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• Peuvent télécharger et imprimer une copie de toute publication

du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une ac-
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Abstract: In the field of Automatic Programming (AP), the solution of a problem is a program, which
is usually presented by a tree with a specific structure. This tree contains different types of nodes, and is
called an AP tree. For solving AP problems, we propose a new local search procedure that adapts the known
‘elementary tree transformation’ (ETT) into this specific tree. Our results indicate that the neighborhood
size of an AP tree is for the order of magnitude smaller than the neighborhood size of a tree with one type
of node. As our new ETT local search can be part of many meta-heuristics, it can be used to solve various
AP problems. In this paper, we incorporate it into the Basic variable neighborhood programming (BVNP)
scheme to solve the Symbolic regression problem. Computational experiments were conducted to test the
performance of our proposed method; it was compared with the three well known automatic programming
methods, i.e., the VNP method without ETT, Genetic programming, and Artificial bee colony programming.
The obtained results show clearly the greater ability of our method, with respect to convergence speed and
computational stability.
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1 Introduction

There is a fast-growing interest in developing techniques to solve problems automatically in the research

fields of Artificial intelligence and Machine learning. The term Automatic Programming (AP) indicates that

programs are automatically generated, and no human intervention is needed. The solution to an AP problem

is a program that is usually presented by the tree with a specific structure, called an AP tree. Such a tree

has different types of nodes or vertices, i.e., nodes that present operations, variables, and constants.

Genetic programming (GP), one of the well-known techniques in AP, is based on Genetic Algorithm (GA)

operators (Koza in 1992 [1]). GP is used in many fields, such as Symbolic regression [2, 3, 4], Forecasting [5, 6],

Data-mining [7], and Classification [8]. There are many GP based methods that include local searches [6, 9].

Good results are obtained by using such methods for solving the Symbolic regression problem [9] and Energy

consumption forecasting problem [6]. In [10], Automatic programming via Iterated local search (APRILS) is

proposed, where the local search is presented by a selection of random solutions obtained by mutation.

Recently, a new AP method, called Variable Neighborhood Programming (VNP), based on the Variable

neighborhood search (VNS) meta-heuristic [11] is introduced by Elleuch et al [12]. A set of neighborhood

structures, defined for the current incumbent tree T , is systematically changed in search for a better tree T ′.

The VNP method is applied to solve Forecasting and Classification problems, using three neighborhoods, but

only in the Shaking step. Since the local search step is omitted, VNP proposed in [12] is a Reduced VNP. A

preliminary version of the Basic VNP, applied to Forecasting problem, was presented in [13].

In this paper, we have made the following contributions:

i) New local search. We propose a new neighborhood structure, and therefore, a new local search in

AP, which can be used within several AP techniques: Genetic programming, Artificial bee colony

programming, and Swarm intelligence programming. We use this neighborhood structure to adapt the

well known ’elementary tree transformation’ (ETT) of a regular tree graph to this specific AP tree.

We proved that the cardinality |N(T )| of an AP tree is smaller than the number of neighbors of an

undirected tree with one type of node in the order of magnitude.

ii) Basic VNP for solving Symbolic regression. The new local search is included into the Reduced VNP [12]

to get Basic VNP (BVNP). In order to check the quality of BVNP, we choose the most common problem

from AP literature, i.e., the Symbolic regression problem.

iii) Comparative analysis. Extensive comparative analysis was performed on ten test functions used in

the literature. The computational experiments are conducted to test the performance of our pro-

posed method; it was compared with three well known automatic programming methods, i.e., the VNP

method without ETT, Genetic programming, and Artificial bee colony programming. The computa-

tional results show clearly the greater ability of our method with respect to convergence speed as well

as computational stability.

The paper is organized as follows. The steps of ETT for solving the AP problem are described in Section 2.

In Section 3, the implementation of this local search within the basic VNP is explained. Experimental results

and the comparison among the Reduced VNP, the new Basic VNP, GP, and ABCP algorithms are given in

Section 4. Finally, Section 5 presents conclusions and outlines possible directions for the future work.

2 Elementary tree transformation in Automatic programming

2.1 ETT in the tree of an undirected graph

ETT is a well known transformation technique of a tree in an undirected graph G(V,A), consisting of two

sets, a node set V and an edge set A. Let T (V,E) denote any spanning tree of G, ETT transforms a tree T

into a tree T ′ in two steps (T ′=ETT(T )):

(1) add an edge a to T such that it belongs to A, but not to E (a ∈ A \ E);

(2) detect a unit circle obtained, and remove any edge from that circle to get a subgraph T ′.
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The following obvious statement holds.

Proposition 1 The resulting subgraph T ′, obtained from T by steps (1) and (2), is a spanning tree.

All possible edge additions, followed by all possible removals from the corresponding circles, constitute

the neighborhood of T , i.e., the set of trees N(T ) = {T ′ | T ′ = ETT(T )}. If the solution of a combinatorial

optimization problem is a spanning tree, the definition of a neighborhood N(T ) allows us to establish a local

search procedure with respect to ETT neighborhood structure:

(1) find a tree T ∗ ∈ N(T ) with the best value of the objective function;

(2) if a better solution is obtained, then T ← T ∗, and return to (1); otherwise, stop with T ∗ as the local

optimum.

Proposition 2 The cardinality of N(T ) is less than n(n−1)(n−3)
2 .

Proof. If we assume that the initial graph is complete, then the number of possible edges to be added to T

is n(n−1)
2 − n = n(n−3)

2 . The largest circle to remove an edge from has n − 1 edges. After multiplying this

two numbers, we get the result from above.

2.2 ETT in AP tree

In this section, we try to answer the question whether ETT is possible in the specific AP tree. First, we give

an example of a small tree.

Figure 1 illustrates the expression of:

max

{
3

x3 · 2.4
;x1 − x2

}
, (1)

which can be presented as an AP tree with the functional set F = {φ1, ..., φ4} = {max,+,−, ·}, and the

terminal set Y = X∪C, where X = {x1, x2, x3} is the set of the problem variables, and C = {c1, c2} = {3, 2.4}
denotes the set of constants; k = 3 + 2 = 5 is the cardinality of Y .

Figure 1: Solution presentation as AP tree

Let us first denote an AP tree rooted in r as T (r, F, V,A, d)), where F is the set of functional nodes,

and V is the set of terminal nodes. The set A includes all edges of the tree T , and array d = (d1, ..., dn)

denotes the node degrees of T . Note that in a binary tree, the degree of a functional node is 3 if the functional

node represents a binary operation, otherwise it is 2. The degree of a terminal node is equal to 1 (there is

no child).
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The steps of the ETT move on the AP tree are as follows.

• Add an edge a = (i, j) to the current tree T , where nether i nor j is a root node (i, j 6= r); in addition,

at least i, or j must be a functional node; update degrees d of the tree;

• Drop an edge b (b ∈ A, b 6= a) from the cycle of T ,

• If both i and j are functional nodes, then choose b such that it is either connected to i or j; update

degrees d;

• If one of the nodes is a terminal node (let it be j for example), then choose b such that its one end

point is j; update degrees d;

• Drop an edge c 6= a, connected to the node having higher degree than its original degree, update d;

• Add an edge to the tree T to keep degree of each node feasible and update d.

In Algorithm 1, a pseudo code of our AP-ETT move is given.

Algorithm 1 ETT(T )

let i ∈ F be a current node
Find (a node j ∈ F ∪ V and the one non adjacent to i) knowing that (i and j are not previously linked; j does not belong to
the subtree rooted in i, and i does not belong to the subtree rooted in j)
T ′ ← T ∪ {(i, j)}; di ← di + 1; dj ← dj + 1
if j ∈ F then

// case 1
Find (the edge (l, k) of a cycle in T ′) where (l ∈ F ∪ V ), and (k ∈ i, j), and ((l, k) 6= (i, j)) // two possibilities
T ′ ← T ′ \ {(l, k)}; dk ← dk − 1; dl ← dl − 1
Find (an edge (m, k′)) where (m ∈ F ∪ V ), and (k′ ∈ i, j), and ((m, k′) 6= (i, j)), and (m is not the parent of k′) // two
possibilities
T ′ ← T ′ \ {(m, k′)}; dk′ ← dk′ − 1; dm ← dm − 1

else
// case 2
Let l be the parent node of j
T ′ ← T ′ \ {(l, j)}; dj ← dj − 1; dl ← dl − 1
Find (an edge (m, i)) where (m ∈ F ∪ V ), and ((m, i) 6= (i, j)), and (m is not the parent of k′) // two possibilities
T ′ ← T ′ \ {(m, i)}; di ← di − 1; dm ← dm − 1

end if
T ′ ← T ′ ∪ {(l,m)}; dl ← dl + 1; dm ← dm + 1
Return T ′

Figure 2 illustrates the steps presented in Algorithm 1 at the example from Figure 1, when the first added

edge connects two functional nodes.

From the example above, it can be observed that we made two edge additions and two edge deletions. The

second add-drop pair is made to keep the degree of functional nodes equal to three, which is the necessary

condition for any AP tree. Indeed, all operators in set F are binary and need 2 child nodes. From Algorithm 1,

we can conclude that the following proposition holds.

Proposition 3 Following the steps of Algorithm 1, the resulting AP subgraph T ′, obtained from the AP tree T,

is an AP tree as well.

Proof. By adding an edge to the AP tree T , we get a unique circle. By dropping an edge from that circle,

we again have a tree T ′′. However, T ′′ is not a feasible AP tree since the desired degrees of functional nodes

are ruined. Neither added nor dropped edges cannot contain terminal nodes at their both ends. Indeed, if for

example, both ends of an added edge are terminal nodes, then that edge should be dropped immediately from

the circle to assure that terminal nodes are leaves. Since at least one end point of the added or dropped vertex

is functional, an additional transformation of T ′′ is necessary. It is easy to show that one more add-drop

move is sufficient to recover the AP feasibility.
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Figure 2: An example of ETT move in AP tree: from the expression T = max
{

3
x3·2.4

;x1 − x2

}
, the neighboring T ′ =

max
{

3
x1

; x3 · 2.4− x2

}
is obtained.

2.3 Enumeration of all neighborhood trees at the example

To explain better the progress of the Algorithm, we suppose that the current tree is the one illustrated in

Figure 1. Firstly, we have to choose node φ ∈ F , which is a functional node different from the root. Therefore,

φ should belong to the set F = {/,−, ·}. Let us enumerate the complete ETT neighborhood of T .

We assume that i =′ /′ is a current node. We have to find a node j belonging to F ∪ V , not adjacent

to i, i and j are not previously linked, j does not belong to the subtree rooted in i and i is not a node

from the subtree rooted in j. As a result, j can be ′−′, x1, or x2. If j =′ −′, which is a functional node,

we can get four expressions (2· 2), as given in Algorithm 1, case 5: max{ 3
x1−x2

;x3 · 2.4}, max{3; x3·2.4
x1−x2

},
max{x1; ( 3

x3·2.4 −x2}, max{x2; 3
(x3·2.4) −x1}. If j = x1, i.e., if j ∈ V , we can deduce two different expressions

(case 11 from Algorithm 1): max{ 3
x1

;x3 · 2.4 − x2}, max{x3·2.4
x1

; 3 − x2}. If j = x2, we have two resulting

expressions: max{x3·2.4
x2

; 3− x1}, max{ 3
x2

;x3 · 2.4− x1}.

We gave all the possibilities of the generated tree when i =′ /′. We suppose now that there is i =′ −′.
Thus, j can get one of these node values: {/, ·, 3, x3, 2.4}. When j =′ /′, we notice that the nodes ′/′ and ′−′
are linked previously. Thus, we move to the case when j = ·, where j is a functional node. Therefore, we will

apply case 5 from Algorithm 1. The possible expressions are : max{ 3
x1

;x3 · 2.4− x2}, max{ 3
x2

;x3 · 2.4− x1},
max{ 3

x3·(x1−x2)
; 2.4}, and max{ 3

2.4·(x1−x2)
;x3}. The first function is also found when i = / and j = x1, and

the second function is already generated when i = / and j = x2. If j = 3, the moves can result in two

expressions that are respectively generated when i =′ /′, j = x1, and i = /, j = x2: max{x3·2.4
x1

; 3 − x2},
max{x3·2.4

x2
; 3 − x1}. If j = x3: j ∈ V , then we follow the steps given in the case 11 of Algorithm 1. The

expressions of the new trees are: max{ 3
2.4·x1

;x3−x2}, max{3/(2.4 ·x2);x3−x1}. If j = 2.4, then j ∈ V , and

the possible generated expressions are: max{ 3
x3·x1

; 2.4− x2}, max{ 3
x3·x2

; 2.4− x1}.
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We assume now that i =′ ·′. So, j can be ′−′, x1 or x2. We have already linked the node ′·′ with the

node ′−′. Now, we will give the expressions when j = x1 or j = x2. These are terminal nodes, therefore,

for each value, we obtain two expressions: max{ 3
2.4·x1

;x3 − x2}, max{ 3
x3·x1

; 2.4− x2}, max{ 3
x3·x2

; 2.4− x1},
max{ 3

2.4·x2
;x3 − x1}.

2.4 Bound on cardinality of ETT(T)

To calculate the number of possible neighbors generated from a tree T (r, F, V,A, d) when applying ETT (T ),

we need to know the structure of T . With the same sets, F and V , we can get more than one AP tree.

Thus, we consider that the AP tree has the largest possible number of neighbors to obtain upper bound on

cardinality. In other words, all terminals need to have the same depth and the degree of each functional node

should be equal to 3.

Proposition 4 The cardinality of N(T ), where T is an AP perfect tree, is less than (n− 1)(n− 2).

Proof. Let T be an AP tree, and let n1 and n2 denote the cardinality of F and V , respectively (F includes

all functional nodes except the root). In a perfect tree, the following holds:

n1 =
n

2
− 1, n2 =

n

2
+ 1, (2)

where n = |F | + |V |. Note that n should be an even number due to the fact that root is excluded from F

and T is a perfect tree.

Let us first calculate the number of all possible added edges when their both end points belong to F . It is

obviously equal to n1(n1 + 1)/2−n1 = n1(n1−1)/2. As explained earlier, for each added edge from F , there

is only one way to drop an edge from the circle, but there are four possibilities to perform another add-drop

move to recover feasibility. Thus, the cardinality of this type of move is 4[n1(n1 − 1)/2] = 2n1(n1 − 1).

The number of added edges in the case where one end point is in F and the other in V, is obviously n1 ·n2.

As illustrated in the given example, there are just two options to recover feasibility in this case. Finally,

we have

|N(T )| ≤ 2n1(n1 − 1) + 2n1n2 = 2n1(n1 − 1 + n2) = (n− 1)(n− 2),

after substituting n1 and n2 from (2).

Comparing cardinalities of N(T ) from Proposition 2 and Proposition 4, the following statement is obvious.

Theorem 1 The upper bound on cardinality of ETT neighborhood in an AP tree is smaller than that of a

tree in an undirected graph in the order of magnitude.

It should be noted that the result of Theorem 1 holds in worst case in both problems. If an undirected

graph is sparse, then the number of possible added edges within the ETT neighborhood could be much

smaller than O(n2).

2.5 Local search

The ETT based local search is presented in Algorithm 2. We employ the first improvement strategy: when

an improving solution T ′ is found, the local search is stopped and T ′ is set to be the new incumbent solution.

Note that the ETT move, and consequently ETT local search (ETT-LS), can be applied to both the GP

individual and the VNP solution. Next, we present the new ETT-LS within a VNP heuristic.
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Algorithm 2 ETT-LS(T )

terminate← false
repeat

T ′ ← ETT(T );
if f(T ′) ≺ f(T ) then

T ← T ′;
terminate← true

end if
until terminate = true

3 Basic VNP

3.1 VNP ingredients

By following the steps of the basic VNS algorithm, which includes the local search, the BVNP can be easily

derived. The following four components of the BVNP need to be defined:

(i) Shaking or perturbation that aims to resolve possible local minima traps. A solution from the kth

neighborhood of the currently best solution T (incumbent) is selected randomly. Thus, we need to

define a set of kmax (a parameter) neighborhoods that will be used in this step;

(ii) Local search that we use is our ETT-LS, which implements the first improvement search strategy (see

Algorithm 1 and Algorithm 2);

(iii) Neighborhood change is performed in a usual way: if the new obtained solution based on local search is

better, then it becomes a new incumbent and the next neighborhood to be explored is the first one from

the list (k ← 1); otherwise, the next neighborhood from the list is explored in step to come (k ← k+1);

(iv) Stopping condition can be the maximum number of iterations or the maximum allowed CPU time tmax.

3.2 Neighborhood structures

Besides the new ETT move, we refer three neighborhood structures in Elleuch et al [12]. In details, the

following three neighborhoods are used in our BVNP method:

• N(T ) denotes ETT neighborhood structure used in the local search;

• N1(T ) or Changing a node value. It conserves the shape of the tree and changes only one value of a

functional or a terminal node. If we apply N1(T ) to the example of the program presented in Figure 1,

then we find an expression with the same shape of the original one, but differing in just one value.

The original expression is max{ 3
x3·2.4 ;x1 − x2}. Thus, such a move can give the following expressions:

max{3 + x3 · 2.4;x1 − x2}, max{3 · x3 · 2.4;x1 − x2}, etc. This neighborhood alters the terminal node

values as well. The terminal set of the example is {3, 2.4, 0.66, x1, x2, x3, x4}. Hence, possible expressions

generated after one move are: max( 2.4
x3·2.4 ;x1 − x2), max( 0.66

x3·2.4 ;x1 − x2), max{ x1

x3·2.4 ;x1 − x2}, etc.

• N2(T ) Swap operator. More details are given in [12]. The cardinality of N2(T ) is larger than the

cardinality of the other two neighborhood structures. Swap operator affects the shape and the content

of the current tree. In fact, starting from the tree illustrated in Figure 1, an infinite number of trees can

be generated. We give here some examples, based on the same functional and terminal sets chosen as in

the previous neighborhood structure: max( 3
x1

;x1−x2), max( 3
x3·2.4 ;x4 ·0.66), max( 3

x3·2.4 ; (x4 + 3) ·2.4),

etc. We notice that in one move, one branch of the original tree is kept.

3.3 Shaking

The shaking step is given in Algorithm 3. In this procedure, we obtain the kth neighbor of a tree T af-

ter k repetitions of one move. In other words, we first choose some neighborhood randomly (either Node

value change or Swap), and then repeat the move k times using the selected neighborhood. After a brief

experimentation, we set kmax = 4.
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Algorithm 3 Shake(T, k)

s← random value ∈ {1, 2}
for i = 1, k do

Choose randomly T ′ ∈ Ns(T )
T ← T ′

end for
return(T )

3.4 Basic VNP

Algorithm 4 gives the basic VNP procedure.

Algorithm 4 BasicVNP(T, kmax)

repeat
k ← 1
while k ≤ kmax do

T ′ ← Shake(T, k)
T”← ETT-LS(T ′)
Neighborhood change(T, T”, k)

end while
until the stopping condition is met

To find the best representative model of a given problem, the optimization procedure should take into

account a tree structure and the node values. Here, we propose three neighborhood structures, although it is

clear that many others can be included. We follow the principles of recently proposed Less is more approach

(LIMA) [14, 15, 16, 17]. In LIMA, we try to find the minimum number of ingredients that would make the

new method, at least, as good as those from the state-of-the-art. As a result, we removed some neighborhoods

proposed in [12]. This LIMA approach is applied, in the next section, to the Symbolic regression problem,

where its effectiveness is demonstrated again.

4 Basic VNP for Symbolic regression problems

AP methods are widely applied to the symbolic regression. A large number of benchmark data sets can be

found in the literature. This fact allows us to test the performance of our new approach. Symbolic regression

is in fact a mathematical modeling method for analyzing numerical data in order to find an approximation

of a mathematical function in the symbolic form [2]. Symbolic regression is a search for the mathematical

expression that minimizes error metrics. There are several classical approaches in this field such as the

regression by the Bernstein polynomial technique [18, 19], and the regression based on splines [20, 21].

Symbolic regression deals simultaneously with the search of the parameters such as linear or non-linear

regression and the shape and structure of the function.

4.1 Test instances and parameter values

In this work we evaluate the performance of our algorithm on ten real-valued symbolic regression benchmark

data sets. We have studied the following problems: polynomial, trigonometric, square-root, logarithmic and

bi-variate functions. Table 1 shows the ten benchmark functions, which were used by Uy in 2011 [22]. This

paper includes the largest set of issues in the symbolic regression, which are mostly taken from [23, 24, 25].

For solving an AP problem, Artificial bee colony programming (ABCP) heuristic is proposed in [26] and

compared with GP. This method is an adaptation of Artificial bee colony meta-heuristic proposed in [27].

The specific parameters of ABCP and GP are given in Table 2, whose adjustments are taken from [26].

To make a reliable and fair comparison, we have chosen the same parameter values of BVNP as in [26]

and [22], and adapted the same fitness function (Table 2, Table 3).

GP and ABCP are population based algorithms, while VNP is a trajectory based algorithm. Thus, they

cannot be compared with VNP using population size parameter. However, we can use a measure based on the
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number of function node evaluations to limit the number of iterations of the old VNP (RVNP) and the Basic

VNP (Table 2, Table 3). This measure is not only employed by the different GP techniques [22] and ABCP

method [26] but also by recent GP investigations [28, 29]. Table 3 gives the functional set and the terminal.

The functional set is defined after the experimental study. In our case, we use the same functional set as

in [22, 26]. Based on the target functions of this problem, we find that the solution presented in Figure 1 is

adequate for this symbolic regression problem.

Table 1: Symbolic regression benchmark functions

Benchmark functions Instances

F1 = x3 + x2 + x 20 Random points ⊆ [−1, 1]
F2 = x4 + x3 + x2 + x 20 Random points ⊆ [−1, 1]
F3 = x5 + x4 + x3 + x2 + x 20 Random points ⊆ [−1, 1]
F4 = x6 + x5 + x4 + x3 + x2 + x 20 Random points ⊆ [−1, 1]
F5 = sin(x2)cos(x)− 1 20 Random points ⊆ [−1, 1]
F6 = sin(x) + sin(x + x2) 20 Random points ⊆ [−1, 1]
F7 = log(x + 1) + log(x2 + 1) 20 Random points ⊆ [0, 2]
F8 =

√
x 20 Random points ⊆ [0, 4]

F9 = sin(x) + sin(y2) 100 Random points ⊆ [−1, 1]× [−1, 1]
F10 = 2sin(x)cos(y) 100 Random points ⊆ [−1, 1]× [−1, 1]

Table 2: Symbolic regression parameters adjustment of ABCP and GP

GP parameters Value ABCP parameters Value

Population size 500 colony size 500
#of node evaluations 15 · 106 #of node evaluations 15 · 106

Crossover 0.9 Limit 500
Mutation 0.5
Tournament size 3

Table 3: Reduced VNP and basic VNP parameters adjustment

Parameter Value

The functional set F = {+,−, ·, /, sin, cos, exp, log}
The terminal set {xi ∪ c} , i ∈ [1, n], n is the number of variables, c ∈ [−5, 5]
fitness function Sum of absolute error on all fitness cases
#of node evaluations 15 · 106

Uy [22] presents various crossover operators of GP, where standard crossover (SC), semantics aware
crossover (SAC), no same mate (NSM) selection, soft brood selection (SBS), context aware crossover (CAC),

and semantic similarity-based crossover (SSC) are applied respectively. The explanation and the details of

these techniques are available in [22].

4.2 Comparison of BVNP with other methods

Both Basic VNP and Reduced VNP are coded in Java programming language, and executed on Intel Core

i3 cpu (330M / 2.13 GHz). To compare the performance of Basic VNP with GP and ABCP based methods,

we used the same evaluation criteria from [22] and [26]: (i) the percentage of successful runs, (ii) the mean

best fitness, and (iii) best fitness. In addition, we add (iv) running time criterion.

(i) The percentage of the successful runs for each approach are summarized in Table 4. This measure

represents the total number of successful runs. A run is considered to be successful when at least one

individual fitness value is lower than the threshold value (hits criterion) for all instances. To ensure a

fair comparison, we use the same hits criterion 0.01 as in [22, 26]. We can see that Basic VNP algorithm

has a large number of successful runs for the first three problems (F1, F2, F3), and also for F8. For F4,

SSC12 and ABCP score better percentage of successful run. For F5, F6, and F7, the Basic VNP ranks

the second. The last column of Table 4 clearly indicates the order of methods based on this criterion:

BVNP (49.2% average success rate), ABSP (46.6%), RVNP (39.5%), SSC20 (38.3%), etc.
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Table 4: Number of successful runs out of 100, within 15 · 106 node evaluations of each

Functions Average %

Methods F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 of succes

ABCP 89 50 22 12 57 87 58 37 33 21 46.6
SC 48 22 7 4 20 35 35 16 7 18 21.2
NSM 48 16 4 4 19 36 40 28 4 17 21.6
SAC2 53 25 7 4 17 32 25 13 4 4 18.4
SAC3 56 19 6 2 21 23 25 12 3 8 17.5
SAC4 53 17 11 1 20 23 29 14 3 8 17.9
SAC5 53 17 11 1 19 27 30 12 3 8 18.1
CAC1 34 19 7 7 12 22 25 9 1 15 15.1
CAC2 34 20 7 7 13 23 25 9 2 16 15.6
CAC4 35 22 7 8 12 22 26 10 3 16 16.1
SBS31 43 15 9 6 31 28 31 17 13 33 22.6
SBS32 42 26 7 8 36 27 44 30 17 27 26.4
SBS34 51 21 10 9 34 33 46 25 26 33 28.8
SBS41 41 22 9 5 31 34 38 25 19 33 25.7
SBS42 50 22 17 10 41 32 51 24 24 33 30.4
SBS44 40 25 16 9 35 43 42 28 33 34 30.5
SSC8 66 28 22 10 48 56 59 21 25 47 38.2
SSC12 67 33 14 12 47 47 66 38 37 51 41.2
SSC16 55 39 20 11 46 44 67 29 30 59 40
SSC20 58 27 10 9 52 48 63 26 39 51 38,3
RVNP 87 42 38 11 33 50 43 46 26 19 39.5
BVNP 91 63 40 11 49 57 60 66 30 25 49.2

(ii) The mean best fitness metric is more meaningful when comparing the effectiveness of AP techniques.

For each problem, the mean best fitness of all indicated methods are given in Table 5, where the

best-performance found for each function is boldfaced.

Table 5: Mean best fitness values in 100 trials, within 15 · 106 node evaluations for each

Functions Averg

Methods F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 mean

ABCP 0.01 0.05 0.07 0.10 0.05 0.02 0.06 0.10 0.47 1.06 0.236
SC 0.18 0.26 0.39 0.41 0.21 0.22 0.13 0.26 5.54 2.26 1.156
NSM 0.16 0.29 0.34 0.40 0.19 0.17 0.11 0.19 5.44 2.16 1.105
SAC2 0.16 0.27 0.42 0.50 0.22 0.23 0.15 0.27 5.99 3.19 1.345
SAC3 0.13 0.27 0.42 0.48 0.18 0.23 0.15 0.27 5.77 3.13 1.303
SAC4 0.15 0.29 0.41 0.46 0.17 0.22 0.15 0.26 5.77 3.03 1.284
SAC5 0.15 0.29 0.40 0.46 0.17 0.21 0.15 0.26 5.77 2.98 1.276
CAC1 0.33 0.41 0.51 0.53 0.31 0.42 0.17 0.355 7.83 4.40 1.783
CAC2 0.32 0.41 0.52 0.53 0.31 0.42 0.17 0.35 7.38 4.30 1.716
CAC4 0.33 0.41 0.53 0.53 0.30 0.42 0.17 0.35 7.82 4.32 1.773
SBS31 0.18 0.29 0.30 0.36 0.17 0.30 0.15 0.19 4.78 2.75 1.105
SBS32 0.18 0.23 0.28 0.36 0.13 0.28 0.10 0.18 4.47 2.77 1.052
SBS34 0.16 0.23 0.31 0.33 0.13 0.21 0.11 0.19 4.17 2.90 1.024
SBS41 0.18 0.26 0.27 0.38 0.12 0.20 0.13 0.20 4.40 2.75 1.037
SBS42 0.12 0.24 0.29 0.30 0.12 0.18 0.10 0.16 3.95 2.76 0.964
SBS44 0.18 0.24 0.33 0.35 0.15 0.16 0.11 0.19 2.85 1.75 0.724
SSC8 0.09 0.15 0.19 0.29 0.10 0.09 0.07 0.15 3.91 1.53 0.776
SSC12 0.07 0.17 0.18 0.28 0.10 0.12 0.07 0.13 3.54 1.45 0.720
SSC16 0.10 0.15 0.23 0.26 0.10 0.10 0.06 0.14 3.11 1.22 0.640
SSC20 0.08 0.18 0.23 0.30 0.09 0.10 0.06 0.14 2.64 1.23 0.588
RVNP 0.037 0.069 0.052 0.17 0.028 0.016 0.03 0.088 0.43 0.68 0.183
BVNP 0.0038 0.050 0.052 0.096 0.015 0.0071 0.0024 0.015 0.41 0.512 0.136

Based on the results presented in Table 5, it is clear that the Basic VNP provides the mean best fitness

value in all cases. Therefore, it gives the most adequate function outputs in comparison with RVNS,

GP, and ABCP. ABCP obtains the same value as the Basic VNP only for F2. The last column of

Table 5 clearly demonstrates the superiority of VNP based approach. The order of the methods is:

BVNP (0.136); RVNP (0.183); ABCP (0.236); SSC20 (0.588).
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(iii) The best fitness value. There is another way of comparing the methods based on the output functions

of the individual, i.e., the solution with the best fitness value. This information is not available for GP.

Thus, Table 6 illustrates the generated functions obtained by the ABCP and the BVNP.

Table 6: Functions generated by Basic VNP and by ABCP

Function Generated function by Basic VNP Generated function by ABCP

F1 x3 + x2 + x x3 + x2 + x
F2 x4 + x3 + x2 + x x4 + x3 + x2 + x

F3
1.6x3+1.54x2

−056x2+1.34
+ x x5 + x4 + x3 + x2 + x

F4 1.6 · x4 + 1.26 · x3 + 0.16 · x2 + 1.19·x
1.41−x

x · e((
(1−cos(sin(x)))

sin(1)
+1)·(x+1)−1)

F5 cos(−3.15 + sin(−1.5x− 3.115)) sin(x2)cos(x)− 1
F6 sin(x) + sin(x + x2) sin(x) + sin(x + x2)
F7 log(x + 1) + log(x2 + 1) x

eh
·

F8 elog(x)·0.499 e
rlog(x)

2

F9 sin(x) + sin(y2) sin(x) + sin(y2)
F10 2sin(x)cos(y) 2sin(x)cos(y)

Note: ·h = ( 1

(1+sin(x)+
((1−cos(sin(cos(x))+1))·cos(1−sin(x))·cos(x))

( 1

sin(ecos(1))
+sin(1))

)
)

These two techniques generate seven functions equal to the original ones. For F8, the output of VNP

is F8 = elog(x)·0.499. However, it can be written as F8 ≈ e
log(x)

2 , which is equal to the target function.

VNP did not find the exact function F3, however, as can be observed from Figure 3, the generated

function has the same shape as F3.

Figure 3: Target and Generated F3 functions obtained by Basic VNP

ABCP and VNP generate a function different from function F4. The two generated functions and the

real function are given in Figure 4. The curve shape of the function generated by VNP is closer to the

curve of the target function than that by ABCP.

(iv) Running times. It is interesting to note that most of AP techniques do not include running time in

their computational results. Note that in our comparison, all the methods have the same stopping

condition, the maximum number of node evaluation (equal to 15 · 106). Using the same stopping rule,

in Table 7, we report CPU times that RVNS and BVNS spent until their best values were obtained.

Note that running times of the other methods were not available.

Table 7: Average running times in seconds for Reduced VNP and Basic VNP, within the same maximum number of node
evaluations, on Intel Core i3 330M / 2.13 GHz

Functions F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

RVNP 0.14 0.13 0.29 0.057 7.10 4.88 6.06 3.62 7.23 6.41
BVNP 5.64 10.68 4.34 18.31 16.91 30.19 73.34 46.22 82.69 66.20
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Figure 4: Target and Generated F4 functions obtained (a) by ABCP (b) by Basic VNP

The results indicate that RVNS obtains the solutions fast. However, they cannot be improved by using

additional CPU times.

In conclusion, the basic VNP provides the best results for most studied problems from the literature under

the same conditions. Our method is an effective way of improving the old VNP algorithm and creating a

new research environment in the automatic programming field. The only limitation is the manual choice of

the functional and terminal sets for both VNP and other automatic programming techniques. Furthermore,

the parameter values influence the convergence speed.

5 Conclusions

We propose a new local search in the Automatic programming (AP) area. In AP, the solution is a program

that is usually presented as a tree with a specific structure. There are two types of nodes, i.e., functional

and terminal nodes. This tree is called as an AP tree. The new local search is based on Elementary tree

transformation (ETT), a well-known transformation of a spanning tree of an undirected graph. We show

that such an adaptation of ETT on an AP tree is possible, and the steps are given in details. Moreover,

we prove that the cardinality of ETT implemented on an AP tree is n times smaller than that on a regular

tree of a graph in the worst case. To the best of our knowledge, this is the first full local search proposed in

AP area. We include ETT local search in the recent Variable neighborhood programming (VNP). Previous
version of VNP did not include local search, and only Reduced VNP algorithm existed. Thus, we propose

Basic VNP that incorporates our new ETT local search. Our Basic VNP is applied in ten separate sets of

Symbolic regression benchmark instances. It is successfully compared with three recent meta-heuristic based

approaches, i.e., Reduced VNP, Genetic Programming, and Artificial bee colony programming. Moreover,

remarkable results show clearly the greater ability of our method with respect to convergence speed as well

as computational stability.

In the future research, we can further extend to apply the current work into new challenging areas.

Moreover, it is clear that the new ETT local search could be incorporated with other meta-heuristics, such

as Genetic programming.
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[16] N. Mladenović, R. Todosijević, D. Urošević, Less is more: Basic variable neighborhood search for minimum
differential dispersion problem, Information Sciences 326 (2016) 160–171.

[17] K. Concalves-de Silva, D. Aloise, S. Xavier-de Souza, N. Mladenovic, Less is more: Shorten Nelder-Mead method
for large unconstrained optimization, Yugoslav journal of operations research (accepted).

[18] U. Stadtmüller, Asymptotic properties of nonparametric curve estimates, Periodica Mathematica Hungarica
17 (2) (1986) 83–108.

[19] B. M. Brown, S. X. Chen, Beta-Bernstein Smoothing for Regression Curves with Compact Support, Scandinavian
Journal of Statistics 26 (1) (1999) 47–59.

[20] J. H. Friedman, Multivariate Adaptive Regression Splines, The Annals of Statistics 19 (1) (1991) 1–67.

[21] C. De Boor, A practical guide to splines : with 32 figures, Springer, 2001.

[22] N. Q. Uy, N. X. Hoai, M. O’Neill, R. I. McKay, E. Galván-López, Semantically-based crossover in genetic
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