem

and the SAA problem, respectively. Under appropriate conditions, by using large-deviations theory Dai et al.

(2000); Kleywegt et al. (2002); Shapiro and de Mello (2000); Shapiro (2003); Kaniovski et al. (1995), one can

prove exponential convergence to zero for the probability of selecting a solution with an optimality gap that

exceeds a given value. For example, let F (x, ω) have a finite moment generating function in a neighborhood
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of 0, and let ε > δ > 0. If X is finite, or if X is a bounded subset of Rn and f is Lipschitz-continuous over

X with Lipschitz constant L, then there are positive constants K and η = η(δ, ε) such that

P[Xδ
N ⊆ Xε] ≥ 1−K exp[−ηN ]. (5)

In particular, if the true problem has a unique optimal solution x∗ and X is finite, then P[x̂N 6= x∗] converges

to 0 exponentially fast in N . The constant K can be (at worst) proportional to |X| when X is finite and to

L otherwise.

Consider now a two-stage problem like (P1), but without the probabilistic constraints (2), and suppose

that the second-stage optimization in (1) is easy to solve for any (x, ξ). It could be a deterministic linear

program, for example. Then, since Q(x, ξ) can be computed exactly, by taking F (x, ξ) = f1(x) +Q(x, ξ) we

are back to the setting of (P2) and we can apply the corresponding results. See Shapiro (2003); Shapiro et al.

(2014) for further discussion.

Another setting studied earlier (e.g., in Vogel (1994) for a general case and in Atlason et al. (2008); Cez̧ik

and L’Ecuyer (2008) in the context of call center staffing) is that of an optimization problem with stochastic

constraints:

min
x∈X

f(x) subject to g(x) := Eω[G(x, ω)] ≥ 0, (6)

where f(x) is easy to evaluate exactly for all x ∈ X, whereas the expectations in the constraints are estimated

by Monte Carlo. In the SAA, one replaces g(x) by ĝN (x), the Monte Carlo average of N i.i.d. samples of

G(x, ω). Under the assumption that X is finite, that ĝN (x)→ g(x) w.p.1 when N →∞, and there is x∗ ∈ X∗
such that g(x∗) > 0, we have w.p.1 that there is N0 > 0 such that x̂N ∈ X∗ for all N ≥ N0. Under the

additional assumption that G(x, ω) satisfies a large-deviation principle, which implies that P[|ĝN (x)−g(x)| >
ε] → 0 exponentially fast as a function of N for any ε > 0, we also have that P[x̂N 6∈ X∗] ≤ K exp[−ηN ]

for some constants K and η > 0, i.e., the probability of not selecting an optimal decision converges to 0

exponentially fast as a function of N . In Atlason et al. (2008); Cez̧ik and L’Ecuyer (2008), the constraints (6)

are on QoS measures which are defined as expectations and x represents a staffing decision (number of agents

of each type in each time period). In Avramidis et al. (2010), a similar problem is considered in which x

represents the work schedules of all agents.

In this paper we study the convergence of a SAA approximation for the two-stage stochastic program

(P1), in which an expectation is estimated by Monte Carlo at each of the two stages. This gives rise to

nested (or embedded) Monte Carlo sampling: for each of the N first-stage realizations of ξ (or scenarios),

say ξ1, . . . , ξN , we must sample several (say Mn = Mn(ξn) for scenario n) second-stage realizations of w to

estimate the expectations in the second-stage constraints, because the distribution of G in the second stage

depends on ξ. The SAA counterpart of (P1) can be written as

(P3)


min
x∈X

f̂N (x) = f1(x) +
1

N

N∑
n=1

Q̂Mn
(x, ξn)

where Q̂Mn(x, ξn) = min
yn∈A(x,ξn)

f2(x, ξn, yn)

subject to ĝMn(x, ξn, yn) ≥ 0, (7)

where {ξ1, . . . , ξN} are i.i.d realizations of ξ and for each n,

ĝMn
(x, ξn, yn) :=

1

Mn

Mn∑
m=1

G(x, ξn, yn, wn,m),

and {wn,1, . . . , wn,Mn} are i.i.d realizations of w. The latter can be independent across values of n, i.e.,∑N
n=1Mn independent realizations of w, or they can be dependent. In particular, one could have Mn = M

for all n and w1,m = · · · = wN,m for all m.
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To the best of our knowledge, convergence of the SAA approach has not been studied for this setting.

Under appropriate conditions, we prove that w.p.1, the optimal decisions for the SAA converge to the

optimal decisions for the true problem when N and the Mn increase toward infinity, in the sense that there

are constants N0 and M0 such that if N ≥ N0 and min(M1, . . . ,MN ) ≥ M0, the optimal decision at the

first stage is the same for the SAA and the true problem. Moreover, for almost all ξ ∈ Ξ, w.p.1 there is an

M0 = M0(ξ) such that for M ≥ M0, the optimal decision at the second stage is the same for the SAA and

the true problem. The issue of exponential convergence to 1 of the probability of making an optimal decision

is more tricky in our setting than in Problem (P2). We show that this exponential convergence holds at the

second stage conditionally on ξ, for almost any fixed ξ, but it does not hold for the unconditional probability.

This is related to the fact that the M0(ξ) in the convergence w.p.1 is not uniformly bounded in ξ in general.

The rest of the paper is organized as follows. In Section 2 we state our results on the consistency of SAA

when N and the Mn go to infinity together. In Section 3 we establish the convergence rates of the SAA

solutions and optimal values, with respect to N and the Mn. Section 4 illustrates the application of this

two-stage SAA approach for solving a staffing optimization application in a call center. Section 5 provides a

conclusion.

2 Consistency of the SAA estimators

Let X∗ and X∗N denote the sets of first-stage optimal solutions for the true and SAA problem, respectively.

Let v∗ and v̂N be the optimal values for the true and SAA counterpart problems. We also denote by Y ∗(x, ξ)

the set of optimal solutions for the true second-stage problem given (x, ξ), while Y ∗M (x, ξ) denote its SAA

counterparts when using sample size M at the second stage. For k = 1, . . . ,K, let gk(·) and ĝkM (·) denote

the k-th elements of g(·) and ĝM (·) in (7) , respectively.

We first assume that the recourse is relatively complete (see for instance Birge and Louveaux (2011)).

Along with the assumption that Y is finite, this implies that the recourse program has at least one optimal

solution for every x and P-almost every ξ. Moreover, we assume that the second-stage objective function is

almost surely uniformly bounded.

Assumption 1 X and Y are finite, and for each x ∈ X and P-almost every ξ ∈ Ξ, Y (x, ξ) 6= ∅. Moreover,

f2 is bounded uniformly for P-almost every (x, ξ) ∈ X × Ξ.

We next assume that for P-almost every scenario ξ, the SAA of the second-stage constraint asymptotically

coincide with the true second-stage constraint, and that the true constraint is not active at any true second-
stage solution , as otherwise, the SAA constraint could be violated at this solution with a strictly positive

probability, for any arbitrary large second-stage sample. Note that in the continuous case, this assumption

could be relaxed by assuming that the true and SAA active sets are the same with probability one when the

sample size is large enough Bastin et al. (2006); Shapiro (2003).

Assumption 2 For all x ∈ X and P-almost all ξ, for all y ∈ Y , ĝM (x, ξ, y)→ g(x, ξ, y) w.p.1 when M →∞,

and there exists y ∈ Y ∗(x, ξ) such that g(x, ξ, y) 6= 0 .

Under Assumption 2, we can apply the known results for the Problem (P2) to the second stage of our

problem (P1), to obtain the following proposition, whose proof can be found in Atlason et al. (2004), Atlason

et al. (2008).

Proposition 1 Under Assumptions 1 and 2, and there exists y ∈ Y ∗(x, ξ) such that g(x, ξ, y) 6= 0, which occurs

for P-almost any ξ, w.p.1 there is a finite M0 = M0(ξ) such that for all M ≥ M0, ∅ 6= Y ∗M (x, ξ) ⊆ Y ∗(x, ξ)

and Q̂M (x, ξ) = Q(x, ξ). That is, for all M ≥ M0, the SAA in the second-stage has at least one optimal

solution and any such optimal solution is optimal for the true second-stage problem.
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Moreover, again if there exists y ∈ Y ∗(x, ξ) such that g(x, ξ, y) 6= 0, there are positive constants C and

b(ξ) such that

P [Y ∗M (x, ξ) ⊆ Y ∗(x, ξ)] ≥ 1− C exp[−b(ξ)M ]. (8)

That is, for P-almost any ξ, the probability of missing optimality at the second stage decreases to zero expo-

nentially in M .

It is important to note here is that the sample size M0 and the constant b in Proposition 1 depend on ξ,

and there may be no M0 and b for which the result holds uniformly in ξ. We give an example of that in the

following.

Example 1 Consider the following example of a two-stage program

min
x∈X

f(x) = x+ Eξ[Q(x, ξ)]

where Q(x, ξ) = min
y∈Y

2y

subject to Ew[x+ y − 2ξ − w] ≥ 0,

where ξ ∼ U(0, 1) (the uniform distribution), w ∼ N (0, 1) (the standard normal distribution), and X = Y =

{0, 1, 2}. Given x ∈ X, the set of optimal solutions in the second-stage is

Y ∗(x, ξ) = arg min{2y | y ∈ Y, y ≥ 2ξ − x}.

Now, consider the SAA counterpart

min
x∈X

f̂N (x) = x+
1

N

N∑
n=1

QM (x, ξn)

where QM (x, ξ) = min
y∈Y

2y

subject to x+ y − 2ξ − ŵM ≥ 0,

where ŵM is a sample average approximation of w by a Monte Carlo method. In this example, for notational

simplicity we set M1 = . . . = MN = M . Let x = 1, we have Y ∗(1, ξ) = {0} if ξ ≤ 1/2, and Y ∗(1, ξ) = {1} if

ξ > 1/2. So, for a given ξ ∈ [0, 1/2], if we have ŵM > 1− 2ξ in the second-stage of the SAA, then the SAA

does not return a true second-stage optimal solution, i.e, Y ∗M (x, ξ) * Y ∗(x, ξ). Therefore, we have

P [Y ∗M (x, ξ) * Y ∗(x, ξ)] ≥ P [ŵM ≥ 1− 2ξ] . (9)

Since ŵM ∼ N (0, 1/M), for any M > 0 we have

lim
1−2ξ→0

P [ŵM ≥ 1− 2ξ] = P [ŵM ≥ 0] =
1

2
. (10)

Hence, if 1 − 2ξ can be arbitrarily close to zero, for any given 0 ≤ ε < 1/4, then there is no M0 > 0 such

that P [ŵM ≥ 1− 2ξ] < ε for all M > M0 and all ξ ∈ [0, 1/2), and therefore, there is no M0 > 0 such that

P [Y ∗M (x, ξ) * Y ∗(x, ξ)] < ε for all M > M0 and all ξ ∈ [0, 1/2). This also means that there is no M0 such

that, w.p.1, Q̂M (x, ξ) = Q(x, ξ) for all M > M0 and all ξ ∈ [0, 1/2).

We now show that exponential convergence of the probability of making a wrong decision at the second

stage does not hold uniformly in ξ. By contradiction, if there are positive constants C0, b0 for which the

exponential convergence Proposition 1 holds uniformly in ξ, then for P-almost every ξ ∈ Ξ, we have

ln (P [Y ∗M (x, ξ) * Y ∗(x, ξ)]) ≤ lnC0 −Mb0, for all M > 0. (11)

From (9) we have, for P-almost every ξ ∈ [0, 1/2)

lnP [ŵM ≥ 1− 2ξ]

M
≤ lnC0

M
− b0. (12)
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However, we can always choose M∗ large enough such that

ln(1/4)− lnC0

M∗
> −b0,

and ξ∗ ∈ [0, 1/2) such that P [ŵM∗ ≥ 1− 2ξ∗] > 1/4. The latter can be done using (10). Then, we have

lnP [ŵM∗ ≥ 1− 2ξ∗]

M∗
− lnC0

M∗
>

ln(1/4)− lnC0

M∗
> −b0,

meaning that (12) cannot hold for any M > 0 and for almost every ξ ∈ [0, 1/2).

We now look at the convergence of the optimal value and optimal solution at the first stage of the

SAA problem to those of the true problem. We want to show that w.p.1, we have X∗N ⊆ X∗ when

min(N,M1, . . . ,MN ) is large enough. Since X is finite, there is a fixed δ > 0 such that for every x ∈ X \X∗,
f(x)− v∗ ≥ δ. Then, a sufficient condition for X∗N ⊆ X∗ is that |f̂N (x)− f(x)| < ε := δ/2 for all x ∈ X. One

could think that this last inequality would follow from the observation that since for each ξn, Q̂Mn(x, ξn)

converges to its expectation w.p.1 when Mn → ∞, |f̂N (x) − f(x)| should converge to 0 w.p.1, so it will

eventually be smaller than ε. But this simple argument does not really stand (it is not rigorous), because

the convergence is not uniform in ξ, so the required M0 above which |f̂N (x)− f(x)| < ε when N > N0 and

min(M1, . . . ,MN ) > M0 may increase without bound when N increases. A more careful argument is needed

and this is what we will do now, under our two assumptions. We first introduce some notations, then prove

two lemmas which will be used to prove Theorems 1 and 2, which are our main results in this section.

For any x ∈ X and ξ ∈ Ξ, we define

Y−(x, ξ) = {y ∈ A(x, ξ) | ∃ k such that gk(x, ξ, y) < 0)},

δ̄(x, ξ) =
1

2
max

y∈Y (x,ξ),1≤k≤K
{gk(x, ξ, y) | gk(x, ξ, y) < 0},

δ(x, ξ) = min
y∈Y ∗(x,ξ),1≤k≤K

{gk(x, ξ, y) | gk(x, ξ, y) > 0},

δ(x, ξ) = min{−δ̄(x, ξ), δ(x, ξ)} > 0, and

δ(ξ) = min
x∈X

δ(x, ξ) > 0. (13)

By convention, if Y−(x, ξ) = ∅ then δ̄(x, ξ) = −∞, and if {(y, k)| y ∈ Y ∗(x, ξ), gk(x, ξ, y) > 0} = ∅, then

δ(x, ξ) =∞. Under Assumption 2 we have δ(x, ξ) <∞ for P-almost every ξ ∈ Ξ.

Lemma 1 maxx∈X |f̂N (x)− f(x)| ≥ |v̂N − v∗|.

Proof. Let x∗ and x∗N be optimal solutions to (P1) and (P3), respectively. If f(x∗) < f̂N (x∗N ), since

f̂N (x∗N ) ≤ f̂N (x∗), we have:

|v̂N − v∗| = |f̂N (x∗N )− f(x∗)| ≤ |f̂N (x∗)− f(x∗)| ≤ max
x∈X
|f̂N (x)− f(x)|.

If f(x∗) ≥ f̂N (x∗N ), since f(x∗) ≤ f(x∗N ), we have:

|v∗ − v̂N | = |f(x∗)− f̂N (x∗N )| ≤ |f(x∗N )− f̂N (x∗N )| ≤ max
x∈X
|f̂N (x)− f(x)|.

In both cases, we have |v̂N − v∗| ≤ maxx∈X |f̂N (x)− f(x)|.

Lemma 2 Under Assumptions 1, and 2, for any x ∈ X and for P-almost every ξ ∈ Ξ, if |ĝkM (x, ξ, y) −
gk(x, ξ, y)| ≤ δ(x, ξ) for all y ∈ Y (x, ξ) and k = 1, . . . ,K, then ∅ 6= Y ∗M (x, ξ) ⊆ Y ∗(x, ξ).
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Proof. Let YM (x, ξ) be the set of feasible solutions of the SAA counterpart second-stage problems. Given ξ

such that δ(x, ξ)<∞, which holds for P-almost every ξ ∈ Ξ, we have

|ĝkM (x, ξ, y)− gk(x, ξ, y)| ≤ δ(x, ξ) = min{−δ̄(x, ξ), δ(x, ξ)}.

If y ∈ Y−(x, ξ), there exists some k such that gk(x, ξ, y) < 0 and

ĝkM (x, ξ, y) ≤ gk(x, ξ, y)− δ̄(x, ξ) < 0.

Thus y ∈ A(x, ξ)\YM (x, ξ), and A(x, ξ)\Y (x, ξ) ⊆ A(x, ξ)\YM (x, ξ). Since YM (x, ξ) ⊆ A(x, ξ), we have

YM (x, ξ) ⊆ Y (x, ξ). Moreover, w.p.1, there exists y∗ ∈ Y ∗(x, ξ) such that g(x, ξ, y∗) > 0, we have that for

all k,

ĝkM (x, ξ, y∗) ≥ gk(x, ξ, y∗)− δ(x, ξ) ≥ 0,

implying y∗ ∈ YM (x, ξ). Moreover, for all y∗M ∈ Y ∗M (x, ξ), we have f2(y∗) ≥ f2(y∗M ). As YM (x, ξ) ⊆
Y (x, ξ), we also have f2(y∗) ≤ f2(y∗M ), and therefore f2(y∗) = f2(y∗M ), implying that y∗ ∈ Y ∗M (x, ξ), so

Y ∗M (x, ξ) 6= ∅. This also implies that if y∗1 ∈ Y ∗M (x, ξ) and y∗2 ∈ Y ∗(x, ξ), then f2(y∗1 , ξ) = f2(y∗2 , ξ). As

Y ∗M (x, ξ) ⊆ YM (x, ξ) ⊆ Y (x, ξ), we also have y∗1 ∈ Y (x, ξ), and therefore y∗1 ∈ Y ∗(x, ξ). As a consequence,

∅ 6= Y ∗M (x, ξ) ⊆ Y ∗(x, ξ), which completes the proof.

Theorem 1 Under Assumptions 1, and 2, for any ε > 0, w.p.1, there are integers N0 = N0(ε) and M0 =

M0(ε) such that for all N ≥ N0, and min(M1, . . . ,MN ) ≥ M0, |f̂N (x) − f(x)| ≤ ε for all x ∈ X, and

|v̂N − v∗| ≤ ε.

Proof. We need to prove that for a given ε > 0, w.p.1, there are N0(ε), M0(ε) > 0 such that |f̂N (x)−f(x)| ≤ ε
for all N ≥ N0(ε), all M1, . . . ,MN such that min(M1, . . . ,MN ) ≥ M0(ε), and all x ∈ X. To prove this, we

bound |f̂N (x)− f(x)| using a triangle inequality and then bound each term, as follows.

∣∣∣f̂N (x)− f(x)
∣∣∣ =

∣∣∣∣∣ 1

N

N∑
n=1

Q̂Mn(x, ξn)− Eξ[Q(x, ξ)]

∣∣∣∣∣
≤

∣∣∣∣∣ 1

N

N∑
n=1

Q(x, ξn)− Eξ[Q(x, ξ)]

∣∣∣∣∣+

∣∣∣∣∣ 1

N

N∑
n=1

Q(x, ξn)− 1

N

N∑
n=1

Q̂Mn
(x, ξn)

∣∣∣∣∣ . (14)

To bound the first term in (14), note that under Assumption 1, Q(x, ξ) is uniformly bounded for P-almost

every ξ ∈ Ξ, so the expectation of Q(x, ξ) always exists according to the Lebesgue integration. Thus, this

part converges to zero when N → ∞ according to the strong law of large numbers, i.e., w.p.1, there exist

N1
0 (x, ε) such that for all N > N1

0 (x, ε),∣∣∣∣∣ 1

N

N∑
n=1

Q(x, ξn)− Eξ[Q(x, ξ)]

∣∣∣∣∣ ≤ ε

2
. (15)

Proving the convergence of the second term is more difficult, because Q̂Mn(x, ξ) may not converge to Q(x, ξ)

uniformly in ξ. To prove it, we partition the sample space Ξ into four different subsets as follows. We first

define Ξ̄ ⊆ Ξ as the set of all scenarios such that Assumptions 1 and 2 hold for every ξ ∈ Ξ̄. Assumptions 1

and 2 imply that P(ξ ∈ Ξ̄|ξ ∈ Ξ) = 1. We also choose Ξ1,Ξ2 and Ξ3 as three subsets of Ξ̄ such that δ(ξ)

is bounded from below by a positive scalar and the convergence of ĝM to g holds uniformly on Ξ3, and for

which P[ξ ∈ Ξ1 ∪ Ξ2] can be arbitrarily small. We describe how to choose these sets in the following.

Since δ(ξ) > 0 w.p.1, we have

lim
π→0

Pξ[δ(ξ) ≤ π] = 0.

Moreover, from Assumption 2, we can always choose a mapping M0 : Ξ× R→ N such that given ξ ∈ Ξ and

for any ε > 0, w.p.1, we have that

|ĝkM (x, ξ, y)− gk(x, ξ, y)| ≤ ε, (16)
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for all y ∈ Y (x, ξ), all M > M0(ξ, ε), and k ∈ 1, . . . ,K. Note that M0(ξ, ε) generally depends on ξ and may

be unbounded from above, i.e., we may have supξ∈ΞM0(ξ, ε) =∞. However, we have

lim
M→∞

Pξ[M0(ξ, ε) ≥M ] = 0.

So, there exist π(ε) > 0 and M1
0 (ε) > 0 such that

P[δ(ξ) ≤ π(ε)] ≤ ε

6α
and P[M0(ξ, π(ε)) ≥M1

0 (ε)] ≤ ε

6α
,

where α is a constant chosen such that α > supx∈X,y∈Y, ξ∈Ξ\Ξ0
|2f2(x, ξ, y)|. We can simply choose α =

supx∈X,y∈Y, ξ∈Ξ\Ξ0
|2f2(x, ξ, y)| + 1. Hence, we always have α > |Q̂Mn

(x, ξ) − Q(x, ξ)| for all x ∈ X, ξ ∈ Ξ̄

and all n = 1, . . . , N . This α always exists and is finite because f2 is bounded uniformly for every ξ ∈ Ξ̄. Let

us define

Ξ1 = {ξ ∈ Ξ̄ | δ(ξ) ≤ π(ε)},
Ξ2 = {ξ ∈ Ξ̄ |M0(ξ, π(ε)) ≥M1

0 (ε)},
Ξ3 = Ξ̄\(Ξ1 ∪ Ξ2).

Suppose ξ1, . . . , ξN ∈ Ξ̄, which happens w.p.1. The second part of (14) can then be written as∣∣∣∣∣ 1

N

N∑
n=1

Q(x, ξn)− 1

N

N∑
n=1

Q̂Mn
(x, ξn)

∣∣∣∣∣
≤ 1

N

N∑
n=1

∣∣∣Q(x, ξn)− Q̂Mn(x, ξn)
∣∣∣

=
1

N

∑
ξn∈Ξ1∪Ξ2

∣∣∣Q(x, ξn)− Q̂Mn
(x, ξn)

∣∣∣+
1

N

∑
ξn∈Ξ3

∣∣∣Q(x, ξn)− Q̂Mn
(x, ξn)

∣∣∣
≤ 1

N

N∑
n=1

αI[ξn ∈ Ξ1 ∪ Ξ2] +
1

N

∑
ξn∈Ξ3

∣∣∣Q(x, ξn)− Q̂Mn
(x, ξn)

∣∣∣ . (17)

The term 1
N

∑N
n=1 I[ξn ∈ Ξ1 ∪ Ξ2] is a sample average of P[ξn ∈ Ξ1 ∪ Ξ2]. Therefore, based on the strong

law of large numbers, w.p.1, there is N2
0 (x, ε) such that, for all N ≥ N2

0 (x, ε)

1

N

N∑
n=1

I[ξn ∈ Ξ1 ∪ Ξ2] ≤ P[ξn ∈ Ξ1 ∪ Ξ2] +
ε

6α

≤ P[ξn ∈ Ξ1] + P[ξn ∈ Ξ2] +
ε

6α

≤ ε

6α
+

ε

6α
+

ε

6α
=

ε

2α
. (18)

Moreover, as Ξ3 = {ξ | δ(ξ) > π(ε), M0(ξ, π(ε)) < M1
0 (ε)}, then for any ξ ∈ Ξ3, w.p.1, we have |ĝkM (x, ξ, y)−

gk(x, ξ, y)| ≤ π(ε) < δ(ξ) for all y ∈ Y (x, ξ), all M > M1
0 (ε), and k = 1, . . . ,K. So, for any ξ ∈ Ξ3, w.p.1,

Q̂M (x, ξ) = Q(x, ξ) for all M > M1
0 (ε) , or equivalently, w.p.1, for all Mn > M1

0 (ε), n = 1, . . . , N , we have

1

N

∑
{n|ξn∈Ξ3}

∣∣∣Q(x, ξn)− Q̂Mn(x, ξn)
∣∣∣ = 0 (19)

Combining (14), (17), (18) and (19) we have, w.p.1, for all x ∈ X, all N > N0(ε) and min{M1, . . . ,MN} >
M0(ε), ∣∣∣f̂N (x)− f(x)

∣∣∣ ≤ ε, (20)

where N0(ε) = max{N1
0 (ε), N2

0 (ε)}, and M0(ε) = M1
0 (ε). By combining this with Lemma 1, we obtain that

w.p.1, |v̂N − v∗| ≤ ε , for all N > N0(ε) and min{M1, . . . ,MN} > M0(ε).
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The next theorem concerns the consistency of the SAA counterpart in terms of first-stage optimal solu-

tions. We show that when the sample sizes are large enough, w.p.1, we can retrieve the true optimal solutions

by solving the SAA problem.

Theorem 2 Under Assumptions 1 and 2, w.p.1, there are integers N0 and M0 such that for all N ≥ N0, and

min(M1, . . . ,MN ) ≥M0, X∗N ⊆ X∗.

Proof. For each x ∈ X and x /∈ X∗, we have f(x) > v∗, and since X is finite, there exists some δ > 0 such

that

|f(x)− v∗| > η for all x ∈ X\X∗.

In other words, if |f(x)− v∗| ≤ η, then x ∈ X∗. Now, given x̂N ∈ X∗N we have

|f(x̂N )− v∗| ≤ |f(x̂N )− f̂N (x̂N )|+ |f̂N (x̂N )− v∗|. (21)

From Theorem 1, w.p.1, there exist N0(η) and M0(η) > 0 such that for all N ≥ N0(η), Mn ≥ M0(η) for all

n = 1, . . . , N ,

|f(x̂N )− f̂N (x̂N )| ≤ η/2 and |f̂N (x̂N )− v∗| ≤ η/2.

Thus, w.p.1, there are N0,M0 > 0 such that for all N ≥ N0 and Mn ≥ M0, n = 1, . . . N , we have |f(x̂N )−
v∗| ≤ η and X∗N ⊆ X∗.

In summary, we have shown that in the first stage, w.p.1, the optimal decision in the SAA becomes equal

to that of the true problem when the number of scenarios and the sample size for each SAA second-stage

constraint are large enough. Moreover, for any fixed ξ, we can obtain an optimal solution of the corresponding

second stage problem by solving its SAA with large enough sample size.

3 Convergence of large-deviation probabilities

In this section, we establish large-deviation principles for the optimal value v̂N of the SAA, for the true

value f(x̂N ) of an optimal solution x̂N of the SAA, and for the probability that any optimal solution to the

SAA is an optimal solution of the true problem. That is, we show that for any ε > 0, P[|v̂N − v∗| ≤ ε],

P[|f(x̂N )− v∗| ≤ ε], and P[∅ 6= X∗N ⊆ X∗] all converge to 1 exponentially fast when N and the Mn go to ∞.

Recall that in Proposition 1 and Example 1, we showed that in the second-stage problem, the probability

that a SAA second-stage solution is truly optimal approaches one exponentially fast for any given ξ, but

this exponential convergence may not hold uniformly in ξ. For this reason, it is difficult to establish the

exponential convergence of P[X∗N ⊆ X∗] when N and the Mn go to infinity.

A standard large-deviation result is that if Z1, . . . , ZM are i.i.d replicates of a random variable Z of mean

µ and variance σ2 > 0 and whose moment generating function is finite in a neighborhood of zero, then for

any ε > 0 we have (Stroock, 1984; Shapiro, 2003):

P[ẐM − µ > ε] ≤ exp

(
−Mε2

2σ2

)
and P[ẐM − µ < −ε] ≤ exp

(
−Mε2

2σ2

)
. (22)

When Z is bounded, as is the case for Z = Q(x, ξ) or Z is given by an indicator function in our setting, its

moment generating function is always finite, and we can simply use Hoeffding’s equality (Hoeffding, 1963)

to establish large-deviation results. We need the following assumption for G.

Assumption 3 For P-almost every ξ ∈ Ξ, for all x ∈ X and y ∈ Y , the moment-generating function of

G(x, ξ, y, w), i.e. Ew [exp (tG(x, ξ, y, w))], is bounded in a neighborhood of t = 0.

The next assumption concerns a finite covering property of the support set Ξ with respect to the function

Gk(x, ξ, y, w), given x ∈ X, y ∈ Y and w ∈ W. In other words, we require that it is possible to cover the
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infinite set Ξ by a finite number of subsets such that in each subset, the variation of Gk(x, ξ, y, w), with

respect to ξ, is bounded by the size of the subset multiplied by a random variable having a finite moment-

generating function. Such an assumption is often made in the stochastic programming literature to establish

convergence results with continuous variables (Shapiro et al., 2014; Kim et al., 2015). In our context, the

decision variables x and y are discrete, but we need this assumption because the stochastic functions G(·) also

depend on ξ whose support may be infinite. In particular, a finite covering property holds if Ξ is compact and

Gk(x, ξ, y, w) is Lipschitz continuous in ξ. We introduce the following assumption under a general setting.

Assumption 4 There is a measurable function κ : W → R+ with bounded moment-generating function in a

neighborhood of 0 such that for any υ > 0, there are H = H(υ) <∞ non-empty sets Ξ1, . . . ,ΞH covering Ξ,

i.e., Ξ ⊂
⋃H
h=1 Ξh, such that for any h ∈ {1, . . . ,H} and P-almost every ξ1, ξ2 ∈ Ξh, we have

|Gk(x, ξ2, y, w)−Gk(x, ξ1, y, w)| ≤ κ(w)υ, ∀x ∈ X, ∀y ∈ Y, k = 1, . . . ,K.

It is also convenient in our proofs to assume that the number of distinct values in {M1, . . . ,MN} is bounded

uniformly in N . This is not really restrictive in practice and will permit us to remove the dependence on N

when using the finite coverage Assumption 4 to establish an upper bound on the probability

P

[∣∣∣∣∣ 1

N

N∑
n=1

Q̂Mn(x, ξn)−Q(x, ξn)

∣∣∣∣∣ > ε

]

for large N . Without Assumptions 4 and 5, we are still able to establish “weaker” large-deviation results;

see Theorem 4.

Assumption 5 The number of distinct values in {M1, . . . ,MN} is bounded uniformly in N .

We are now in a position to provide large-deviation bounds for the optimal value of the SAA problem

and for the true value of an optimal solution to the SAA.

Theorem 3 Suppose Assumptions 1 to 5 hold. Then for any ε > 0, there exist positive constants C1, C2,

b1(ε), and b2(ε) that do not depend on N and the Mn, n = 1, . . . , N , such that

P [|v̂N − v∗| > ε] ≤ C1 exp[−b1(ε)N ] + C2 exp[−b2(ε)M ] and

P [|f(x̂N )− v∗| > ε] ≤ C1 exp[−b1(ε)N ] + C2 exp[−b2(ε)M ],

where x̂N is an arbitrary optimal solution to the SAA problem and M = minn=1,...,N Mn.

Proof. We use again the triangle inequality in (14). For any ε > 0, we have

P
[
max
x∈X

∣∣∣f̂N (x) − f(x)
∣∣∣ > ε

]
= P

[
max
x∈X

∣∣∣∣∣ 1

N

N∑
n=1

Q̂Mn(x, ξn) − Eξ[Q(x, ξ)]

∣∣∣∣∣ > ε

]

≤ P

[
max
x∈X

∣∣∣∣∣ 1

N

N∑
n=1

Q̂Mn(x, ξn) − 1

N

N∑
n=1

Q(x, ξn)

∣∣∣∣∣+ max
x∈X

∣∣∣∣∣ 1

N

N∑
n=1

Q(x, ξn) − Eξ[Q(x, ξ)]

∣∣∣∣∣ > ε

]

≤ P

[(
max
x∈X

∣∣∣∣∣ 1

N

N∑
n=1

(
Q̂Mn(x, ξn) −Q(x, ξn)

)∣∣∣∣∣ > ε

2

)⋃(
max
x∈X

∣∣∣∣∣ 1

N

N∑
n=1

Q(x, ξn) − Eξ[Q(x, ξ)]

∣∣∣∣∣ > ε

2

)]

≤ P

[
max
x∈X

∣∣∣∣∣ 1

N

N∑
n=1

(
Q̂Mn(x, ξn) −Q(x, ξn)

)∣∣∣∣∣ > ε

2

]
+ P

[
max
x∈X

∣∣∣∣∣ 1

N

N∑
n=1

Q(x, ξn) − Eξ[Q(x, ξ)]

∣∣∣∣∣ > ε

2

]

≤
∑
x∈X

(
P

[∣∣∣∣∣ 1

N

N∑
n=1

(
Q̂Mn(x, ξn) −Q(x, ξn)

)∣∣∣∣∣ > ε

2

]
+ P

[∣∣∣∣∣ 1

N

N∑
n=1

Q(x, ξn) − Eξ[Q(x, ξ)]

∣∣∣∣∣ > ε

2

])
. (23)
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Considering the second part of (23) and given the fact that Q(x, ξ) is bounded by the interval [−α, α] for

P-almost every ξ, where α is defined as in the proof of Theorem 1, we obtain the following from Hoeffding’s

inequality (Hoeffding, 1963):

P

[∣∣∣∣∣ 1

N

N∑
n=1

Q(x, ξn)− Eξ[Q(x, ξ)]

∣∣∣∣∣ > ε

2

]
≤ 2 exp

(
−Nε2

8α2

)
. (24)

As discussed earlier, the convergence in probability of Q̂M (x, ξ)→ Q(x, ξ) does not hold uniformly on Ξ.

To deal with this issue, similar to the proof of Theorem 1, we divide the support set Ξ into smaller sub-sets.

First, we define Ξ̄ ⊆ Ξ as the set of all scenarios ξ ∈ Ξ for which Assumptions 1, 2 and 3 hold. Note that

P[ξ ∈ Ξ̄] = 1. We select π(ε) > 0 such that

Pξ[δ(ξ) ≤ π(ε)] ≤ ε

6α
,

where δ(ξ) is defined in (13). Let also define Ξ1 = {ξ ∈ Ξ̄|δ(ξ) ≤ π(ε)}, and Ξ2 = Ξ̄\Ξ1). We write the first

part of (23) as

P

[∣∣∣∣∣ 1

N

N∑
n=1

Q̂Mn
(x, ξn)− 1

N

N∑
n=1

Q(x, ξn)

∣∣∣∣∣ > ε

2

]

≤ P

 1

N

∑
ξn∈Ξ1∪Ξ2

∣∣∣Q̂Mn
(x, ξn)−Q(x, ξn)

∣∣∣ > ε

2


≤ P

 1

N

∑
ξn∈Ξ1

∣∣∣Q̂Mn
(x, ξn)−Q(x, ξn)

∣∣∣ > ε

4

+ P

 1

N

∑
ξn∈Ξ2

∣∣∣Q̂Mn
(x, ξn)−Q(x, ξn)

∣∣∣ > ε

4


≤ P

[
1

N

N∑
n=1

αI[ξn ∈ Ξ1] >
ε

4

]
+ P

 1

N

∑
ξn∈Ξ2

∣∣∣Q̂Mn
(x, ξn)−Q(x, ξn)

∣∣∣ > ε

4

 . (25)

The first term in (25) concerns a sample average approximation of αP[ξ ∈ Ξ1], and we have αP[ξ ∈ Ξ1] ≤
ε/6 < ε/4. Moreover, I[ξ ∈ Ξ1] only takes values in {0, 1}, so by Hoeffding’s inequality we have

P

[
1

N

N∑
n=1

I[ξn ∈ Ξ1] >
ε

4α

]
≤ exp

(
−Nε2

72α2

)
. (26)

For the second term of (25), we have

P

 1

N

∑
ξn∈Ξ2

∣∣∣Q̂Mn
(x, ξn)−Q(x, ξn)

∣∣∣ ≤ ε

4


≥ P

[∣∣∣Q̂Mn
(x, ξn)−Q(x, ξn)

∣∣∣ = 0, ∀ξn ∈ Ξ2, n = 1, . . . , N
]

≥ P
[∣∣ĝkM(ξ)(x, ξ, y)− gk(x, ξ, y)

∣∣ ≤ δ(ξ), ∀ξ ∈ Ξ2, ∀y ∈ Y, k = 1, . . . ,K
]

≥ P
[∣∣ĝkM(ξ)(x, ξ, y)− gk(x, ξ, y)

∣∣ ≤ π(ε), ∀ξ ∈ Ξ2, ∀y ∈ Y, k = 1, . . . ,K
]
,

where M(ξ) is a mapping from Ξ to N+ such that M(ξn) = Mn, n = 1, . . . , N , and we assume that

M(ξ) = M for all ξ 6= ξn, n = 1, . . . , N . Moreover, as the number of distinct values in {M1, . . . ,MN} is

bounded uniformly, there exists T ∈ N+ that is independent of N and T values {M1, . . . ,MT } such that

M(ξ) ∈ {M1, . . . ,MT } for all ξ ∈ Ξ. Hence, we have
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P

 1

N

∑
ξn∈Ξ2

∣∣∣Q̂Mn
(x, ξn)−Q(x, ξn)

∣∣∣ > ε

4


≤ P

[
∃(ξ, y, k)

∣∣∣ ξ ∈ Ξ2, y ∈ Y, k ∈ {1, . . . ,K},
∣∣ĝkM(ξ)(x, ξ, y)− gk(x, ξ, y)

∣∣ > π(ε)
]

≤
∑
y∈Y

K∑
k=1

P

[
sup
ξ∈Ξ2

∣∣ĝkM(ξ)(x, ξ, y)− gk(x, ξ, y)
∣∣ > π(ε)

]

≤
∑
y∈Y

K∑
k=1

T∑
t=1

P

[
sup
ξ∈Ξ2

|ĝkMt
(x, ξ, y)− gk(x, ξ, y)| > π(ε)

]
. (27)

Basically, given a scenario ξ ∈ Ξ2, we bound the probability P[|ĝkMt(x, ξ, y) − gk(x, ξ, y)| > π(ε)] using LD

theory. So, the probability P[supξ∈Ξ2
|ĝkM(ξ)(x, ξ, y)− gk(x, ξ, y)| > π(ε)] can be bounded using LD theory if

|Ξ2| is finite. If |Ξ2| is infinite, we use a discretization technique over set Ξ2 as in the following.

Under Assumption 4, if we define Ξh2 = Ξ2 ∩Ξh, h = 1, . . . ,H, then for P-almost every ξ, ξ1 ∈ Ξh2 and for

all x ∈ X, y ∈ Y , k = 1 . . . ,K, we have

|Gk(x, ξ, y, w)−Gk(x, ξ1, y, w)| ≤ κ(w)υ.

For each set Ξh2 , h = 1, . . . ,H, we choose a representative point ξ̄h ∈ Ξh2 such that for P-almost every ξ ∈ Ξh2
and for all x ∈ X, y ∈ Y , k = 1 . . . ,K, we have

|Gk(x, ξ, y, w)−Gk(x, ξ̄h, y, w)| ≤ κ(w)υ.

We also define the corresponding mapping h(ξ) = ξ̄h if ξ ∈ Ξh2 . We have the following inequality

|ĝkM (x, ξ, y)− gk(x, ξ, y)| ≤ |ĝkM (x, ξ, y)− ĝkM (x, h(ξ), y)|
+ |ĝkM (x, h(ξ), y)− gk(x, h(ξ), y)|+ |gk(x, h(ξ), y)− gk(x, ξ, y)| .

(28)

Here, we assume that ĝkM (x, ξ, y) and ĝkM (x, h(ξ), y) are computed by the same set of realizations of w. We

also have ĝkM (x, ξ, y) − ĝkM (x, h(ξ), y) is a SAA of gk(x, ξ, y) − gk(x, h(ξ), y), therefore, for P-almost every

ξ ∈ Ξh2 we can write

|ĝkM (x, ξ, y)− ĝkM (x, h(ξ), y)| = 1

M

∣∣∣∣∣
M∑
m=1

(Gk(x, ξ, y, wm)−Gk(x, h(ξ), y, wm))

∣∣∣∣∣
≤ 1

M

M∑
m=1

|Gk(x, ξ, y, wm)−Gk(x, h(ξ), y, wm)|

≤ 1

M

M∑
m=1

κ(wm)υ.

So, for P-almost every ξ ∈ Ξh2 ,

|ĝkM (x, ξ, y)− ĝkM (x, h(ξ), y)| ≤ κ̂Mυ, (29)

where κ̂M = M−1
∑M
m=1 κ(wm) is a sample average version of Ew[κ(w)]. We also have that, for P-almost

every ξ ∈ Ξh2 ,

|gk(x, ξ, y)− gk(x, h(ξ), y)| ≤ Ew[κ(w)]υ. (30)

From the assumption that the moment-generating function of κ(w) is finite valued in a neighborhood of 0,

we have Ew[κ(w)] is finite. We define Lκ = Ew[κ(w)]. From (30) we have |gk(x, ξ, y)− gk(x, h(ξ), y)| ≤ Lκυ
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for P-almost every ξ ∈ Ξh2 . Thus, for P-almost every ξ ∈ Ξh2 , we have

|ĝkM (x, ξ, y)− gk(x, ξ, y)|
≤ |ĝkM (x, ξ, y)− ĝkM (x, h(ξ), y)|+ |ĝkM (x, h(ξ), y)− gk(x, h(ξ), y)|

+ |gk(x, h(ξ), y)− gk(x, ξ, y)|
≤ κ̂Mv + |ĝkM (x, h(ξ), y)− gk(x, h(ξ), y)|+ Lkv.

Let us return to the evaluation of (27). If we set υ = π(ε)/(4Lκ), then from (28), (29) and (30), we have

P

[
sup
ξ∈Ξ2

|ĝkMt
(x, ξ, y)− E[Gk(x, ξ, y)]| > π(ε)

]

≤ P
[

max
h=1,...,H

∣∣ĝkMt
(x, ξ̄h, y)− gk(x, ξ̄h, y)

∣∣ > π(ε)

3

]
+ P

[
max

h=1,...,H
κ̂Mt

>
π(ε)

3υ

]
+ P

[
Lκυ >

π(ε)

3

]
≤

H∑
h=1

(
P
[∣∣ĝkMt(x, ξ̄h, y)− gk(x, ξ̄h, y)

∣∣ > π(ε)

3

]
+ P

[
κ̂Mt >

4Lκ
3

])
. (31)

The first part of (31) can be handled using LD theory, i.e., under Assumption 3 and using (22), we obtain

P
[∣∣ĝkMt(x, ξ̄h, y)− gk(x, ξ̄h, y)

∣∣ > π(ε)

3

]
≤ 2 exp

(
−Mtπ

2(ε)

18σ2
g

)
≤ 2 exp

(
−Mπ2(ε)

18σ2
g

)
, (32)

where σ2
g = supx,y,k,ξ Varw[Gk(x, ξ, y, w)]. For the second part of (31), using again LD theory we obtain

P
[
κ̂hMt

>
4Lκ

3

]
≤ exp

(
−ML2

κ

18σ2
κ

)
, (33)

where σ2
κ = Varw[κ(w)]. Combining (32) and (33), we have

P

[
sup
ξ∈Ξ2

|ĝkMt
(x, ξ, y)− gk(x, ξ, y)| > π(ε)

]
≤ H

(
2 exp

(
−Mπ2(ε)

18σ2
g

)
+ exp

(
−ML2

κ

18σ2
κ

))
,

and, from (27),

P

 1

N

∑
ξn∈Ξ2

∣∣∣Q̂Mn
(x, ξn)−Q(x, ξn)

∣∣∣ > ε

4

 ≤ K|Y |HT (2 exp

(
−Mπ2(ε)

18σ2
g

)
+ exp

(
−ML2

κ

18σ2
κ

))
. (34)

Combining (25), (26) and (34), we have

P

[∣∣∣∣∣ 1

N

N∑
n=1

Q̂Mn
(x, ξn)− 1

N

N∑
n=1

Q(x, ξn)

∣∣∣∣∣ > ε

2

]

≤ exp

(
−Nε2

72α2

)
+ |Y |KHT

(
2 exp

(
−Mπ2(ε)

18σ2
g

)
+ exp

(
−ML2

κ

18σ2
κ

))
.

Along with (23) and (24), this leads to

P
[
max
x∈X

∣∣∣f̂N (x)− f(x)
∣∣∣ > ε

]
≤ 2|X| exp

(
−Nε2

8α2

)
+ |X| exp

(
−Nε2

72α2

)
+ |X||Y |KHT

(
2 exp

(
−Mπ2(ε)

18σ2
g

)
+ exp

(
−ML2

κ

18σ2
κ

))
.
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So, in summary, there exist positive constants C1, C2, b1(ε), b2(ε), where b1, b2 depend on ε, and C1, C2

depend on |X|, |Y |, K, H and T such that

P

[
max
x∈X

∣∣∣f̂N (x)− f(x)
∣∣∣ ≤ ε] ≥ 1− C1 exp(−Nb1(ε))− C2 exp(−Mb2(ε)). (35)

Combining this result with Lemma 1, we also have

P [|v̂N − v∗| ≤ ε] ≥ 1− C1 exp(−Nb1(ε))− C2 exp(−Mb2(ε))

and this completes the proof.

In the next theorem we relax assumptions Assumptions 4 and 5 (finite coverage and bounded number of

distinct values for the Mn), and prove a weaker results under the remaining assumptions. Note that there is

now an extra lnN in the exponent of the second exponential.

Theorem 4 Suppose that Assumptions 1, 2, and 3 hold. Given ε > 0, there are positive constants C1, b1(ε),

C2, b2(ε) such that

P [|v̂N − v∗| > ε] ≤ C1 exp(−b1(ε)N) + C2 exp(−b2(ε)M + lnN) and

P [|f(x̂N )− v∗| > ε] ≤ C1 exp(−b1(ε)N) + C2 exp(−b2(ε)M + lnN)

where M = minn=1,...,N Mn, and x̂N is an optimal solution to the SAA problem.

Proof. We use the same notation and definitions as in the proof of Theorem 3. However, instead of using a

discretization technique for the support set Ξ2, we just consider (25) and derive the following inequalities

P

 1

N

∑
ξn∈Ξ2

∣∣∣Q̂Mn
(x, ξn)−Q(x, ξn)

∣∣∣ > ε

4


≤ P

[
∃ ξn ∈ Ξ2

∣∣ ∣∣∣Q̂Mn
(x, ξn)−Q(x, ξn)

∣∣∣ > ε

4

]
≤

∑
ξn∈Ξ2

n=1,...,N

P
[∣∣∣Q̂Mn

(x, ξn)−Q(x, ξn)
∣∣∣ > ε

4

]

≤
∑
ξn∈Ξ2

n=1,...,N

P
[
∃y, k

∣∣∣ |ĝkMn
(x, ξn, y)− gk(x, ξn, y)| > δ(ξn)

]

≤
∑
ξn∈Ξ2

n=1,...,N

∑
y∈Y

K∑
k=1

P [ |ĝkMn
(x, ξn, y)− gk(x, ξn, y)| > π(ε)]

≤ 2NK|Y | exp

(
−Mπ2(ε)

2σ2
g

)
= 2K|Y | exp

(
−Mπ2(ε)

2σ2
g

+ lnN

)
.

And similarly to the proof of Theorem 3 we also have

P
[
max
x∈X

∣∣∣f̂N (x)− f(x)
∣∣∣ > ε

]
≤ 2|X| exp

(
−Nε2

8α2

)
+ |X| exp

(
−Nε2

72α2

)
+ 2|X||Y |K exp

(
−Mπ2(ε)

2σ2
g

+ lnN

)
. (36)

We complete the proof by selecting C1 = 3|X|, b1(ε) = ε2/(72α2), C2 = 2|X||Y |K, and b2(ε) = π2(ε)/(2σ2
g),

and using Lemma 1.
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Although Theorem 4 is “weaker” than Theorem 3 due to the term lnN , if M increases at least as fast

as N , for instance if M ≥ N , we have that (lnN)/M → 0 when N → ∞, meaning that we can neglect the

term lnN when N and M are large enough. Formally speaking, there are N0 > 0 and b′2 < b2 such that

for all M > N > N0, we have that −Mb2 + lnN < −Mb′2. This means that, without Assumption 4 and 5,

we still obtain bounds that converge at the same (asymptotic) rates as in Theorem 3 when M and N are

large enough.

The next theorem tells us that with a probability that converges to 1 exponentially fast in N and M ,

the SAA has a non-empty set of optimal solutions and each one is also an optimal (feasible) solution for the

true problem. The proof is based on the the results of Theorems 3 and 4, and uses the fact that the set of

first-stage feasible solutions is finite.

Theorem 5 If Assumptions 1 to 5 hold, there exist positive constants C1, b1, C2, and b2, such that

P [∅ 6= X∗N ⊆ X∗] ≥ 1− C1 exp(−b1N)− C2 exp(−b2M),

where M = minn=1,...,N Mn. If Assumptions 1 to 3 hold, there exist positive constants C1, b1, C2, and b2,

such that

P [∅ 6= X∗N ⊆ X∗] ≥ 1− C1 exp(−b1N)− C2 exp(−b2M + lnN).

Proof. Under the Assumption 1, X∗N is not empty, and since |X| is finite, there always exits ρ > 0 such that

|f(x)− v∗| > ρ, for all x ∈ X\X∗, (37)

where ρ can be chosen such that 0 < ρ < minx∈X\X∗ |f(x)− v∗|. In other words, if x ∈ X such that

|f(x)− v∗| ≤ ρ then x ∈ X∗. Now, using the inequality in (21) and Lemma 1 we have

P [X∗N ⊆ X∗] ≥ P [|f(x̂N )− v∗| ≤ ρ for all x̂N ∈ X∗N ]

≥ P
[
max
x∈X

∣∣∣f̂N (x)− f(x)
∣∣∣ ≤ ρ/2] .

Moreover, under Assumptions 1 to 5, using (35) we have that there are positive constants C1, C2, b1, and b2
such that

P
[
max
x∈X

∣∣∣f̂N (x)− f(x)
∣∣∣ > ρ/2

]
≤ C1 exp(−Nb1) + C2 exp(−Mb2).

If only Assumptions 1, 2, and 3 hold, we use (36) to obtain that there exist positive constants C1, C2, b1,

and b2 such that

P
[
max
x∈X

∣∣∣f̂N (x)− f(x)
∣∣∣ > ρ

2

]
≤ C1 exp(−Nb1) + C2 exp(−Mb2 + lnN).

This completes the proof.

Theorems 3, 4, and 5 do not tell us explicitly how large N and Mn must be for the probability of getting

an exact optimal solution to exceed a given target value. The next result provides such explicit sufficient

conditions.

Corollary 1 (Sample size estimates)
Suppose Assumptions 1 to 5 hold. We have that P [X∗N ⊆ X∗] ≥ 1− β if

N ≥
(

288α2

ρ2

)
ln

(
6|X|
β

)
and

Mn ≥ max

{
18σ2

g

π2(ρ/2)
,

18σ2
κ

L2
κ

}
ln

(
6|X||Y |KHT

β

)
, n = 1, . . . , N.
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If only Assumptions 1 to 3 hold, we have the following sufficient values:

N ≥
(

288α2

ρ2

)
ln

(
6|X|
β

)
and

Mn ≥
2σ2

g

π2(ρ/2)
ln

(
4|X||Y |KN

β

)
, n = 1, . . . , N.

These sufficient conditions on N and the Mn are probably too conservative and difficult to compute to

provide practical concrete numbers, but they provide insight by showing that N depends logarithmically on

the size of the feasible set X and on the tolerance probability β, while M depends logarithmically on the

sizes of the feasible sets X and Y as well as the tolerance β.

4 Illustration with a staffing optimization problem

In this section we illustrate consistency on of the SAA approach on the call center staffing application

mentioned in the introduction. In the first stage, the arrival rate is assumed uncertain with some prior

continuous distribution, then in the second stage some additional information is revealed that changes this

distribution. We first formulate the problem and show how it fits our framework. Then we give numerical

illustrations.

4.1 A two-stage staffing problem with chance constraints

We consider a multi-skill call center with K call types (numbered from 1 to K), and I agent groups (numbered

from 1 to I). Agents within each group i are assumed to be homogeneous and can answer the same set of

call types. Each group can handle a specific set of call types, which are not disjoint. The calls are assigned

to agents by a router. The staffing vector is z = (z1, . . . , zI)
T, where zi is the number of agents in group i.

To keep the present example simpler, we consider a single time period, which we call a “day.”

For a “random” day, the arrival process for call type k is assumed to be time-homogeneous Poisson with

rate Λk for the entire day, for each k, where Λ = (Λ1, . . . ,ΛK) is a random vector, and we assume that these

K Poisson processes are independent. We also suppose that several days in advance, in the first stage, Λ

has a prior distribution which corresponds to some initial distributional forecast. At a later time (the second

stage), the distributional forecast is updated, which means that Λ has a new distribution, typically with less

uncertainty (smaller variance) but not necessarily. To fit our setting, we assume that ξ is a parameter of
the distribution of Λ. Before stage 1, ξ is unknown but we know its probability distribution. At stage 2, we

know ξ, but we may not know yet Λ.

Given the staffing vector z, let Sk(z) = Sk(z, w) be the service level (SL) of call type k during the day,

defined as the proportion of all calls that are answered within τk seconds, and let S0(z) = S0(z, w) be the

aggregate SL of the day over all calls, which is the proportion of all calls answered within τ0 seconds. All

of these are random variables whose distributions depend on the staffing z and are also functions of the

random element w, which represents the randomness that remains after z and ξ are known. Our stochastic

constraints at the second stage will be the following chance constraints on the SLs:

P[Sk(z) ≥ lk] ≥ 1− πk, 0 ≤ k ≤ K, (38)

where the probability is with respect to w, and for each k, lk is a given SL target and πk is a risk threshold

which represents the maximum acceptable value for the probability of missing the SL target for call type k.

Note that each constraint in (38) can be rewritten in the form (2) as E[I[Sk(z) ≥ lk]] + πk − 1 ≥ 0, where I[·]
is the indicator function.

In the first stage, the manager must select an initial staffing x = (x1, . . . , xI)
T, at the corresponding

cost per agent of c = (c1, . . . , cI)
T, based on an initial forecast that gives a prior distribution for ξ. In
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the second stage, the realization of ξ becomes available, which provides an updated distributional forecast

of the arrival rate, and the manager can modify the initial staffing x by adding or removing agents at

some penalty costs. More specifically, given ξ, the manager can add r+
i (ξ) extra agents to group i at cost

c+i > ci per agent, or remove r−i (ξ) ≤ xi agents in group i and save c−i per agent, where 0 ≤ c−i < ci.

After this recourse, the new number of agents in group i is zi(ξ) = xi + r+
i (ξ) − r−i (ξ). Let c, c+, c−, and

z(ξ) be the vectors with components ci, c
+
i , c−i , and zi(ξ), respectively. We define the recourse vectors as

r+(ξ) = (r+
1 (ξ), . . . , r+

I (ξ))T, and r−(ξ) = (r−1 (ξ), . . . , r−I (ξ))T. The cost of the recourse y = (r+(ξ), r−(ξ)) is

f2(x, ξ, y) = (c+)Tr+(ξ)− (c−)Tr−(ξ). The realized staffing used for the day is z = z(ξ). The corresponding

two-stage staffing problem can be written as

(P4)



min
x∈X

cTx+ Eξ [Q(x, ξ)] ,

where Q(x, ξ) = min
{

(c+)Tr+(ξ)− (c−)Tr−(ξ)
}

subject to x+ r+(ξ)− r−(ξ) = z(ξ),

P[Sk(z(ξ)) ≥ lk] ≥ 1− πk, k = 0, . . . ,K,

0 ≤ r−i (ξ) ≤ xi, i = 1, . . . , I,

r+(ξ), r−(ξ) ≥ 0 and integer.

In (P4), X is the set of initial staffing vectors that the manager can select at the first stage, and Y is

a set of possible corrections at the second stage. Some assumptions must be made here to make sure

that Assumptions 1 and 2 are satisfied. First, we assume that the arrival rate vector Λ has a continuous

distribution and an upper bound vector Λ̄ = (Λ̄1, . . . , Λ̄K), i.e., supξ∈Ξ Λk(ξ) ≤ Λ̄k, and that there is at least

one solution x ∈ X large enough to satisfy all the SL constraints whenever Λ ≤ Λ̄. Moreover, as the arrival

rates are bounded, there exists x̄ ∈ NI such that P[Sk(z) ≥ lk] ≥ 1 − πk, ∀z ≥ x̄, k = 1, . . . ,K. Then,

it is sufficient to choose X = {x ∈ NI | 0 ≤ x ≤ x̄}, and Y = {y = (r+, r−) ∈ N2I | min{r+, r−} = 0

and max{r+, r−} ≤ x̄}. We also choose A(x, ξ) = {(r+, r−) ∈ Y | x + r+ ≤ x̄ and x − r− ≥ 0}. Indeed,

X and Y are finite. Furthermore, the objective at the first stage is f1(x) = cTx and at the second stage is

f2(x, ξ, y) = (c+)Tr+ − (c−)Tr−. Since X and Y are finite, f1(.) and f2(.) are also bounded.

For Assumption 2, here we have g(x, ξ, y) = P[Sk(z) ≥ lk]+πk−1. Note that for any fixed Λ, the SL Sk(z)

has a discrete distribution over the rational numbers (the SL is always a ratio of integers). Given that the

arrival processes are time-homogeneous Poisson with rate Λ, one can write the probability P[Sk(z) ≥ lk | Λ]

as an infinite sum of continuous functions of Λ, and from this one can prove that P[Sk(z) ≥ lk | Λ] is

also continuous in Λ (see the appendix for a detailed proof). Then, under the assumption that the prior

distribution of Λ is continuous, the a priori probability that g(x, ξ, y) = 0 is zero.

Thus, our example satisfies all the assumptions for the consistency of the SAA. Assumption 4 is harder to

verify and may not always hold in our call center example, as the SL Sk(z) is a ratio of two integers and can

take an infinite number of rational values. However, even without Assumption 4, we still have the weaker

LD result of Theorem 4.

For the SAA problem, let r+
n = r+(ξn), r−n = r−(ξn) and zn = z(ξn) denote the recourse and final staffing

vectors for scenario n, we can formulate the SAA problem as

(P5)



min cTx+
1

N

N∑
n=1

[
(c+)Tr+

n − (c−)Tr−n
]

subject to



x+ r+
n − r−n = zn, n = 1, . . . , N,

1

Mn

Mn∑
m=1

I[Ŝmk (zn) ≥ lk] ≥ 1− πk, k = 0, . . . ,K, n = 1, . . . , N

0 ≤ r−n ≤ x, n = 1, . . . , N

x, r+
n , r

−
n ≥ 0 and integer, n = 1, . . . , N,
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where Ŝmk (zn) is the SL of call type k (the aggregated SL if k = 0) in the m-th second-stage simulation for

scenario n. The SAA problem above can be solved by a simulation-based cutting plane method proposed in

Chan et al. (2016). The main idea of this algorithm is to replace the chance constraints by linear cuts and

solve the resulting mixed integer linear programming by a linear solver such as CPLEX.

4.2 Numerical experiments

Here we report a numerical experiment to illustrate the consistency of the SAA estimator, with a small

example. Numerical experiments with larger examples are presented in Ta et al. (2018). We consider a call

center with K = 2 call types and I = 2 agent groups, with S1 = {1} and S2 = {1, 2}. The cost per agent in

Stage 1 is c1 = 1 and c2 = 1.1. The recourse costs are c+i = 2ci and c−i = 0.5ci, for i = 1, 2. We assume that

for the two call types, (i) each caller abandons with probability 0.02 if it has to wait, (ii) patience times (for

those who do not abandon immediately on arrival) are exponential with means 10 and 6 minutes, (iii) the

service times are exponential with means 10 and 7.5 minutes. The arrival rate for call type k is Λk = ξkβk,

where βk is a random busyness factor for the day, which follows a symmetric triangular distribution with

mean and mode 1, minimum 0.8, and maximum 1.2, while ξk is an independent random factor having a

truncated normal distribution with means 70 and 100, standard deviations 10.5 and 15, and truncated to

the intervals [50, 90] and [80, 120], for the two call types. These random variables are assumed independent

across the two call types. We take τk = τ0 = 120 (seconds), lk = 0.8 for k = 1, . . . ,K, and l0 = 0.85, πk = 0.2

for k = 1, . . . ,K, and π0 = 0.15.

The simulations were performed using the ContactCenter simulation software (Buist and L’Ecuyer, 2005,

2012), developed with the SSJ simulation library (L’Ecuyer et al., 2002). The SAA problems were solved

with MATLAB linked to IBM-ILOG CPLEX version 12.6, using the cutting plane method described in Chan

et al. (2016).

In the experiment, we aim at evaluating the quality of SAA optimal solutions given by different pairs of

M,N , where M1 = M2 = . . . = MN = M . To do so we increase M and N simultaneously. We take M = N =

50, 100, 200, 400, 600, 800, and 1000. For each pair (M,N), we generate 20 sets of scenarios, and for each

set of scenarios we approximate the chance constraints by independent realizations of w across scenarios.

Each set of scenarios gives a SAA optimal solution x̂N whose quality can be measured by the gap f(x̂N )−v∗
between the true value of x̂N and the optimal value v∗. We cannot compute f(x̂N ) and v∗ exactly in general,

but we can estimate the gaps out of sample. For this, we consider a SAA with M = N = 1000 as a validation

problem, in which the set of scenarios is independent of those used to obtain x̂N . We then compute the gaps

between the costs given by these SAA solutions and the optimal costs given by the validation problem. Let

f̄ and f̄∗ denote the first-stage cost function and the optimal cost given by the SAA validation problem. We

estimate the gap by f̄(x̂N ) − f̄∗. In Figure 1, on the left side we show box plots of the estimated gaps and

on the right side we report the number of zero gaps, for the selected values of N = M . We see that when

M = N increase above 400, the number of SAA solutions that are also optimal for the validation problem

increases quickly with N . When M = N = 1000, the corresponding SAA solutions are all the same, and

identical to the optimal solution of the validation problem.

Figure 1: Gaps between the costs given by SAA solutions with M = N = 50, 100, 200, 400, 600, 800, 1000 and the optimal cost
given by the validation problem.



Les Cahiers du GERAD G–2018–59 19

5 Conclusion

We have considered a two-stage stochastic programming problem with stochastic constraints in the second

stages. We have studied the consistency of the SAA method with nested sampling to solve this problem,

and we also proved exponential convergence of the probability of making incorrect decisions. We used a call

center staffing problem under arrival rate uncertainty to illustrate our theoretical findings. For future work, it

would be interesting to investigate methods for choosing the sample size at the second stage adaptively, e.g.,

with larger sample sizes for the more important scenarios. Another important aspect is to develop effective

methods for solving the SAA in large-scale settings.

Appendix
Proposition 2 Given a vector of staffing z, the function hk(Λ) = P[Sk(z) ≥ lk | Λ] is a continuous function

of Λ.

Proof. Let denote the number of calls as the vector C = (C1, . . . , CK) where Ck is the number of arrival

calls of call type k. As the arrival process for call type k is time-homogeneous Poisson with rate Λk, we can

write the probability that the service level is at least some values as

hk(Λ) = P[Sk ≥ lk | Λ]

=

∞∑
r=0

∑
c∈NK

||c||1=r

P[Sk ≥ lk | C = c]P[C = c|Λ]

=

∞∑
r=0

∑
c∈NK

||c||1=r

αcP[C = c |Λ]

=

∞∑
r=0

∑
c∈NK

||c||1=r

αc

K∏
k=1

P
[
Ck = ck |Λk

]
, (39)

where c = (c1, . . . , cK), ||c||1 =
∑K
k=1 |ck|, and αc = P[Sk ≥ lk |C = c] ≤ 1. Moreover, each term P[Ck =

ck |Λk] is a continuous function with respect to Λk. So, P[C = c |Λ] is also a continuous function with respect

to Λ, and hk(Λ) can be written as an infinite sum of continuous functions. From the definition of continuity,

hk(Λ) is continuous if for any Λ0, and for any δ > 0, there exists ε1 > 0 such that for all Λ satisfies ‖Λ−Λ0‖ ≤
ε1, we always have

|hk(Λ)− hk(Λ0)| ≤ δ, (40)

where ‖ · ‖ is the Euclidean norm.

To prove the continuity of hk(Λ), as limt→∞ P[Ck > t] = 0, we first have that, given any δ > 0, there

always exists t1 > 0 large enough such that

∑
c∈NK

ck>t1,k=1,...,K

αcP[C = c | Λ̄] ≤
∑
c∈NK

ck>t1,k=1,...,K

P[C = c | Λ̄] =

K∏
k=1

P
[
Ck > t1|Λ̄

]
≤ δ

4
. (41)

Moreover, one can show that there exists t2 > 0 such that for all ck > t2, k = 1, . . . ,K, the function

P[Ck = ck |Λk] is monotonically increasing with respect to Λk. This can be verified by considering the

first-order derivative of P[Ck = ck |Λk] with respect to Λk

∂P[Ck = ck |Λk]

∂Λk
=

(Λk)ck−1

(ck − 1)!
e−Λk

− (Λk)ck

(ck)!
e−Λk

=
(Λk)ck−1

(ck − 1)!
e−Λk

(
1− Λk

ck

)
, (42)
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which is positive if 1 − Λk/ck > 0. Since 1 − Λk/ck ≥ 1 − Λ̄/ck, it suffices to take t2 ≥ Λ̄. Combine (41)

and (42), and by choosing t0 = max{t1, t2} we obtain∑
c∈NK

ck>t0,k=1,...,K

αcP[C = c |Λ] ≤
∑
c∈NK

ck>t0,k=1,...,K

αcP[C = c | Λ̄] ≤ δ

4
, for all Λ ≤ Λ̄. (43)

Define

Tk(Λ) =
∑
c∈NK

0≤ck≤t0,k=1,...,K

αcP[C = c |Λ] and Hk(Λ) =
∑
c∈NK

ck>t0,k=1,...,K

αcP[C = c |Λ].

We then can write hk(Λ) = Tk(Λ) + Hk(Λ), noting that Tk(Λ) is a finite sum of continuous functions, so

Tk(Λ) is continuous. We are now ready to prove (40). Consider the following triangle inequality

|hk(Λ)− hk(Λ0)| ≤ |Tk(Λ)− Tk(Λ0)|+ |Hk(Λ)−Hk(Λ0)| . (44)

As Tk(Λ) is a continuous function, for any δ > 0, there exists ε2 such that |Tk(Λ) − Tk(Λ0)| ≤ δ
2 , for all Λ

satisfies ||Λ− Λ0|| ≤ ε2. Let ε = max{ε1, ε2}, then from (43) and (44), we obtain

|hk(Λ)− hk(Λ0)| ≤ δ

2
+ |Hk(Λ)|+ |Hk(Λ0)| ≤ δ,

proving (40).
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