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Citation suggérée: O. Manzanilla-Salazar, B. Sansò (Juillet 2018).
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Privacy-preserving classifiers recognize shared mobility behaviours from
WiFi network imperfect data, Technical report, Les Cahiers du GERAD
G–2018–54, GERAD, HEC Montréal, Canada.
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a Department of Electrical Engineering, Polytech-
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Les textes publiés dans la série des rapports de recherche Les Cahiers du
GERAD n’engagent que la responsabilité de leurs auteurs. Les auteurs
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Abstract: This paper proves the concept that it is feasible to accurately recognize specific human mobility
shared patterns, based solely on the connection logs between portable devices and WiFi Access Points (APs),
while preserving user’s privacy. We gathered data from the Eduroam WiFi network of Polytechnique Mon-
treal, making omission of device tracking or physical layer data. The behaviors we chose to detect were the
movements associated to the end of an academic class, and the patterns related to the small break periods
between classes.

Stringent conditions were self-imposed in our experiments. The data is known to have errors noise, and
be susceptible to information loss. No countermeasures were adopted to mitigate any of these issues. Data
pre-processing consists of basic statistics that were used in aggregating the data in time intervals.

We obtained accuracy values of 93.7 % and 83.3 % (via Bagged Trees) when recognizing behaviour patterns
of breaks between classes and end-of-classes, respectively.

Keywords: Wireless networks, movement patterns, indoors behaviour, machine learning, supervised learning
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1 Introduction

Public indoors facilities like hospitals, universities, airports and malls often offer WiFi access services to

visitors and employees. One example of such networks is the “Eduroam” network service offered in many

academic institutions worldwide providing Internet access to faculty, employees and students [1].

People leave footprints in the data generated by network administrative systems and in the portable

devices being carried with them as they move through the space. We classify these footprints as:

Figure 1: Count of devices connected to each AP in one floor of the building.

• Device-free network-gathered: information about individuals is obtained whether they carry a device

connected to the network or not, by observing the perturbations caused in the wireless signals. People’s

bodies absorve or reflect the electromagnetic waves affecting measured values of the physical layer (e.g.:

signal strength, phase, etc.) [2] [3] [4].

• Device-gathered: this refers to changes registered in the client devices connected to the network, either

by active sensors (GPS, accelerometers, compass, light sensors) or connection data (e.g.: time of flight,

signal strength, etc.) [5] [6] [7].

• Device-enabled network-gathered: these are changes registered by fixed APs or Base Station (BS) to

which a device (moving node) is connected. This encompasses both connection characteristics (e.g.:

time of flight, signal strength, etc.) as well as the status of connection between a device and a particular

AP or BS.

This paper deals with the third type of footprint. Our objective of this work is to do a proof of concept

that ML methods can be applied to detect human behaviour under stringent data gathering conditions. In

particular, even though we make inference from footprints of the third class, we exclusively use the Eduroam

logs of the devices connected to each AP, in two floors of one building of Polytechnique Montreal in Canada

(Figure 1). We do not use physical layer measurements of any kind, nor do we track the user. We show that

it is possible to push the limits of both the austerity of the data used, and the simplicity of the inference

techniques, while maintaining the ability to infer activities related to the movement of people. In this paper,
the activities chosen are the movement patterns related to the moment in which a class has finished, and

those related to periods of time when students have a break between classes.
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We identify three systems (Figure 2):

• Indoors human movement: this refers to the humans transiting the space under study, their activities,

in particular those implying movement big enough to trigger a hand-over in a device connected to

the WiFi network, as is done in [8]. As mentioned above, in our case, the behaviours of interest in

this system are circumscribed to the way academic activities are scheduled in the university. Another

element that gives structure to the trajectories followed by people within the building, is its physical

structure and layout.

• Wireless network: this encompasses the set of APs in the floors considered in the data gathering process,

the set of portable or mobile devices carried by people within the building, connected to the network,

and the components of the Cisco Connected Mobile Experiences (CMX) solution, which is used by the

wireless network administrator in Polytechnique Montreal.

• Machine learning models: this is constituted by the models of supervised learning used to infer ac-

tivities in the human system from data of the wireless nework system. The aim of learning about

human activities has been proved to be feasible in small scale activities like rising an arm [2], larger

trajectories [9] [10], activities involving groups of people in large spaces [6] [11] and routines [12].

Indoors human
movement

Wireless network
activity

Machine Learning
model

leaves 
footprints in

generates
data used by 

  infers    

Figure 2: Subsystems.

Why is it important to infer patterns of human behavior from wireless data? Because when people’s

health [13], integrity and security is put at risk [14], having the ability to predict, detect and understand

human behavior is useful to have timely reactions, and more precise mitigation strategies. There are other

uses for which detecting human behavior patterns is useful, like crowdsensing, recommendation systems, social

networks [15], as well as classification and understanding of the use of physical spaces [8] [16] [17] [18] [19].

We show in this paper a new strategy to study human activity via patterns in WiFi AP logs [5] [20].

Instead of focusing in differenciating spaces by how they are used [8], or on individual mobility, our goal

is to detect of specific patterns of simultaneous behaviour in groups of people. The approach takes into

consideration the following premises:

1. The data required should be easy to obtain in widespread WiFi networks.

2. Pre-processing and machine learning techniques as well as storage requirements should be as simple

and cheap as possible.

3. Both the data required for the techniques proposed and the information that is inferred from it, should

respect users privacy.

In order to comply with our premises, we intentionally refrain from:

• Analysing individual data.

• Applying filters to eliminate redundant data.
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• Applying filtering to eliminate data from individuals that do not follow the specific pattern that is

being detected (e.g.: not following the academic hourly schedule).

• Implementing methods to identify and correct errors in the data.

• Applying techniques to recognize and repair cases of incomplete data.

• Using any context information from the infrastructure or the date and time of a measurement, when

using a trained machine learning model to detect a pattern.

• Using wireless Channel State Information (CSI).

We show that notwithstanding the stringent conditions self-imposed, it is feasible to detect specific si-

multaneous behaviour patterns, such as the end of a class of an academic course, or that people are in one of

the small breaks between classes. To the best of our knowledge this is the first time that movement patterns

have been successfully recognized based on aggregated device counts per AP in a WiFi network, without CSI

or physical layer values.

The rest of the article is comprised by a review of the related literature, a section on the issues and

challenged involved, and a detailed description of the three systems mentioned: the human behaviour, the

WiFi network, and the machine learning models used to infer human behaviour (Figure 2). We will then

present our results and analysis in the following section and will end the article discussing our conclusions

and future work.

2 Related work

In order to put our work into context, we will briefly mention the main approaches that can be given to the

study of spatio-temporal patterns in human behaviour, as well as the ways in which data has been gathered

in other empirical studies. Lastly we will mention some of the ways in which this kind of data has been

analysed in previous works.

2.1 Spatio-temporal patterns in human behavior

Spatial information regarding human activity can be classified as pose [21] and micro-activities [2] [13] [22],

meaning the change of the shape of the space the human body occupies at a particular moment, and tra-

jectories or the history of location through time. Human trajectories have enough regularity as to make it

feasible to look for patterns in them [9] [10]. Also, human routines have enough structure as to allow the

analysis of patterns [12].

The focus of the analysis of human movement can be placed on individual patterns (generally trajectories

or tracking data), or in groups of people (crowds or flocks), who exhibit a similar simultaneous behavior.

2.1.1 Trajectory analysis

The study of patterns in trajectories [9] [10] requires analyzing a time-serie of location coordinates or

indicators of some kind. Recently deep learning techniques have been used to represent trajectory pat-

terns [23] [24] [25]. Location represents a great concern in terms of privacy, which has motivated researchers

to create algorithms to anonymize location data [26]. There is however a public concern of the possibility that

an individual’s anonymized data can be used to reconstruct the identity of the person (de-anonymization) [27].

2.1.2 Crowd analysis

Crowd Analysis has gained attention as stampedes in places with high density of people turns them into

an additional risk for themselves, besides the threat that can be assumed to originate the stampede. Some

work has been done in the prediction of the formation of crowds [28]. A recent and thorough review on the

empirical studies of crowds can be found in [11].
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2.1.3 Data gathering methods

Data from records of people activities, surveys, interviews, video surveillance, as well as from experiments

with human volunteers, evacuation drills, natural disasters, virtual reality, and animals [29] [11] have helped

build models to understand and predict the behavior of crowds, in addition to networks data. We group the

sources of data in the following categories:

• Video-based: crowd behavior has been analyzed by extracting patterns from videos [30]. Machine

learning techniques allow the processing of videos from one or multiple cameras to identify both indi-

vidual and crowd movement [31], as well as perform pose estimation [21], and recognition of frames

where relevant events take place [32]. Deep learning techniques can recognize a posture simultaneously

captured from different viewpoints [33], and in people identification based on range sensors such as

LiDAR and RGBD cameras, which provide data in the form of 3D point clouds [34]. One of the main

issues with video is that lighting, obstruction, and perspective can affect the quality of the analysis. 3D

point clouds are not affected by light conditions, but the positioning and obstacles can still represent a

challenge, besides being a more expensive technology.

• Network-based: GPS traces are one of the most obvious sources of location data. Traces from taxi

drivers have been used to study patterns in their mobility. This kind of traces, however, are of limited

application in indoors and urban environments [35], as obstacles can produce a shadowing effect. De-

vices GPS traces or data from GTFS networks can be used along with additional information, like WiFi

traces [36], to overcome these issues. Applications installed on the client side can also provide informa-

tion in the form of surveys like DataMobile [37], which collects travel information. Gathering users data

from their devices, however, presents the limitation of requiring users to share information regarding

their position and trajectories, which is frequently avoided by users [38]. This is where monitoring

centered in the network (fixed nodes) overcomes this problem as the information gathering becomes a

passive and automatic process regularly carried out by Wi-Fi or GSM networks [39]. This kind of data

gathering presents low costs, and the pervasive nature of wireless networks opens the possibilities of

collecting large quantities of data easily available in the administration software of public places that

offer wireless connection [40]. One of the problems to be overcomed with network data, is the low

precision in location estimations [41] [42], though it can be improved by considering it along with other

types of information [35]. This motivates, in some studies, the use of symbolic spaces instead of geo-

graphical coordinates [43]. One example of a symbolic location is the identification of the AP to which

a devices is connected. Some work is required in order to find the relationship between connections

to APs and specific physical spaces [8]. WiFi and Bluetooth connections between user’s devices can

give information about the social network among the people present in a particular area, which can

complement information about their behavior. Developments in multi-hop networks [44] have brought

increasing attention in this kind of data. Studying movement within a WiFi networks via connection

logs of connections established with APs, indirectly provides low cost large scale information about

realistic natural trajectories. In [8] the same raw data we use in our research is used to infer the kind

of use that is given to the space where each AP is. Nine categories of places are found via clustering.

The focus is that they find patterns in places, whereas we find patterns in time. Because of this fact,

the information is aggregated per day, instead of per minute.

• sensorless: the effects the presence of human bodies have over signal strength make it feasible to

estimate the number of people in an area [45], without requiring every person in it to carry a device.

Also signal strength combined with phase alterations, time-of-flight, among other signal characteristics

allow the detection of activities [21] and micro-activities [2] [13] [22].

• sensor-based: some research has been done to identify the human activity using sensors data, like signal

strength (the use of the wireless signal as a sensor), device accelerometer, light sensors, compass, etc [7].

Our research goes in the opposite direction of these methods, for our premise is to take advantage of

simple and widespread existing technology, instead of working with additional and more sophisticated

data gathering equipments and techniques.
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2.2 Network analysis

Various data analysis and inference techniques have been proposed and used in order to extract spatio-

temporal patterns in the behaviour of people, from networks data.

In the analysis of WiFi data, looking at changes in number of connections to a network’s APs from the

point of view of the frequency domain allows the identification of the most important periodicities in data [46].

Besides the techniques that have been mentioned in the modelling and classification of traces, there are

another tasks of relevance. There is the ability to predict tasks patterns related specifically to individuals in

a particular AP, as is shown in [7] where length of stay of a device in a particular AP is predicted based on

Wi-fi data along with information from other sensors in the device. We classify the focus of the analysis of

the network traces in three major categories:

1. Focused on spaces: the analysis of mobility patterns can be aimed at studying how spaces are used

[8] [16] [17] [18] [19]. The subject over which information is being inferred are physical spaces.

2. Focused on individuals: on the other hand, the subjects over which inference is applied, can be the

individuals moving through space. In [5] a technique is proposed to classify individual behavior based

on the hand-over patterns of users’ devices among various antennas in a GSM or Wi-Fi network. In [20]

wireless traffic data is used to build models of individual users’ mobility. A combination of focus on

both individuals and spaces is observed in tasks like that proposed in [7] (predict length of stay at a

particular individual connected to a specific AP).

3. Focused on groups: here the focus is understanding movement related to specific behavior shared by

groups, flocks or crowds. The analysis of WiFi logs, for example, permits the identification of groups

of individuals moving “together”, or flocks, within indoor environments [6]. We position our research

in this category, as we take advantage on the fact that the aggregation of individual data, which is

beneficial from the point of view of privacy, permits the detection of shared behaviours.

3 Issues and challenges

We now bring to attention the two main issues inherent to the nature of our research and its premises:

3.1 Privacy issues

One of the main challenges in the use of machine learning and statistical inference to analyze people’s data is

the need for a balance between the protection of privacy and innovation [47]. In the case of AP connection logs,

users’ MAC addresses, the devices model identification, as well as the user’s network identification are sensitive

information, which brings the necessity of implementing some kind of anonymization technique. Not only

this eliminates the collection of socio-demographic information [8] but also prohibits using knowledge about

the roles of a person in an area of study. Some researchers reconstruct the device information (distinguishing

between mobile devices and laptops) [8], users’ roles (in an academic setting the roles could be those of

students, faculty, staff, visitors, etc.) [17] or even the identity of the users [48]. For some groups, however,

the inference of anonymized data should be avoided and even regulated for privacy reasons [47]. More details

on de-anonymization can be found in [49]. Refraining from using sensible data, as well as reconstructing

(de-anonymizing it) it using ML, is the most conservative approach.

3.2 Quality of information challenges

The quality of the APs logs data is dependent on the following:

• The status of the mobile or portable device WiFi activation. Users have the choice of turning off the

WiFi antenna of their devices, or the whole device can be turned off, which makes the device invisible

to the network. We consider this to be a problem of incompleteness of the data.
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• Device specific behaviour can vary depending on the battery level, and other settings, affecting the

time that the WiFi passes without transmitting to the network. During this time, the device is also

invisible to the network, and thus another contribution to incompleteness of the data.

• Because of the limited range of connection to the APs, devices can get out of range, becoming also

invisible to the network. Recognizing a device coming back from a departure from the network as the

same device, in the context of hashed MAC addresses, requires maintaining in memory a record of all

the hashed generated. If the hashes are randomly generated each time devices connect again to the

network, adding these new logs to the previous history of the device becomes a challenging task. We

consider giving a different identification code to a same device in different moments, as a source of

errors in the data.

• The hand-over of the connection of a device to the network, from one AP to another, is triggered in

general by problems in the quality of the connection, and availability of a better AP to connect with.

Interpreting the hand-over as an event caused by the movement of the device, will introduce errors

in the data, as it can also be caused by obstructions or by the so-called Ping-Pong effect that arises

when the connection of device is quickly handed-over between two or more APs that are within range,

even though the device might be geographically static [8]. We consider this to be a source of noise in

the data.

• The location of the AP with which a device has established a connection might not be the one physically

closest to it. Therefore, symbolically assigning the location of the AP with which a connection is

established, as an approximation of the general location of a device might be inaccurate. In fact, a

connection might be established with an AP that is in a different floor, or a different room in the

building. This phenomena can also be considered as a source of noise in the data.

We decided to accept the aforementioned issues and challenges as constraints. In the following section we

go into detail about the way we approach the human activities, the network, and the use of pre-processing

and ML to take advantage of the data in spite of the limitations and premises.

4 Models proposed

We introduce now models of the three systems we have defined in our research (Figure 2):

4.1 Modelling of human behavior

The main elements of the human system are the people transiting the two floors considered for the study.

These are composed by students, faculty, administrative staff and employees, and visitors. Students, faculty,

and occasionally members of administrative staff and employees, are considered to have their activities

affected in various levels, by the weekly schedule of classes.

Students enrol in courses whose classes take place within pre-established academic blocks. These blocks

start at 8:30 am, 9:30 am, 10:30 am, 11:30 am in the morning of work days, and have a duration of 50

minutes, leaving an interval of 10 minutes that can be used either as a break between two hours of a same

course, or to go to the next class. Afternoon blocks start at 12:45 pm, and then on each hour until 4:45 pm,

with the same duration. We consider only data from 8:30:00 am to 11:29:59 am, as most classes take place

during the morning hours. Also, we exclude weekends, as no regular classes are scheduled on them.

In our analysis, we discard data from Wednesdays, as these are days of the week in which a great proportion

of the faculty has departmental meetings in Polytechnique Montreal.

The human dynamics of interest in this system, are those behaviours that, being shared by ideally large

quantities of people, are associated to activities implying movements through the indoors spaces, large enough

to trigger a hand-over of the connection of a mobile or portable device. We focus in shared behaviours that

can be easily labelled, for being ruled by the weekly academic schedule.

The term “rule”, however, could be too strong, as in reality it is suggested for the faculty and instructors

whose classes encompass two or more blocks, to leave the 10 minutes interval between the end of a block
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and the start of the following one for students to take a break, but such suggestions can be ignored by some

faculty or instructors. In some courses the break can be postponed for the sake of the continuity of the

teaching process. When the 10-minutes interval occur between two different courses, students use this time

to attend to personal needs and walk to the next class. There is no guarantee, however, that after the start

of a break, or the end of a class, students will actually leave a classroom, nor that students will arrive exactly

at the beginning of a block.

We defined two behaviours of interest:

• The intervals of break between two blocks of class, and

• The moment in which a class finishes.

The first one will allow us to associate data from a particular moment to a behaviour that is defined

as having some duration. The second will allow the detection of a particular event in time (theoretically

instantaneous).

Alongside the presence of students and faculty following the schedule in a particular moment, we assume

there will be presence of human activity not ruled by this academic schedule as administrative staff, employees,

visitors and students who are not attending to class may wander about in halls, stairs, bathrooms, food courts,

as well as unoccupied classrooms, which will be also within the range of the APs.

4.2 Modelling of the network

The Eduroam WiFi network in Polytechnique Montreal, is monitored via the Cisco CMX solution, which

constitutes our main instrument for data gathering. A script was written, to refresh the web interface that

samples information from the devices connected to the APs of the network. One month of data, totalling

189,259 samples was gathered, in sampling intervals averaging 12 seconds. Samplings are not regularly spaced

in time because each time the refresh is requested, the system needs to receive data from all the APs, which

imposes a variable delay. Each sample provided a table with all the connections active between devices and

APs in the area under study. A total of 6,830,873 connection logs between devices and APs were retrieved.

A simple random hashing process was used to anonymize the addresses, device models and users identi-

fications for each device. When a particular device receives a hash, it is remembered during the period over

which the device maintains its connection. When it disconnects, the hash is “forgotten”. When and if the

device connects again to the network, a new random hash will be generated.

Table 1: Typical raw data sampled from AP logs.

Sample ID UserName AP MAC Address Sample time-stamp

1 5bac0b... e0ed722608... 2017-04-07 15:51:07
1 d704b5... e934a10b73... 2017-04-07 15:51:07
2 f059ea... 5b50722d57... 2017-04-07 15:51:52

We do not treat the data to fix issues like noise, errors and incompleteness. In particular, we refrain from

the following:

• Implementing any method to differentiate between types of devices (un-anonymization is against our

premises).

• Implementing any method to recognize when two devices belong to the same user.

• Detect Ping-Pong sequences of hand-overs of a device.

• Implementing any method to recognize when a device connected in different times with different random

hashes is, in fact, the same device.

• Using location estimates nor signal strength, that are given by the Cisco CMX solution in each sample

of a connection between an AP and a device.

• Inferring when a disconnected device has left the area of study, or not.

• Inferring when a hand-over has been triggered by movement, or not.
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• Estimating the geographical location of a device.

• Including information regarding the status of the APs.

Three examples of the raw data gathered are shown in Table 1. The first two rows correspond to two

devices connected to different APs, reported during the sampling number 1, requested to the administrative

software at 15:51:07. The third one is a different device from the sampling number 2, that takes place some

seconds later. We emphasize that when a new sampling is requested, both its consecutive ID and time-stamp

will be associated to every row of data generated in that request. For each active connection at that instant

between a device and an AP, one row will be generated, sharing this information, as is show in Table 1. The

time-stamps will be used in order to aggregate the rows of data.

4.3 Modelling the learning process

The problem is posed as one of supervised learning problem where each input instance corresponds to a

vector of statistics related to APs and the output or label for the interval is manually assigned for each of

the experiments.

The input, or feature vector xi, is formed by pre-processing the data provided by the network administra-

tion software to calculate the minimum, maximum, variance and average of the number of devices connected

to each one of the 67 APs distributed in two floors of a building of Polytechnique Montréal (Figure 1).

The raw data from AP logs is pre-processed as follows:

• The raw data is aggregated by each sampling time-stamp, counting the number of devices per each of

the APs.

• The resulting table is further aggregated into one-minute basic statistics describing the variability of

the device count within each minute. Maximum, minimum, average, standard deviation and variance

are calculated over the count values of the samplings performed within the one-minute interval for each

AP. Figure 3 shows one example of the behavior of the maximum of connections across an interval of

time. Figure 4 shows the behavior of the average of connections in the same interval. Finally, Figure 5
shows the behavior of the standard deviation of the number of connections. In the APs from which

these examples were chosen, there is a different behaviour roughly around 9:30 am, when a block of

classes starts.

• Statistics for all APs are concatenated as a vector, which is the feature vector xi that will be used as

input for the machine learning models.

Figure 3: Example of maximum of connections.

Each vector x1 describing the variability of the device counts within the one-minute intervals is assigned a

label yi, according to the academic weekly schedule information, depending on the pattern we want to detect

in each recognition task. The label has two possible values, PT , which indicates the presence of the pattern,

and NT , associated to the absence of the pattern.
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Figure 4: Example of average of connections.

Figure 5: Example of standard deviation of connections.

Various classical machine learning classification techniques are applied, estimating accuracy via 10-fold

cross-validation. In a production environment, the fully trained model of choice is then used to perform

inference on whether the input shown to each classifier exhibits the pattern corresponding to the label. This

implementation would allow the detection of the end of a class, or the detection of a break between classes,

without consulting the academic schedule, solely based on the behaviour of the device counts (Figure 6). In

all our experiments, a majority of the data was labelled as NT , producing a situation of class imbalance. We

sub-sampled the larger dataset (randomly discarding from each experiment data from the set NT ) to deal

with this problem.

Network
activity Pre-processing

raw
data

Model

selection

Feature vectors

Training

choice of 
model

Trained
classifier

behavior
label

     target value

behavior
inference

Figure 6: Machine Learning process.
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The classifiers considered in our experiments were the following: Decision trees, Logistic Regression,

Linear Support Vector Machine (SVM), Quadratic SVM, Cubic SVM, Gaussian SVM, K-Nearest Neighbours

(kNN), Cosine kNN, Cubic kNN, Weighted kNN, Boosted Trees, Bagged Trees, Subspace Discriminant,

Subspace kNN and RUS Boosted Trees

The data was pre-processed in Python with MySQL and the implementation used for the ML methods

was that of the Classification Learner App of Matlab R2017b.

Labelling process

One advantage of aiming at recognizing patterns related to the academic schedule, is that it allows the

labelling of data without spending time monitoring the behavior of people in situ or via video-surveillance as

is done in [8]. Instead we use a script that checks for some conditions to determine if the pattern is present

or absent and assign the corresponding label, based on the time-stamp of the interval from which xi was

calculated (Figure 7).

DATA STRUCTURE

Sampling of 
connected 

devices

Devices
connected

to AP1 

Devices
connected

to AP2

1 minute aggregations 
per AP

AP2 
1m 

statistics

AP1
1m 

statistics

AP1

Interval
Label

FEATURE VECTORdate

AP2

WiFi 
Network

TARGET

time

Figure 7: Data pre-processing.

Let T be the experiment at hand, the label are assigned as follows:

yi = y(xi) =

{
PT , if the pattern is present in xi
NT , otherwise,

(1)

We defined the way the presence of the pattern depending on whether the pattern is associated to an

event (considered instantaneous), or to a specific time interval. In the case of the recognition of an event, if

time-stamp of a vector is within a range of the event, the pattern is considered to be present. For patterns

that takes place during an interval the pattern is considered to be present if the one-minute interval from

which xi has been calculated, overlaps with the interval where the pattern takes place.

Two binary classification tasks posed:

• Task 1 - Break Interval Recognition: this problem involves the identification of the 10-minute breaks

between class blocks. During this periods, students exit one class to assist to another, or take a break

to continue the same class. Some instructors and teachers freely choose to ignore the scheduled break

maintaining continuity in the class, or postponing the break to another moment. The labelling strategy

is the one defined for patterns that take place in intervals. The label PB was assigned including a

tolerance of one minute before and after the theoretical break interval (as stated in the academic blocks

of the schedule) was conceded as tolerance (Figure 8).
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• Task 2 - End of Class Event Recognition: this problem involves the identification of the movement

patterns related to the end of a class block. The labelling strategy used is the one defined for events.

The label PE is assigned within a range of 2.5 minutes from the scheduled end of a class (Figure 9).

as follows:

Figure 8: Task 1: Labeling data from a break interval.

Figure 9: Task 2: Labeling data from the end of a class.

5 Results and analysis

The top performing ML method used in our experiments of binary classification (Bagged Trees) shows an

accuracy (% of validation data that is well classified) of 93.7 % for the task of recognizing that a statistics

vector belongs to an interval of break between academic blocks, and of 83.3 % for the task of detecting the

event of culmination of a block of classes (Table 2).

Table 2: Results for 10-fold cross-validation one week of data.

% Accuracy % Accuracy
ML method Break Intervals End of Class

Fine Tree 83.2 64.6
Medium Tree 82.8 64.6
Coarse Tree 59.2 56.2
Logistic Reg 70.6 45.8
Linear SVM 72.7 59.7
Quadratic SVM 79.0 65.3
Cubic SVM 82.4 62.5
Fine Gaussian SVM 76.5 56.9
Medium Gaussian SVM 69.3 64.6
Coarse Gaussian SVM 55.9 50.0
Fine kNN 83.6 70.8
Medium kNN 73.5 52.8
Coarse kNN 52.1 51.4
Cosine kNN 73.9 50.7
Cubic kNN 70.6 49.3
Weighted kNN 80.3 64.6
Boosted Trees 91.6 56.9
BaggedTrees 93.7 83.3
Subspace Discriminant 76.5 54.9
Subspace kNN 90.3 81.9
RUS Boosted Trees 80.7 59.7
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The use of Principal Component Analysis was discarded, as its effect in accuracy was not systematically

beneficial, ranging from decreases of 18.5 % to increments of 25.2 %.

The response of the accuracy to increments of the size of the dataset beyond the data of one week was

not beneficial for all the ML techniques. In particular, the Bagging with Decisions trees, as implemented in

the Classification Learner App of Matlab R2017b (with 30 learners), saturated on the highest values with

the data from one week, which is an indication that further improvement in the classification tasks with the

dataset at hand might require noise filtering, better hyper-parameter tuning, more elaborated classification

models or more attention to the feature engineering.

These results show the applicability of well-known machine learning classification techniques to detect two

specific patterns that respond to the structural organization of activities within an academic environment,

and should not be generalized to other kinds of buildings, or different types of activities.

In Figures 3, 4 and 5, there were observable changes in the data around the break interval between 9:20

and 9:30 am. If the activity of people not engaged in the class activities in these intervals of time had been

more numerous, or with larger and more active movement patterns, the observable patterns in the data might

become invisible within the values generated as a consequence of individuals not engaged in classes at those

intervals.

6 Conclusion and analysis

We successfully applied machine learning binary classification techniques, on data aggregated via basic one-

minute statistics from noisy, incomplete, and imperfect raw data. Particularly stringent conditions were

accepted to make the method easily applicable to situations with widespread indoors wireless administrative

software. The classification models obtained were able to detect with reasonably high accuracy, common

shared mobility patterns in an academic environment.

Contrary to the general belief stating that there is a hard trade-off between the limitations imposed on

machine learning by regulations, and the opportunities to innovate [47], the method used open possibilities

for further innovation while preserving privacy both in the way data is required, and in the nature of the

patterns inferred. Moreover it requires low costs in terms of infrastructure, in comparison to other approaches

to gather and analyse data.

Further experiences with strategies like the proposed here, can easily be enriched with information from

the context of each environment. There are clear paths of further improvement:

1. The temporal nature of the data indicates that the use of time-series models might be promising in more

elaborated tasks like forecasting of the connection counts on each AP, and possibly anomaly detection

in mobility patterns.

2. The use of infrastructure, architectural information, as well as the nature of the planned use of the

spaces covered by the APs, can also boost our ability to extract knowledge and detect patterns in the

behaviour of people.

Obtaining levels of accuracy of 83.3 % and 93.7 % in the detection of shared patterns in human mobility

behaviour, with a methodology that has innovated in the sense of pushing down, towards simplicity (not

mitigating noise, accepting errors and missing data, and limiting to widespread technology), instead of up

(more expensive, complex and scarce technology), demonstrates that the conflict between privacy regulations,

budget constraints and the need to innovate in ways to solve our problems, is a promising one.

This proof of concept is only a first step in this research stream. In our future work we will be analysing

more complex behaviours, aiming to be able to recognize threats to the security, integrity and health of

people, based mainly in WiFi AP connection logs.
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