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Milan Dražić b
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Panos M. Pardalos d

a School of Management, Hefei University of Tech-
nology; Key Laboratory of Process Optimization and
Intelligent Decision-making of Ministry of Education,
Hefei, China

b Faculty of Mathematics, University of Belgrade,
Serbia

c GERAD & Mathematical Institute, Serbian
Academy of Sciences and Arts, Serbia

d Center for Applied Optimization, Department of
Industrial and Systems Engineering, University of
Florida, Gainesville, USA

feiyijun.ufl@gmail.com

lolaz@sezampro.rs

mdrazic@sezampro.rs

nenad@mi.sanu.ac.rs

pardalos@ufl.edu

July 2018
Les Cahiers du GERAD
G–2018–52
Copyright c© 2018 GERAD, Pei, Z. Dražić, M.Dražić, Mladenović, Pardalos

Les textes publiés dans la série des rapports de recherche Les Cahiers du
GERAD n’engagent que la responsabilité de leurs auteurs. Les auteurs
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Abstract: In this paper we propose C-VNS (Continuous variable neighborhood search) method for finding
all solutions to a nonlinear system of equations (NSE). We transform the NSE problem into an equivalent
optimization problem, and we use a new objective function that allows us to find all zeros. Instead of the
usual sum-of-squares objective function, our objective function is presented as the sum of absolute values.
Theoretical investigation confirms that our objective function provides more accurate solutions, irrespective of
what optimization method is used. We sacrifice the smoothness property to increase precision. Computational
analysis on standard test instances shows that our C-VNS based method is more precise and much faster
than the two recent methods from the literature we compared with. Moreover, similar conclusions are derived
after comparing our C-VNS based heuristic with many other methods from the literature.
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1 Introduction

Problem formulation. Consider the problem of finding solutions to the nonlinear system of equations (NSE)

f1(x) = 0

f2(x) = 0

· · · (1)

fn(x) = 0

where x ∈ S = [a1, b1] × [a2, b2] × · · · × [an, bn] ⊂ Rn and f1, f2, . . . fn are nonlinear real valued continuous

functions on S. The number of solutions to a NSE problem can be finite, infinite, or there can be no solution.

To solve the NSE problem, a number of transformation techniques have been presented in the literature.

They can be classified into three categories: (i) single-objective-based optimization methods; (ii) constrained-

optimization-based techniques; and (iii) multi-objective-based optimization techniques (Gong et al. 2017).

In the first category, which we use in this paper, NSE is usually transformed into a single-objective

optimization problem by introducing the function:

F0(x) =

n∑
i=1

|fi(x)|p , p > 0 . (2)

By definition, it holds that F0(x) ≥ 0. Thus, x∗ ∈ N(x) is the solution to the system (1) if and only if

F0(x∗) = 0, i.e., x∗ is a global minimizer of F0(x) in S with F0(x∗) = 0. Most often, the used values of p are

1 and 2, i.e.,

min
x
F0(x) =

n∑
i=1

|fi(x)| (3)

or

min
x
F0(x) =

n∑
i=1

f2i (x) (4)

The motivation for finding all solutions is problem specific, sometimes it is important and sometimes

irrelevant. In many cases, decision makers need to have a set of alternative solutions. For example, in

some data analysis problems, we need solutions where most decision variables are zero. Moreover, from

the mathematical point of view, finding the solution to the NSE, means finding all vectors that satisfy all

equalities. In this paper we are trying to find all solutions. To make it easier, it is possible to add a penalty

function to F0(x) (see for example (Hirsch et al. 2009)), and the aim is not to allow finding the solutions

already found in previous iterations, i.e., F0(x) is modified in each iteration.

Complexity. From the complexity point of view, the problem of solving NSE is NP-hard, even when the

equations are multi-variable polynomials. For example, the n-dimensional 0-1 knapsack problem, which is

known to be NP-hard, can be easily formulated as a system of n+1 equations: 0-1 condition for each variable

xj can be presented as x2j − xj = 0. Therefore, many existing approaches for solving nonlinear systems of

equations rely on powerful heuristics. These heuristics may find multiple solutions but may fail to recognize

when the system is infeasible.

Some applications. NSE is a type of challenging and non-trivial problem in many real-world applications,

such as engineered materials, chemical processes, electronic circuits, petroleum geological prospecting, and

computational mechanics (Mo et al. 2009, Pourjafari and Mojallali 2012). Applications in engineering include

describing the space of possible configurations of robot structure and solving the forward kinematic problem

of robot kinematics application (Cox et al. 2007, Hirsch et al. 2007, Lafmejani et al. 2015), settling the double

retrograde vaporization problem in chemical engineering (Henderson et al. 2010, Sacco and Henderson 2011),

and identifying geolocation area in Global Position System (Paláncz et al. 2008, 2010, Romero and Mason

2015).
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Solution techniques. For solving NSE as an optimization problem, we know the best objective function value

in advance. Indeed, the solution x∗ that satisfies F (x∗) = 0 is optimum, and there is no need to prove this in

a complete enumeration scheme. This fact is the main reason to have more than twenty heuristic approaches

proposed in the literature, which additionally clearly indicates that exact solution methods cannot be the

right choice for solving the NSE problem.

There are many techniques for finding just one solution to the given system, such as Newton and quasi-

Newton methods (Luo et al. 2008, Buhmiler et al. 2010, Al-Baali et al. 2014), Newton-like method (González-

Lima and de Oca 2009, Argyros 2009, Sharma and Guha 2016, Krejić et al. 2007), Newton-type methods

(Darvishi and Barati 2007, Fang et al. 2009, Fischer et al. 2016), and iterative methods (Awawdeh 2010,

Cordero et al. 2012, Wang and Meng 2013, Shoja et al. 2017). To get the insight into a presentation of global

optimization approaches for enclosing all solutions to constrained systems of nonlinear equations, the reader

is directed to Soares (2013) and Henderson et al. (2017).

In Hirsch et al. (2009), Continuous Greedy Randomized Adaptive Search Procedures (C-GRASP) were

utilized to obtain all roots of NSE. This algorithm was a multi-start procedure where the initial solution

for local improvement was constructed in a greedy randomized fashion. Based on a multiplicative type

penalty merit function, Ramadas et al. (2015) addressed the problem of computing multiple roots of NSE

by designing a repulsion algorithm that invokes the Nelder-Mead local search algorithm and a penalty-type

merit function. Also, they improved this algorithm by combining the repulsion algorithm with harmony

search (HS) (Ramadas et al. 2014). In addition, particle swarm optimization (PSO) algorithms have shown

good performance when solving such problems. Mo et al. (2009) transformed the NSE problem into a

high-dimensional optimization problem, and retrofitted PSO with chaos search, Newton-type methods, and

Conjugate Direction method (CD). Jaberipour et al. (2011) proposed PSO to cope with NSE, where each

particle was updated to avoid getting trapped into local minima, while Turgut et al. (2014) applied different

chaotic maps to enhance the effectiveness and robustness of PSO.

In recent years, much attention has been drawn to the application of multi-objective evolutionary algo-

rithms (MOEA). Song et al. (2015) transformed NSE into a bi-objective optimization problem and handled

it with MOEA. Qin et al. (2015) switched NSE into a multi-objective optimization problem (MOP) and used

MOEA to solve it. Gong et al. (2017) converted NSE into a weighted bi-objective optimization problem

and suggested an adaptive multi-objective differential evolution (DE). In addition, Genetic algorithms (GA)

(Mhetre 2012, Pourrajabian et al. 2013, Silva et al. 2014), artificial bee colony algorithms (ABC) (Jia and

He 2012), cuckoo optimization algorithms (COA) (Abdollahi et al. 2016), Invasive weed optimization (IWO)

(Pourjafari and Mojallali 2012, Zhou et al. 2013), Imperialist competitive algorithms (ICA) (Abdollahi et al.

2013), and fuzzy adaptive simulated annealing algorithm (fuzzy-ASA) (Oliveira and Petraglia 2013) have

also been utilized to deal with NSE. Tremendous effort has been made to solve NSE. However, most of the

existing methods cannot make a good balance between convergence speed and solution quality. Hence, more

efficient algorithms should be designed to solve the problem.

Contribution. The following new results are presented in this paper: (i) For the first time the C-VNS based

heuristic is applied to solve NSE; (ii) It is theoretically and empirically shown how the choice of reformulation

to the equivalent optimization problem, i.e., the choice of an objective function, influences the precision of

the final solutions; (iii) Comparative analysis shows that our approach provides more accurate solutions in

much less time than the recent heuristics based on Continuous Greedy randomized adaptive search procedure

(C-GRASP) (Hirsch et al. 2009) and harmony search (HS) (Ramadas and Fernandes 2013). Moreover, similar

conclusions regarding effectiveness and efficiency are derived after comparison with more than ten methods

from the literature.

Outline of the paper. In the next section, we discuss the use of different objective functions and penalties

to get all solutions of the system (1) if such solutions are finite. In Section 3, we give the rules of our C-VNS

based heuristics for solving NSE. In Section 4, computational analysis is presented, while in Section 5, we

conclude the paper and propose possible future research directions.
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2 Accuracy of the approximate solution

In this section, we first discuss accuracy in the vicinity of one solution of the objective function (2), and

then the accuracy of the objective function is investigated for finding all solutions of NSE. Several auxiliary

obvious estimates, important for the error analysis, are summarized in the next lemmas. The results from

this section could be used for any NSE solution method.

2.1 Accuracy in finding one solution of NSE

In the following, a few results on accuracy of the approximate solution of NSE are presented. Let x∗ denote

an exact solution of NSE (1), let x = x∗+d be an approximate solution, and N(x∗) be a neighborhood of x∗.

The Euclidean norm ‖d‖ represents the error of an approximate solution. The solution x∗ is called single if

∂fi(x
∗)/∂xj 6= 0 for some 1 ≤ i, j ≤ n. Otherwise, if ∂fi(x

∗)/∂xj = 0 for all 1 ≤ i, j ≤ n, then the solution

is called double or multiple when all derivatives of higher order vanish in x∗, too.

The objective function to be minimized is given by

F0(x) =

n∑
i=1

|fi(x)|p , p > 0 .

Lemma 1 Let functions fi(x), 1 ≤ i ≤ n, be Lipschitz continuous in the neighborhood N(x∗) with Lipschitz

constant L.Then

||d|| ≥ γ · (F0(x))1/p , (5)

where constant γ depends on n, p, and L.

Proof. As a consequence of the Lipschitz continuity of fi(x)

|fi(x)| = |fi(x∗ + d)− fi(x∗)| ≤ L||d|| ,

and

F0(x) =

n∑
i=1

|fi(x)|p ≤ nLp||d||p ,

which leads to (5) with γ = (n1/pL)−1.

Lemma 2 Let functions fi(x) ∈ C1(N(x∗)), 1 ≤ i ≤ n, be smooth functions in N(x∗). Then, the inequal-

ity (5) holds.

Proof. Functions fi(x) ∈ C1(N(x∗)) have bounded first derivatives, and consequently, they are Lipschitz

continuous in N(x∗) and Lemma 1 can be applied.

Lemma 3 Let p = 1, functions fi(x) ∈ C2(N(x∗)), 1 ≤ i ≤ n, and ∂fi(x
∗)/∂xj = 0 for all 1 ≤ i, j ≤ n.

Then,

‖d‖ ≥ γ · (F0(x))1/2 .

Proof. From the Taylor expansion

fi(x) = fi(x
∗ + d) = f(x∗) +∇fi · d+

1

2
dT · ∇2fi(x̄) · d ,

taking into account that fi(x
∗) = 0 and ∂fi(x

∗)/∂xj = 0, and since the second order derivatives are bounded

in N(x∗),

F0(x) =

n∑
i=1

|fi(x)| ≤ n · γ · ‖d‖2 ,

which proves the claim.
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Lemma 4 Let p = 2, functions fi(x) ∈ C2(N(x∗)), 1 ≤ i ≤ n. Then

‖d‖ ≥ γ · (F0(x))1/2 .

Proof. The original system is equivalent to the system gi(x) = 0, 1 ≤ i ≤ n, where gi(x) = (fi(x))2. Since

∂gi(x
∗)/∂xj = 2fi(x

∗)∂fi(x
∗)/∂xj = 0, the result follows from Lemma 3, applied to the second system.

Lemma 5 Let p = 2, functions fi(x) ∈ C4(N(x∗)), 1 ≤ i ≤ n, and ∂fi(x
∗)/∂xj = 0 for all 1 ≤ i, j ≤ n.

Then

‖d‖ ≥ γ · (F0(x))1/4 .

Proof. For the function gi(x) = (fi(x))2, partial derivatives up to the third order are

∂gi
∂xj

= 2 fi(x)
∂fi
∂xj

,

∂2gi
∂xj∂xk

= 2
∂fi
∂xk

∂fi
∂xj

+ 2 fi(x)
∂2fi

∂xj∂xk
,

∂3gi
∂xj∂xk∂xm

= 2
∂2fi

∂xk∂xm

∂fi
∂xj

+ 2
∂fi
∂xk

∂2fi
∂xj∂xm

+ 2
∂fi
∂xm

∂2fi
∂xj∂xk

+ 2 fi(x)
∂3fi

∂xj∂xk∂xm
.

Since fi(x
∗) = 0 and ∂fi(x

∗)/∂xj = 0 for all 1 ≤ i, j ≤ n, all derivatives of gi(x) up to the third order vanish

in x∗. As the fourth derivatives of gi(x) are bounded in N(x∗), it follows from the Taylor expansion that

|gi(x)| ≤ γ1‖d‖4.

Finally,

F0(x) =

n∑
i=1

(fi(x))2 =

n∑
i=1

|gi(x)| ≤ n · γ1‖d‖4.

The result of this lemma follows by setting γ = (n · γ1)−
1
4 .

Lemmas 1–5 show how the value of the objective function is related to the accuracy of the approximate

solution. The most obvious stopping criterion in optimization algorithms is F0(x) < δ, for some sufficiently

small δ > 0. It turns out that the error of the solution ‖d‖ is dependent not only on δ, but also on the

value of p, and the multiplicity of the solution. For the same value of δ, the error ‖d‖ is significantly greater

for p = 2 than that for p = 1. Also, for the same δ and p, the error is significantly greater for double and

multiple roots than for the single root. Based on these relationships, one can choose the appropriate value

of δ for the desired approximate solution error.

2.2 Accuracy in finding all roots

Application of any heuristic method for solving the continuous global optimization problem (2) can produce

an approximate solution to the system (1) if the objective function is sufficiently small. If there are many

solutions, this approach is not adequate since there is no guarantee for finding all solutions. To overcome this

problem, we modify the objective function in the neighborhood of the found solutions. Suppose that we have

found solutions x1, x2, . . . , xk, k ≥ 0. For finding the next solution, if there is one, we minimize the function:

F (x) = F0(x) + Fk(x) =

n∑
i=1

|fi(x)|p +

k∑
j=1

a ϕ

(
‖x− xj‖

ρ

)
, (6)

where a and ρ are some positive values, and ϕ(x) is a continuous real function, positive for |x| < 1 and zero

elsewhere. Throughout the paper, it is assumed that ϕ(x) = 0 for |x| ≥ 1.

If the value of the global minimum is sufficiently small, i.e., F (x∗) < δ, then another approximate solution

xk+1 = x∗ is found; the value of k is increased by 1, and the global optimization search for more solutions
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is repeated. Otherwise, if F (x∗) ≥ δ, then the algorithm stops because there are no more approximate

solutions.

The function ϕ(x) should be calculated fast and has to be smooth enough for the local optimizer used in

C-VNS, or for any other local search based method. Some of the examples are given below:

(i) ϕ(x) = 1− |x| for |x| < 1, 0 elsewhere;

(ii) ϕ(x) = (1− x2)2 for |x| < 1, 0 elsewhere;

(iii) ϕ(x) = (1 + cos(πx))/2 for |x| < 1, 0 elsewhere;

(iv) ϕ(x) = exp(− x2

1−x2 ) for |x| < 1, 0 elsewhere.

In case (i), the function ϕ(x) is continuous, but not smooth; in cases (ii) and (iii) it has continuous first

derivative but discontinuous second derivative; and in case (iv), it is infinitely differentiable. The first two

functions can be calculated faster than the last two. In the experimental results given in the next section,

we use those two functions.

Note that the function (6) is not convex, since any penalty function ϕ(x) is obviously non-convex. It

could be concave, but as it is not important for our global optimization method, we will illustrate it later.

Moreover, the non-convexity follows directly from the fact that there could be many solutions.

Values of a and ρ influence the behavior of the local optimizer near the found solutions. The term

aϕ(||x − xj ||/ρ) acts like a repealer in ρ neighborhood of xj . For larger values of a and ρ, this repealer is

stronger and the local minimization is directed away from the basin of F (x) near xj , so it is more likely to

find another solution. The drawback of large values of ρ is that we cannot find all of the solutions close to

each other. In this case, decreasing ρ and a can solve the problem, but a local minimizer is more likely to be

stuck near the found solutions. For larger values of p, or in the case of double or multiple solutions, or for

smaller values of ρ, values of F (x) can be smaller than a given tolerance for points outside the ρ-neighborhood

of the solution, so false solutions may be detected. The following property from (6) holds.

Lemma 6 If the system (1) has exactly K solutions and the value of ρ from (6) is smaller than the minimal

distance between the solutions, applying global optimization repeatedly on the function (6) guarantees finding

all the solutions.

Proof. Proof. It is clear that F (x) ≥ 0, F (xj) > 0, j = 1, . . . , k and F (x∗) = 0 for all solutions of (1)

are at a distance at least ρ from all known solutions x1, x2, . . . , xk. The result holds from the fact that, by

definition, ϕ(x) = 0 for |x| ≥ 1. Indeed, ϕ(‖x− xj‖/ρ) = 0, since ‖x− xj‖/ρ > 1, for all j = 1, .., k.

Note that the values of a and ρ can vary in this iterative process of solving K times the minimization

problem (6).

The three parameters, p, a, and ρ, and the choice of the function ϕ(x) can influence the performance of

the method for finding all solutions. Parameter p is usually set to 1 or 2.

Lemma 7 The following properties are obvious: (i) In the case of smooth functions fi(x), i = 1, . . . , n, F (x)

will be smooth only for p > 1 and for smooth ϕ(x); (ii) In the case of analytic fi(x), i = 1, . . . , n and p = 2,

function F (x) is not analytic for k ≥ 1 even for the infinitely smooth ϕ(x).

Hence, higher order methods may not perform as expected in the vicinity of found solutions. In the small

neighborhood of the solution, for ||x − x∗|| ∼ ε, in the case of a single solution, we expect that |fi(x)| ∼ ε.

However, it is not always the case.

Theorem 1 In the case of a single solution, if all functions fi(x), i = 1, .., n are smooth and if F0(x) < δ

for sufficiently small real δ > 0, then the error of the approximate solution of function (2) is proportional to

ε = δ
1
p .
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Proof. Since δ is sufficiently small, all terms in the second sum in (6) are equal to 0, so F (x) = F0(x) in

some small neighborhood of the approximate solution. The result then holds directly from Lemma 2 and

Lemma 3.

For the case of a double solution, the following result holds.

Theorem 2 In the case of a double solution, if all functions fi(x), i = 1, .., n are smooth and if F (x) < δ,

the error of the approximate solution is proportional to ε = δ
1
2p .

Proof. The proof is analog to the proof of the previous theorem, except using Lemma 3 and Lemma 5 at

the end.

For the larger values of p, more stringent tolerances for global optimization are required for the same

acceptable solution error. Usual choices are p = 1, where a non-differentiable optimizer should be used, and

p = 2 where a gradient or higher order methods can be used if functions fi(x) are smooth enough. Note that

the convergence speed of higher order methods is reduced in the case of double or multiple solutions.

3 Continuous variable neighborhood search for solving NSE

In this section we first give a general pseudo-code for C-VNS, and then its implementing way is illustrated

for solving NSE. Finally, we discuss details of the new algorithm for finding all solutions, which is embedded

into C-VNS. It uses theoretical results from the previous section.

3.1 Continuous VNS

The VNS meta-heuristic is well-established in the literature. It was primarily designed for solving hard

discrete problems (Mladenović and Hansen 1997, Hansen and Mladenović 2001, Hansen et al. 2017), but it is

also very effective in continuous global optimization problems (Kovačević-Vujčić et al. 2004, Mladenović et al.

2008, Dražić et al. 2008, Carrizosa et al. 2012). The basic idea is to define a set of neighborhood structures

Nk, k = 1, . . . , kmax with the corresponding random number distributions that can be used in a systematic

way to search the solution space. The C-VNS algorithm can be summarized as

Algorithm C-VNS

/* Initialization */
01 Select the set of neighborhood structures Nk, k = 1, . . . , kmax

with the corresponding random distributions.
02 Choose an arbitrary initial point x ∈ S
03 Set x∗ ← x, F ∗ ← F (x)

/* Main loop */

04 repeat the following steps until the stopping condition is met

05 Set k ← 1
06 repeat the following steps until k > kmax

07 Shake: Generate at random a point y ∈ Nk(x∗)
08 Apply some local search method from y to obtain a local

minimum y′

09 if F (y′) < F ∗ then
10 Set x∗ ← y′, F ∗ ← F (y′) and goto 05

11 endif
12 Set k ← k + 1
13 end
14 end
15 Stop. Point x∗ is an approximate solution of the problem.

The usual neighborhoods for continuous optimization are defined by balls in `1, `2, or `∞ metrics with

increasing set of predefined radii r1, . . . , rkmax
. More precisely, the following parameter values should be

defined in C-VNS: (i) a set of neighborhood structures, where each neighborhood is defined by the ordered

pair (metric, radius); (ii) a distribution, or a way to generate a random point in the neighborhood defined

by metric and radius; (iii) the total number of neighborhoods, kmax; (iv) a local search routine.
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3.2 Less is more approach for solving NSE by C-VNS

In our C-VNS based heuristic for solving NSE, we transform the system into a single objective function (2).

For finding all solutions, we use the objective function (6). C-VNS for solving NSE is integrated into the

package GLOBC, which is a test platform for numerical experiments with C-VNS (Dražić et al. 2006).

GLOBC implements various neighborhood structures and random distributions, and can use several local

minimizers for smooth and non-smooth optimization (Mladenović et al. 2008).

In implementation of C-VNS, we follow the principles of the recent Less is more approach (LIMA) (Mlade-

nović et al. 2016, Costa et al. 2017, Gonçalves et al. 2018). The basic idea of LIMA is to use the minimum

number of ingredients in building a search method, such that it provides better results than results obtained

by the currently best from the literature. Thus, in developing C-VNS for the NSE, we apply the minimalism

principle in choosing some, among various options provided by C-VNS. As discussed earlier, the optimal

value for solving NSE is equal to zero, and therefore, it is used as a stopping condition F ∗ ≤ tol for C-VNS,

besides the time limit. Let

Bi = {x | ||x− x∗||l∞ ≤ ri}

denote an l∞ ball centered at the current best point x∗, with radii ri. Radii are automatically generated to

be equally spaced so that Bkmax
covers the entire solution space S. Note that S represents a hypercube. The

neighborhoods Nk are taken as:

N1 = B1 ∩ S, Nk = (Bk \Bk−1) ∩ S, k = 2, . . . , kmax.

C-VNS was set to use kmax = 5. In all tests, uniform random distribution in Nk and, unless otherwise stated,

the Nelder-Mead local optimizer were used. Therefore, in order to make our method robust and user-friendly,

we keep the number of C-VNS parameters at minimum, i.e., the same values of parameters are used in all

tests, without fine tuning: (i) `∞ norm with automatic generation of radii, (ii) uniform distribution; (iii)

kmax = 5, and (iv) Nelder-Mead local search. Let us note again that we follow the LIMA to get the minimum

number of ingredients in the search.

3.3 Finding all solutions

A new module, based on presented algorithm for finding multiple solutions, is developed in order to handle

multiple solutions and dynamical change of penalty parameters in function (6). We now present its pseudo-

code.

Algorithm for finding multiple solutions of (1) by C-VNS

/* Initialization */
01 Select p, ρ0, ρmin, a0, qρ < 1, qa < 1, tol, K and function ϕ(x)
02 Set k = 0, ρ← ρ0, a← a0

/* Main loop */

03 while k < K and ρ ≥ ρmin

04 Perform global optimization for function (6) by C-VNS
resulting with x∗ as the best approximation of optimal point

05 if F (x∗) ≤ tol then
06 Set k ← k + 1
07 Set sol(k) = x∗

08 else
09 Set ρ← qρ · ρ
10 Set a← qa · a
11 endif
12 endwhile
13 Stop. Points sol(i), i = 1, . . . , k are approximate solutions of (1).

C-VNS is used for finding the minimum of function (2). One of the stopping conditions for C-VNS is

F (x) ≤ tol. If this condition is true, a new approximate solution of NSE is found, the function F (x) is

modified, and a new C-VNS optimization starts in order to find the next solution. In case when F (x) > tol

is satisfied, no additional solution is found, and the parameter ρ is reduced to enable finding the solutions

closer to the previously found solutions. When ρ becomes smaller than ρmin, or maximum number K of

solutions is found, the algorithm stops.
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Additional parameters are chosen as follows. The maximum number of solutions to search for was set

to K =20, unless otherwise stated. For a given tolerance tol, C-VNS terminates with a new approximate

system solution x, if F (x) ≤ tol. Unless otherwise stated, tol = 10−7 is used in all examples.

Obviously, fitting different neighborhood structures, different construction of radii, and different distri-

butions for finding all solutions, for each particular problem, could improve the efficiency of our C-VNS for

NSE. However, our main goal was to present the effective, efficient, robust, and user-friendly algorithm for

finding all solutions.

4 Computational results

The effectiveness and efficiency of C-VNS in finding the multiple solutions of the system (1) are illustrated in

this section. We first describe test problems in subsection 4.1, and the results are analyzed in subsection 4.2.

Next, we compare our C-VNS with C-GRASP (Hirsch et al. 2009) and Harmony search (Ramadas and

Fernandes 2013) in subsections 4.3 and 4.4. The reasons why we choose these two benchmark methods

are: (i) they are both recent and based on some meta-heuristic principles, as our C-VNS; (ii) they both

use many test instances available on the web; (iii) computational results provided included detailed analysis.

Subsequently, the problems from Floudas et al. (2013) are particularly tested by our C-VNS in subsection 4.5.

Then, the gradient type local minimizers for 1 < p ≤ 2 are tested in subsection 4.6, and the problem with

arbitrarily large variables is tested in subsection 4.7. Moreover, in subsection 4.8, we compare the performance

of our C-VNS with several other methods from the literature.

In order to make use of our method on test instances from this paper public, we made the executable

version of GLOBC available at http://www.mi.sanu.ac.rs/~nenad/GLOBC/. All test instances from this

paper are already coded in executed version, and can be recognized by their names. Configuration files

with parameters for each test problem are also included, with short instruction how to run examples. More

information on parameters in configuration files user can find in Dražić et al. (2006).

4.1 Test problems

The following test problems are taken from Hirsch et al. (2009) and Ramadas and Fernandes (2013).

4.1.1 Reactor problem

This problem deals with a model of two continuous non-adiabatic stirred tank reactors with a recycle ratio

parameter R.

f1(x1, x2) = (1−R)

(
D

10(1 + β1)
− x1

)
exp

(
10x1

1 + 10x1

γ

)
− x1 (7)

f2(x1, x2) = x1 − (1 + β2)x2 + (1−R)

(
D

10
− β1x1 − (1 + β2)x2

)
exp

(
10x2

1 + 10x2

γ

)

The parameters γ,D, β1, and β2 are set to 1000, 22, 2, and 2 respectively, and x1, x2 ∈ [0, 1]. Depending on

the value of the parameter R, the system has variable number of solutions, presented in Table 1, as well as

the minimal Euclidean solution distances.

http://www.mi.sanu.ac.rs/~nenad/GLOBC/
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Table 1: Number of solutions of system (7)

.

# of solution # of solution
R solutions distance R solutions distance

0.935 1 0.965 5 0.2528
0.940 1 0.970 5 0.2290
0.9409858 1 0.975 5 0.3098
0.9409859 3 0.0005 0.980 5 0.2530
0.945 3 0.1329 0.985 5 0.1521
0.9472741 3 0.1506 0.9879306 5 0.0009
0.9472742 5 0.0003 0.9879307 3 0.0972
0.950 5 0.0918 0.9884905 3 0.0002
0.9559233 5 0.1669 0.9884906 1
0.9559234 7 0.0006 0.990 1
0.960 7 0.1339 0.995 1
0.9615703 7 0.0008
0.9615704 5 0.2216

4.1.2 Steering problem

This is a three-dimensional problem for an automotive steering given by the system

fi(x1, x2, x3) = [Ei(x2 sin(ψi)− x3)− Fi(x2 sin(ψi)− x3)]2

+ [Fi(1 + x2 cos(ψi))− Ei(x2 cos(ψi)− 1)]2 (8)

− [(1 + x2 cos(ψi))(x+ 2 sin(ψi)− x3)x1

− (x2 sin(ψi)− x3)(x2 cos(ψi)− x3)x1]2, i = 1, 2, 3

where

Ei = x2(cos(φi)− cos(φ0))− x2x3(sin(φi)− sin(φ0))− (x2 sin(φi)− x3)x1

Fi = −x2 cos(ψi)− x2x3 sin(ψi) + x2 cos(ψ0) + x1x3 + (x3 − x1)x2 sin(ψ0)

and the values of angles φi and ψi are given in Table 2. In the domain [0.06, 1]3, this problem has two

solutions.

Table 2: Angular data (in radians) for Steering problem

i ψi φi

0 1.3954170041747090114 1.7461756494150842271
1 1.7444828545735749268 2.0364691127919609051
2 2.0656234369405315689 2.2390977868265978920
3 2.4600678478912500533 2.4600678409809344550

4.1.3 A non-smooth problem

This illustrative non-smooth problem is reported in Ramadas and Fernandes (2013) to be not an easy task

for some standard minimizers as MATLAB “fsolve” function.

f1(x1, x2) = x21 − x22 (9)

f2(x1, x2) = 1− |x1 − x2|

The system has two solutions: (0.5,−0.5) and (−0.5, 0.5). The domain for the variables is set to [−10, 10]2.

4.1.4 Merlet problem

Merlet problem is defined by the system

f1(x1, x2) = − sin(x1) cos(x2)− 2 cos(x1) sin(x2) (10)

f2(x1, x2) = − cos(x1) sin(x2)− 2 sin(x1) cos(x2)

where 0 ≤ xi ≤ 2π. In this domain, the system has 13 solutions.
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4.1.5 Floudas problem

Floudas problem is defined by the system

f1(x1, x2) = 0.5 sin(x1x2)− 0.25
x2
π
− 0.5x1 (11)

f2(x1, x2) =

(
1− 0.25

π

)(
e2x1 − e

)
+ e

x2
π
− 2ex1

where 0.25 ≤ x1 ≤ 1 and 1.5 ≤ x2 ≤ 2π. In this domain, the system has two solutions.

4.1.6 Effati-Grosan-1 problem

This test problem is defined by the system

f1(x1, x2) = cos(2x1)− cos(2x2)− 0.4 (12)

f2(x1, x2) = 2(x2 − x1) + sin(2x2)− sin(2x1)− 1.2

where −a ≤ xi ≤ a with a variable parameter a. In Turgut et al. (2014), one solution is reported for a = 2,

13 solutions for a = 10, and 127 solutions for a = 100.

4.1.7 Effati-Grosan-2 problem

This test problem is defined by the system

f1(x1, x2) = ex1 + x1x2 − 1 (13)

f2(x1, x2) = sin(x1x2) + x1 + x2 − 1

where −a ≤ xi ≤ a with a variable parameter a. In Turgut et al. (2014), one solution is reported for a = 2,

a = 10, and a = 100. The solution is point (0, 1).

4.2 Test results

All experimental results were obtained on Intel Core i7-6700 3.4 GHz processor with 3.35 GB RAM running

Windows 7 32bit.

The new method presented in this paper was integrated into the package GLOBC, a test platform for nu-
merical experiments with C-VNS (Mladenović et al. (2008)). It is coded in ANSI C computer language. Used

parameter values were explained earlier in section 3. In addition, the time when the last approximate solution

was found is recorded, as well as the number of function evaluations (computer effort). The experiment is

repeated 100 times with different random seeds, and the average values for 100 runs are presented.

4.2.1 Reactor problem

For the reactor problem, the parameters were set to:

tol = 10−7, ρ0 = 0.01, ρmin = 0.001, qρ = 0.1, a0 = 1, qa = 0.5.

The results are presented in Table 3.

For different values of parameter R, the number of solutions of the system is presented in the second

column. For each value of R, three possible objective functions F (x) in (6) are considered:

(1) p = 1, ϕ(x) = 1− |x|; (2) p = 2, ϕ(x) = (1− x2)2; (3) p = 2, ϕ(x) = exp(−x).

For each case, 100 runs were executed, and the average number of found solutions, the average time when

the last solution was found, and the number of function evaluations were reported. Next, we analyzed the

results in more details, mostly to illustrate, and verify the theory from Section 3.
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Table 3: Experimental results for Reactor problem

# p = 1, ϕ(x) = 1− x p = 2, ϕ(x) = (1− x2)2 p = 2, ϕ(x) = exp(−x)

R sol sol time comp.eff. sol time comp.eff. sol time comp.eff.

0.935 1 1 < 1ms 1364 1 < 1ms 649 1 < 1ms 649
0.940 1 1 < 1ms 1443 1 < 1ms 609 1 < 1ms 609
0.9409858 1 2 0.001 1818 13.20 0.132 523200 11.80 0.198 518228
0.9409859 3 2 < 1ms 1387 9.74 0.082 342172 11.36 0.120 495416
0.941 3 3 0.025 125154 13.52 0.122 492403 11.62 0.120 493829
0.942 3 3 0.002 8107 6.50 0.058 265471 7.01 0.070 314632
0.943 3 3 0.002 11049 5.84 0.052 240496 5.84 0.067 307757
0.944 3 3 0.006 31124 5.03 0.056 259121 4.96 0.062 289681
0.945 3 3 0.006 30402 4.94 0.060 278547 4.86 0.068 315032
0.946 3 3 0.012 61056 3.38 0.022 106321 3.86 0.052 247542
0.947 3 3 0.002 7664 4.05 0.043 197776 4.01 0.047 216739
0.9472741 3 3 0.002 7766 14.34 0.050 201212 14.5 0.055 221165
0.9472742 5 4 0.011 53098 14.41 0.050 204057 14.56 0.056 223051
0.948 5 5 0.018 81210 7.66 0.046 193972 7.42 0.050 212451
0.949 5 5 0.003 15023 7.01 0.046 194072 7.03 0.053 225564
0.950 5 5 0.005 22140 5.67 0.025 107341 5.51 0.023 98000
0.951 5 5 0.005 24464 5.33 0.016 66210 5.48 0.024 103602
0.952 5 5 0.009 41876 5.31 0.019 80632 6.24 0.018 78641
0.953 5 5 0.006 25364 5.21 0.016 67856 5.18 0.016 71457
0.954 5 5 0.002 10745 5.10 0.006 24749 5.53 0.031 135072
0.955 5 5 0.009 43527 5.01 0.002 7767 5.05 0.004 16817
0.9559233 5 6 0.010 44519 13.80 0.046 177422 13.76 0.053 205072
0.9559234 7 6 0.008 36452 13.89 0.047 180104 14.00 0.055 211253
0.956 7 7 0.013 51528 12.69 0.049 190598 12.35 0.057 219064
0.957 7 7 0.011 47800 7.03 0.007 28413 7 0.006 25822
0.958 7 7 0.029 124790 7.08 0.014 57930 7.01 0.012 49132
0.959 7 7 0.032 138374 7 0.018 76115 7 0.022 91034
0.960 7 7 0.014 60275 7 0.008 31183 7 0.007 31080
0.961 7 7 0.007 30628 7.79 0.042 171440 7.73 0.049 196013
0.9615703 7 6 0.007 31143 14.30 0.08 303903 14.97 0.099 367160
0.9615704 5 5 0.004 19021 14.34 0.080 305326 14.94 0.106 386703
0.962 5 5 0.008 38184 5 0.002 9887 5 0.003 11288
0.965 5 5 0.009 41242 5 0.004 16137 5 0.004 18646
0.970 5 5 0.006 27189 5 0.002 10262 5 0.002 10895
0.975 5 5 0.004 17493 5 0.002 8636 5 0.002 10827
0.980 5 5 0.004 16767 5 0.002 9613 5 0.003 12222
0.985 5 5 0.003 14465 5 0.002 9613 5 0.001 4350
0.986 5 5 0.002 6886 5 0.002 8299 5 0.002 9426
0.987 5 5 0.003 8889 5.09 0.007 28594 5.23 0.018 75273
0.9879306 5 4 0.001 6512 12.89 0.090 351595 12.57 0.104 399692
0.9879307 3 3 0.001 6887 12.89 0.090 350093 12.59 0.106 410065
0.988 3 3 0.002 7267 3 0.001 3488 3 0.001 4621
0.9884905 3 2 0.001 3698 6.96 0.034 155847 7.05 0.038 168540
0.9884906 1 1 < 1ms 600 6.96 0.034 155476 6.88 0.037 168164
0.989 1 1 < 1ms 621 1 < 1ms 393 1 < 1ms 393
0.990 1 1 < 1ms 608 1 < 1ms 427 1 < 1ms 428
0.995 1 1 < 1ms 201 1 < 1ms 69 1 < 1ms 69

Analysis of the results. As it can be seen from Table 1, for R = 0.9409858, R = 0.9472741, R = 0.9559233,

R = 0.9615703, R = 0.9879306, and R = 0.9884905 the system has double roots. Thus, when R is near

these values, for x in δ neighborhood of the solution, according to Lemmas 1–5, we expect that F (x) ∼ δ2

for p = 1 and F (x) ∼ δ4 for p = 2. For values of R not near these values, we expect F (x) ∼ δ for p = 1

and F (x) ∼ δ2 for p = 2. This is the reason why, in case p = 2, C-VNS finds a large number of approximate

solutions for R near the value where multiple system roots are present. To avoid this problem, one can

increase the value of ρmin, but then two solutions closer than ρmin cannot be distinguished. In the case

p = 1, the C-VNS obtained the true number of solutions, except for the critical values of R, where it also

behaved well. For R = 0.94009858 the C-VNS found two solutions: one true solution, and another false

approximate solution with very small objective function value in the place where two new solutions emerged.
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For R = 0.94009858, only one of those two new solutions was found, since they are at a distance 0.0005,

which is less than ρmin = 0.001. The same argument holds for other values of R with multiple solutions.

In Hirsch et al. (2009), the objective function with p = 2 and ϕ(x) = exp(−x) is proposed with fixed

ρ = 0.01. The only difference from the third case in Table 3 is that ρmin = 0.001 is used in present tests.

Taking ρmin = 0.01, the correct number of solutions for cases reported in Hirsch et al. (2009) is verified.

As a conclusion one can say that more accurate results can be given using p = 1. For non-smooth

problems, the usability of the method is also extended using a robust optimizer. In case p = 2 and a smooth

ϕ(x), the objective function does not reduce the smoothness of the initial problem, but even if fi(x) are

analytic, the function F (x) is not, although it is smooth, and higher order minimizers may not perform as

expected near already found solutions. There is no significant difference in test results for ϕ(x) = (1− x2)2

and ϕ(x) = exp(−x), so it is better to use the first kernel function as it is smooth, and it can be evaluated

more quickly than the second, which is neither smooth nor continuous.

4.2.2 Additional test problems

For all test problems in this section, unless otherwise stated, the parameters were set to: tol = 10−7, ρ0 = 0.01,

ρmin = 0.001, qρ = 0.1, a0 = 1, qa = 0.5, and maximum number of approximate results was limited to 20.

The results are presented in Table 4.

Table 4: Experimental results for other test problems

Problem # p = 1, ϕ(x) = 1− |x| p = 2, ϕ(x) = (1− x2)2

name sol Precision sol time comp.eff. sol time comp.eff.

Steering 2 ρmin = 0.001 2 0.005 7451 20 0.003 3423
2 ρmin = 0.01 2 0.002 3381 20 0.060 78583
2 ρmin = 0.1 2 0.061 86609 10.13 0.086 118337

Non-smooth 2 2 < 1ms 726 2 < 1ms 359

Merlet 13 13 0.018 55596 13 0.011 33199

Floudas 2 ρmin = 0.001 2 0.002 7808 4.05 0.009 37341
2 ρmin = 0.01 2 < 1ms 608 2 0.001 5193

Effati-Grosan-1 1 a = 2 1 < 1ms 739 1 < 1ms 81
13 a = 10 13 0.038 120451 13 0.014 40798
25 a = 20 25 0.211 528947 25 0.064 150501
63 a = 50 63 2.652 3822159 63 0.973 1351649
127 a = 100 127 12.306 11310533 127 3.876 3242900

Effati-Grosan-2 1 a = 2 1 < 1ms 530 1 < 1ms 92
1 a = 10 1 < 1ms 973 1 < 1ms 114
1 a = 100 1 < 1ms 2093 1 < 1ms 310

For the Steering problem, the parameters were set to: ρ0 = 10ρmin, ρmin = 0.1, 0.01, 0.001. As it can be

seen, p = 1 gives accurate results, and p = 2 is not suitable for this problem.

For the Non-smooth problem, in both cases p = 1 and p = 2, two solutions were found within less than

1ms, with 726 and 359 function evaluations, respectively. It is worth mentioning that for p = 1, the errors

in two obtained solutions were of order 10−8, but for p = 2, the errors were of order 10−4. For obtaining the

errors of order 10−8 in case of p = 2, one must set tol = 10−14 or smaller, which is near the limit of machine

precision. This also applies for all other test problems.

For the Merlet problem,both cases p = 1 and p = 2 were successful, and all 13 solutions were found with

comparable time and computer effort.

In the Floudas problem, case p = 1 was successful, but p = 2 produced some false solutions for ρmin =

0.001. Only for larger ρmin = 0.01, the accurate number of solutions is obtained. The drawback of taking

larger values for ρmin is that different solutions could not be distinguished if they are closer than ρmin.
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For the Effati-Grosan-1 and Effati-Grosan-2 problems, the maximum number of approximate solutions

was limited to 200. Both cases p = 1 and p = 2 were successful and all solutions were found. For p = 2, the

solutions were obtained with considerably less computer effort, however, as stated before, for p = 1 the errors

in the obtained solutions were of order 10−8, but for p = 2 the errors were of order 10−4. For obtaining the

errors of order 10−8 in case of p = 2, one must set tol = 10−14 or smaller.

4.3 Comparison with C-GRASP

For comparison with the results from Zhou et al. (2013), the parameters were set to: tol = 10−7, ρ0 = 0.1,

ρmin = 0.01, qρ = 0.1, a0 = 1, qa = 0.5, and maximum number of approximate results was limited to 20. The

results are presented in Table 5.

Table 5: Comparison of two C-VNS variants with C-GRASP for the Reactor problem

# p = 1, ϕ(x) = 1− |x| p = 2, ϕ(x) = (1− x2)2 p = 2, GRASP

R sol sol time comp.eff. sol time comp.eff. sol time

0.935 1 1 < 1ms 1364 1 < 1ms 649 1 0.600
0.940 1 1 < 1ms 1443 1 < 1ms 609 1 0.770
0.945 3 3 0.001 5674 3 0.001 2810 3 0.190
0.950 5 5 0.018 81332 5 0.011 48143 4.99 1.110
0.955 5 5 0.003 13038 5 0.003 11141 5 1.690
0.960 7 7 0.005 19566 7 0.005 21512 6.96 2.410
0.965 5 5 0.003 15540 5 0.001 5793 4.95 1.810
0.970 5 5 0.001 4309 5 0.001 4087 4.99 1.340
0.975 5 5 0.003 15561 5 0.002 6773 4.98 1.830
0.980 5 5 0.002 9134 5 0.001 3900 4.98 1.900
0.985 5 5 0.002 8980 5 0.002 6161 4.99 2.230
0.990 1 1 < 1ms 608 1 < 1ms 428 1 0.010
0.995 1 1 < 1ms 201 1 < 1ms 69 1 0.010

One can observe the following:

(i) When we compare C-VNS and C-GRASP using the same transformation function (for p = 2), we see

that our C-VNS is much faster and more precise than GRASP; the average number of solutions for the

C-GRASP is less than the correct number in 7 out of 13 instances;

(ii) Both C-VNS variants recognized all solutions; as expected, the smooth problem for p=2 is solved faster,

but its stopping condition is smaller and therefore, the solution is less precise.

Table 6: Comparison of two C-VNS variants with C-GRASP on Steering, Merlet and Floudas problems

# p=1, ϕ(x) = 1− |x| p=2, ϕ(x) = (1− x2)2 p=2, GRASP

Problem name sol time comp.eff. time comp.eff. time

Steering problem 2 1st solution 0.001 1883 < 1ms 110 0.840
2 all solutions 0.002 3381 < 1ms 221 5.060

Merlet problem 13 1st solution < 1ms 532 < 1ms 70 0.004
13 all solutions 0.020 62394 0.009 27249 3.00

Floudas problem 2 1st solution < 1ms 638 < 1ms 61 0.071
2 all solutions 0.001 5193 < 1ms 608 0.390

For the Steering problem, in Hirsch et al. (2009) only the average times for obtaining the first and the

second solutions are reported: 0.84s and 5.06s. For p = 1, ϕ(x) = 1 − |x|, C-VNS found the first solution

within 0.001 second (1883 function calls), and both solutions within 0.001 second (3381 function calls). For

p = 2, ϕ(x) = (1 − x2)2, the times were both under 1ms, with 110 and 221 function calls for the first and

for both solutions. For this problem, when p = 2, we observe that a lot of false solutions are found, both for

ϕ(x) = 1− |x| and ϕ(x) = exp(−x), which is illustrated in Table 6.

For the Merlet problem, from the figure presented in Hirsch et al. (2009), average times for obtaining the

first and all 13 solutions are approximately 0.004s and 3s. For p = 1, ϕ(x) = 1− |x|, C-VNS found the first



14 G–2018–52 Les Cahiers du GERAD

solution for less than 1ms (532 function calls), and all 13 solutions for 0.020s (62394 function calls). For

p = 2, ϕ(x) = (1−x2)2, the first solution was found for less than 1ms (70 function calls), and all 13 solutions

for 0.009s (27249 function calls).

Finally, for the Floudas problem, average times for obtaining the first and both solutions are 0.071s and

0.390s as reported in Hirsch et al. (2009). For p = 1, ϕ(x) = 1− |x|, C-VNS found the first solution within

less than 1ms (638 function calls), and both solutions within 0.001 seconds (5193 function calls). For p = 2,

ϕ(x) = (1 − x2)2, the first solution was found for less than 1 ms (61 function calls), and both solutions for

less than 1 ms (608 function calls).

4.4 Comparison with Harmony search

In Ramadas and Fernandes (2013), Harmony search meta-heuristic (HS) was applied to solve the nonlinear

system of equations. Five variants of HS algorithms were proposed, but all of them stopped after finding

the first solution. The merit function for minimization is M(x) =
∑n
i=1 fi(x)2. The solution is considered to

be found if
√
M(x) ≤ 10−6. Each test problem was repeated 30 times, and only the best result (number of

function evaluations) is reported if the solution was found.

In order to compare C-VNS for NSE with HS, we set tol = 10−6 for p = 1 and tol = 10−12 for p = 2.

Other parameters were set to ρ0 = 0.01, ρmin = 0.001, qρ = 0.1, a0 = 1, and qa = 0.5. We repeated each test

problem 30 times, and C-VNS for NSE was successful in every run. In Table 7 for each test problem, average

and the minimal number of function calls in 30 runs are reported. The last column contains the best result

from all 5 variants of HS meta-heuristic.

Table 7: Comparison of C-VNS and Harmony search

p = 1, ϕ(x) = 1− |x| p = 2, ϕ(x) = (1− x2)2 HS best

Problem name Parameter average minimum average minimum minimum

Non-smooth 163 88 108 86 278
Reactor R =0.95 102 88 96 84 550
Steering 1725 129 783 171 not found
Merlet 129 84 101 77 292
Floudas 136 81 110 71 550

Effati-Grosan-1 a = 2 146 105 121 96 517
a=10 214 99 154 98 501
a=100 402 123 155 121 445

Effati-Grosan-2 a = 2 138 116 121 106 484
a = 10 179 78 182 71 463
a = 100 397 145 438 142 482

From Table 7, it is evident that C-VNS for NSE outperforms HS considerably in every test problem.

C-VNS obtained the correct solutions for all test problems in every test run. For HS, one or more variants

were unsuccessful for all 30 runs, but how many times they were unsuccessful, were not reported.

4.5 Test problems from Floudas et al. (1999)

In addition to the problems from this section, which were also solved with other algorithms, we tested the

effectiveness of our method on five problems from Floudas et al. (2013), Chapter 14, Section 1. Note that

Problem 4 has been discussed in more details earlier in this section (Floudas et al. (1999) problem from 4.1.5).

For all test problems in this subsection, the parameters were set to: tol = 10−7, ρ0 = 0.01, ρmin = 0.001,

qρ = 0.1, a0 = 1, qa = 0.5, and maximum number of approximate results were limited to K = 20. The tests

were repeated 100 times and the average results are presented in Table 8.

As in the previous test problems, the option p = 1, ϕ(x) = 1 − |x| was more successful than p = 2,
ϕ(x) = (1 − x2)2. For the first option, we obtained the correct number of solutions in all test runs. The

second option resulted in correct number of solutions for problems 1, 4, 5, and 6, but for problems 2 and 3, it
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Table 8: Comparison of two transformation functions for problems from (Floudas et al. 1999)

dim- # of p=1, ϕ(x) = 1− |x| p=2, ϕ(x) = (1− x2)2

Problem ension solutions sol time comp. effort sol time comp. effort

14.1.1 Himmelblau function 2 9 9 0.005 23260 9 0.003 12793
14.1.2 Equilibrium Combustion 5 1 1 0.051 634531 20 0.071 176948
14.1.3 Test Problem 3 2 1 1 0.001 3013 20 0.094 274005
14.1.4 Test Problem 4 2 2 2 0.002 7808 4 0.009 37341
14.1.5 Test Problem 5 5 2 2 0.047 179782 2 0.001 4987
14.1.6 Test Problem 6 8 16 16 2.700 5926615 16 0.963 1866031

gave large number of false solutions (≤ K = 20). That number would be even larger, if the maximum number

of approximate solutions K was set to be larger. The difference in execution times is the consequence of

significantly better precision of solutions in case p = 1 than p = 2 for the same value of tol = 10−7. According

to Lemma 2, the expected accuracy of the solutions is ε ∼ tol for p = 1, and ε ∼
√
tol for p = 2, and more

iterations are necessary for more accurate solutions.

Test problems from Table 8 also appear in Maranas and Floudas (1995) and Stuber et al. (2010). In

both papers branch-and-bound global optimization algorithm with convex relaxation was applied. Since one

iteration in these methods includes a convex minimization with unknown number of function evaluations,

CPU times remain the only way to compare the efficiency of methods. In Maranas and Floudas (1995), all

6 problems from Table 8 were solved on a 66MHz HP-730 workstation with tolerance 1e-4. In Stuber et al.

(2010), 5 problems from Table 8 were tested on 2.66 GHz Intel Core2 Quad processor with tolerance 1e-8.

One of test problems (14.1.2) did not converge. Other problems from this paper are either single variable

equations or functions to be minimized, not equations.

We used the same parameters as for p = 1, ϕ(x) = 1 − |x| option in Table 8 with matching tolerances

tol = 10−4 and tol = 10−8. Each test was repeated 100 times, and average execution time was recorded. Test

results are presented in Table 9. CPU times of examples from Maranas and Floudas (1995) and Stuber et al.

(2010) are presented in the fifth column as well as equivalent CPU times scaled as it were executed on a 3.4

GHz processor to compare with our results in the last column. Different CPU times for two test problems

from Maranas and Floudas (1995) are obtained for different convex lower bounding parameter α. As seen

from the results, our algorithm is at least 10 times more efficient for 14.1.1–4 in Maranas and Floudas (1995)

and for 14.1.1–5 in Stuber et al. (2010), and for remaining examples gives comparable results.

Table 9: Comparison with problems from (Maranas and Floudas 1995) and (Stuber et al. 2010)

dim- # of p=1, ϕ(x) = 1− |x|

Problem ension solutions sol time equiv. time sol time

Maranas and Floudas (1995), tol = 1e-4 tol = 1e-4

14.1.1 Himmelblau function 2 9 9 10.89 0.211 9 0.003
14.1.2 Equilibrium Combustion 5 1 1 31.7 0.615 1 0.054
14.1.3 Test Problem 3 2 1 1 1.5 0.029 1 0.001
14.1.4 Test Problem 4 2 2 2 2 0.039 2 0.001
14.1.5 Test Problem 5 5 2 2 0.35 - 22.16 0.007 - 0.430 2 0.014
14.1.6 Test Problem 6 8 16 16 141.41 - 987.91 2.127 - 19.177 16 0.968

Stuber et al. (2010), tol = 1e-8 tol = 1e-8

14.1.1 Himmelblau function 2 9 9 0.082 0.063 9 0.005
14.1.2 Equilibrium Combustion 5 1 0 not found 1 0.174
14.1.3 Test Problem 3 2 1 1 0.02 0.015 1 0.001
14.1.5 Test Problem 5 5 2 2 0.755 0.577 2 0.058
14.1.6 Test Problem 6 8 16 16 3.627 2.774 16 2.661
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4.6 Comparison with BARON

BARON (Sahinidis 1996) is a highly ranked computational system for solving non-convex optimization prob-

lems to global optimality. Purely continuous, purely integer, and mixed-integer nonlinear problems can be

solved with the software. It uses advanced branch-and-bound optimization concepts. As described in BARON

manual, it can be used to find all solutions of NSE by declaring the equations from the system as constraints,

and finding all feasible points for such a problem.

We used the demo version of BARON with suggested MATLAB interface. Demo version can handle

problems with up to 10 variables, 10 constraints and 50 nonlinear operations. Further, both demo and

commercial versions can not handle trigonometric functions. For these reasons, we were limited in our com-

parison to problems which satisfy these limitations. There are several tolerance parameters in BARON,

and we used their default values: Absolute termination tolerance 1e-6, Relative termination tolerance

1e-9, Absolute constraint feasibility tolerance 1e-5, Separation distance between solutions 1e-4. Develop-

ers of BARON told us that BARON uses an absolute tolerance of 1e-11, so we tested our algorithm with the

same tolerance 1e-11 in all test instances, with p = 1, ϕ(x) = 1 − |x|, and other parameters the same as in

previous tests. We repeated our tests 100 times, and recorded average results. We repeated BARON tests for

50 times. In each run BARON reported the same number of solutions, and the execution times were almost

identical, which is expectable from the exact solver.

In order to check the accuracy of results obtained by BARON, we calculated the average value of function

values F0(x) from (3) taken for all solutions reported by BARON. These values are marked as ”F0 aver.” in

following tables. By algorithm design, F0(x) ≤ tol = 1e-11 for all solutions obtained with our algorithm.

We first tested BARON on problems from (Floudas et al. 1999). The problem 14.1.4 and 14.1.6 exceed

the limitation of a demo version, but we presented the result for 14.1.6 (Robot kinematics problem) from the

BARON manual (number of solutions, timing not present). The comparison results are presented in Table 10.

Our algorithm found the correct number of solutions in every run for all problems. BARON found the correct

number of solutions just for problems 14.1.1 and 14.1.5. For problems 14.1.2 and 14.1.3, BARON reports

false larger number of solutions with significantly larger residual values F0(x). Those values are, on the

other hand, in consent with BARON’s Absolute constraint feasibility tolerance of 1e-5. Our algorithm was

considerably faster on all tested problems. In problem 14.1.6 BARON reported only 14 out of 16 solutions.

Table 10: Comparison with BARON solver for problems from (Floudas et al. 1999)

p=1, ϕ(x) = 1− |x| BARON
dim- # of tol = 1e− 11

Problem ension solutions solutions time solutions time F0 aver.

14.1.1 Himmelblau function 2 9 9 0.006 9 0.153 1.34e-07
14.1.2 Equilibrium Combustion 5 1 1 0.160 5 0.640 1.24e-05
14.1.3 Test Problem 3 2 1 1 0.001 13 3.012 6.74e-06
14.1.5 Test Problem 5 5 2 2 0.007 2 0.050 2.42e-11
14.1.6 Test Problem 6 8 16 16 7.227 14

For a Non-smooth problem (9), our algorithm found both solutions for less than 1ms, and BARON also

found both solutions for 0.074s with F0 aver. value of 1.78e-15.

Last problem to consider in comparison was the Reactor problem (7), with bifurcation phenomena while

varying the parameter R. The comparison results are presented in Table 11. For various values of parameter

R, the second column contains the exact number of solutions. Next three columns contain test results for our

algorithm, with tol = 1e-11: number of solutions found, time in seconds and number of function evaluations.

Last three columns contain test results for BARON: number of solutions, time in seconds, and average

value of function values F0(x) from (3) taken for all solutions reported by BARON. By algorithm design,

F0(x) ≤ tol = 1e-11 for all our solutions. Values from the last column show that our solutions are better

than BARON solutions, and are found significantly faster. It is evident that near bifurcation points, where

double solution exists, BARON reports false larger number of solutions with 5 orders of magnitude larger

residual values F0(x), but in consent with BARON’s tolerance parameters.
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Table 11: Comparison with BARON for Reactor problem

# p = 1, ϕ(x) = 1− |x| BARON

R sol sol time comp.eff. sol time F0 aver.

0.935 1 1 < 1ms 1649 1 0.197 6.76e-12
0.940 1 1 < 1ms 1608 1 0.210 5.57e-12
0.9409858 1 1 < 1ms 1573 4 0.759 2.26e-06
0.9409859 3 2 < 1ms 1762 7 0.534 2.27e-06
0.941 3 3 0.031 148920 5 0.359 2.18e-06
0.942 3 3 0.003 13006 3 0.242 4.43e-11
0.943 3 3 0.002 9621 3 0.210 3.37e-11
0.944 3 3 0.003 14900 3 0.164 1.37e-10
0.945 3 3 0.007 24633 3 0.168 2.51e-11
0.946 3 3 0.016 79518 3 0.131 4.92e-10
0.947 3 3 0.002 9653 3 0.231 4.07e-11
0.9472741 3 3 0.002 9289 17 4.693 3.30e-06
0.9472742 5 4 0.016 76211 12 0.644 1.62e-06
0.948 5 5 0.023 104685 5 0.276 1.80e-06
0.949 5 5 0.004 19532 5 0.205 3.87e-09
0.950 5 5 0.006 25774 5 0.167 7.58e-10
0.951 5 5 0.008 34055 5 0.170 3.32e-07
0.952 5 5 0.011 51219 5 0.138 1.68e-08
0.953 5 5 0.007 31393 5 0.153 4.05e-11
0.954 5 5 0.003 14176 5 0.135 9.46e-11
0.955 5 5 0.006 27116 5 0.161 6.10e-11
0.9559233 5 5 0.009 42093 18 2.461 1.98e-06
0.9559234 7 6 0.010 43402 16 0.398 1.82e-06
0.956 7 7 0.015 65183 7 0.266 7.63e-07
0.957 7 7 0.015 64510 7 0.185 4.93e-09
0.958 7 7 0.035 147791 7 0.180 7.20e-07
0.959 7 7 0.037 155884 7 0.161 9.10e-07
0.960 7 7 0.017 71426 7 0.194 4.88e-11
0.961 7 7 0.010 43961 7 0.167 1.07e-07
0.9615703 7 6 0.009 39251 20 0.600 3.18e-06
0.9615704 5 5 0.007 32628 15 4.044 3.65e-06
0.962 5 5 0.009 43260 5 0.148 4.73e-09
0.965 5 5 0.011 50991 5 0.120 3.71e-09
0.970 5 5 0.009 40160 5 0.111 1.70e-09
0.975 5 5 0.005 22505 5 0.114 5.27e-11
0.980 5 5 0.004 20178 5 0.119 2.27e-09
0.985 5 5 0.004 16702 5 0.121 4.19e-09
0.986 5 5 0.002 11157 5 0.146 3.40e-09
0.987 5 5 0.003 12617 5 0.177 6.66e-11
0.9879306 5 4 0.002 8103 10 0.329 3.60e-06
0.9879307 3 3 0.002 9037 8 1.517 2.78e-06
0.988 3 3 0.002 9730 3 0.210 6.81e-11
0.9884905 3 2 0.001 5100 9 0.392 4.09e-06
0.9884906 1 1 < 1ms 764 6 0.380 5.81e-06
0.989 1 1 < 1ms 809 1 0.160 8.38e-11
0.990 1 1 < 1ms 831 1 0.097 7.18e-11
0.995 1 1 < 1ms 272 1 0.078 3.65e-11

4.7 Testing gradient type local minimizers for 1 < p ≤ 2

In all previous computational results, we have used the direct search Nelder-Mead (NM) method for finding

a local minimum of a continuous function within C-VNS. The use of just one descent method for all test

problems and all values of parameter p is twofold: (i) NM is applicable also in both smooth and non-smooth

optimization; (ii) the desired property of any heuristic is its simplicity. However, if the optimization problem

is smooth, then a gradient type method can be used instead. If the functions fi(x), i = 1, . . . , n and ϕ(x) are

smooth, and p > 1, the function (6) will be smooth as well, so gradient type methods can be used for local

minimization. For p = 1, function (6) is not differentiable in the solution points. For the same value of δ in

stopping condition F (x) < δ, according to results in Section 3, smaller values of p result in more accurate

solutions. Moreover, computational results from this section show that the choice of p = 1 is much less prone

to false solution detection than p = 2. On the other hand, for p = 1 + ε and p < 2, although the gradient
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of F (x) is continuous, the second derivatives are singular at the solution points. This fact clearly shows the

inferiority of gradient methods.

In order to confirm experimentally this theoretical observation, i.e., to show that gradient type methods

cannot be efficient for p = 1 + ε, p < 2, we conducted the following experiment. In addition to NM local

optimizer, we selected classical gradient (Steepest descend), and two well-known conjugate-gradient local op-

timizers, i.e., Fletcher-Powell and Fletcher-Reeves methods. Effati-Grosan-1 test problem for a = 2 is solved

for various values of 1 < p ≤ 2 with fixed parameters: tol = 10−6, ρ0 = 0.1, ρmin = 0.01, qρ = 0.1, a0 = 1,

qa = 0.5, ϕ(x) = (1 − x2)2. Gradients were computed numerically with step h = 10−8. Quadratic approxi-

mation method was used for line optimization. Tests were repeated 30 times for each method and for each

value of p. The average number of function evaluations until the solution was found is presented in Table 12.

Table 12: Number of function evaluation (or computational efforts) of different local optimizers for 1 ≤ p ≤ 2

p Nelder-Mead Steepest descend Fletcher-Powell Fletcher-Reeves

2.0 75 270 78 78
1.9 79 277 103 116
1.8 78 284 133 154
1.7 84 289 156 201
1.6 88 391 209 248
1.5 96 524 278 335
1.4 101 641 299 494
1.3 110 947 382 633
1.2 115 12975 1057 2104
1.1 128 10547297 25174 307915
1.0 146 - - -

The solution was found in every run in all cases and for each method. As it can be seen from the Table 12,

NM performed well for all values of p. For p = 2, Fletcher-Powell and Fletcher-Reeves methods were equally

efficient as Nelder-Mead, while Steepest descend performed worse. Reducing the value of p, all gradient type

methods were gradually less efficient, and for p close to 1, they were extremely inefficient. More iterations for

smaller values of p are expected because more accurate solutions were obtained for the same fixed tolerance in

stopping criterion. Again, a theoretical explanation of gradient type methods poor behavior for smaller values

of 1 < p < 2 (that the second derivatives are singular at solution points for p < 2), is confirmed experimentally.

4.8 Problem with arbitrarily large dimension

The purpose of this subsection is to check how good is our new method in solving large dimensional problems.

The discrete integral equation problem, taken from Martinez (1986) is an example of a dense nonlinear system

with arbitrary number of variables n,

fi(x) = xi +
h

2

(1− ti)
i∑

j=1

tj(xj + tj + 1)3 + ti

i∑
j=1

(1− tj)(xj + tj + 1)3

 , (14)

where i = 1, .., n, h = 1/(n + 1), ti = ih, and x0 = xn+1 = 0. There are no reported details on intervals

and number of solutions. We tested the effectiveness and the efficiency of our method for various values of

n ≤ 1000. In all the tests, we used tol = 10−6, ρ0 = 0.01, ρmin = 0.001, qρ = 0.1, a0 = 1, qa = 0.5, p = 1,

ϕ(x) = 1−|x|. Solutions are searched in the hypercube [−2, 2]n. Hook-Jeeves pattern search local minimizer

was used since it is better adapted than NM to large-scale problems. In every instance, exactly one solution

was detected. Instances of 10 different dimensions n = 20, 50, 100, 200, ..., 1000 were run by our C-VNS based

heuristic. For each n, the execution time and the number of function evaluations until the solution was found

are reported in Table 13.

It appears that our C-VNS based heuristic is able to correctly solve problem with 100 variables in less

than 0.5 seconds, and NSE with 1000 variables in less than 6 minutes.
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Table 13: Experimental results for large dimensional problem (14)

n time comp.eff. n time comp.eff.

20 0.006 3362 500 37.449 93145
50 0.046 8745 600 64.032 110558

100 0.339 19062 700 108.324 135999
200 2.544 38072 800 186.653 179410
300 9.786 66703 900 229.394 176608
400 19.877 75931 1000 325.430 204244

In Martinez (1986), this problem was solved using gradient type accelerated successive orthogonal projec-

tions method for n = 500 and n = 1000. Tolerance used in stopping condition is not reported. Since single

precision arithmetic on PDP10 computer was used, we assumed that tol > 10−6. For n = 500, convergence

took place after 5 iterations, 826 projection steps and 104 seconds in best case, and for n = 1000, after 5

iterations, 1647 projection steps and 426 seconds. As in every iteration a Jacobian matrix has to be calcu-

lated, followed by the decomposition of matrix using orthogonal projections method, and solving a system of

equations of dimension n, it is very hard to compare computational effort with our method. Nevertheless, we

can say that our general NSE solver is comparable with problem specific method proposed in Martinez (1986).

4.9 Comparison with more methods

In this subsection, we compare our C-VNS based heuristic for solving NSE with some more methods. First

of all, it is clear that such a task in case of NSE is almost impossible:

1. There are more than 30 methods in the literature;

2. Many of such methods use a single instance that is not available;

3. Very often CPU times or number of function evaluations are not provided;

4. Most methods do not look for all solutions of the problem in a systematic way. Some methods just look

for a single solution;

5. Different methods use different objective functions, so it is difficult to compare the accuracy of solutions.

6. When the same instances are considered in different methods, then the following problems in comparison

appear:

(a) not the same space domain is used, resulting in different number of solutions in that domain and

different efficiency;

(b) not the same stopping condition is used, and often it is not clear what is the precision of the

solutions;

(c) not the same way of presenting results is used; in some papers results are given in tables and

some graphically. In many papers only the number of iterations is reported with unclear computer

efforts for one iteration.

Despite of all difficulties, we try here to do comparative analysis in the following way. First, we select

about 20 papers that propose methods for solving NSE. Then, we divide them into 2 groups: (i) papers that

use the same instances as we do; (ii) papers with instances that we did not use, but having at least two

common instances.

4.9.1 Comparison with methods that use the same instances as us.

Comparison of our method with C-GRASP (Hirsch et al. 2009) and Harmony search algorithm (Ramadas

et al. 2014) was already presented in the previous sections. Here, we compare our results with the results

reported by other methods. Since the objective functions are different in the following methods, we calculate

the value EqTol as the value of our objective function (3) (p = 1) on the solutions provided by those

algorithms.
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Reactor problem, defined in 5.1.1. and solved in 5.2.1.

• Biased random-key genetic algorithm in Silva et al. (2014) found the correct number of solutions for

various values of parameter R with EqTol > 10−3. Average results in the form (R, time) are: (0.945,

29.820s), (0.950, 0.415s), (0.955, 0.379s), (0.960, 2.611s), (0.965, 6.329s), (0.970, 6.844s), (0.975, 8.270s),

(0.980, 10.980s), (0.985, 11.970s). Our method found all solutions with tol = 10−7 but, at least, 40

times faster (see Table 3, case p = 1).

• Invasive weed optimization algorithm in Pourjafari and Mojallali (2012) found the correct number of

solutions for 0.935 ≤ R ≤ 0.960. The solutions are presented with 7 decimal places, but there were no

data regarding tolerance, time, and number of function evaluations. Therefore, direct comparison was

not possible.

Steering problem, defined in 5.1.2. and solved by C-VNS in 5.2.2.

• Biased random-key genetic algorithm in Silva et al. (2014) finds two solutions with EqTol > 10−3 for

0.215s. Our method finds both solutions with tol = 10−7 for 0.005s or less, as can be seen in Table 4.

Thus, our C-VNS based method is faster and more effective.

Merlet problem. defined in 5.1.4. and solved in 5.2.2.

• Biased random-key genetic algorithm in Silva et al. (2014) finds all 13 solutions with EqTol > 10−3 for

45s. Our method finds all 13 solutions with tol = 10−7 for 0.018 s, as can be seen in Table 4. Again,

our C-VNS based heuristic is more precise and efficient.

Floudas problem, defined in 5.1.5. and solved in 5.2.2.

• Biased random-key genetic algorithm in Silva et al. (2014) finds two solutions with EqTol > 10−3 for

0.608s. Our method is able to find both solutions with tol = 10−7 for less than 0.001s, as can be seen

in Table 4.

• Cuckoo optimization algorithm in Abdollahi et al. (2016) finds two solutions with EqTol = 2 · 10−17 in

150 iterations, using 10,000 function evaluations. According to the convergence graph provided in the

paper, it would take 30 iterations (around 2000 function evaluations) if EqTol = 10−7. For the same

tol = 10−7, our method is able to find both solutions for 608 function evaluations, which is more than

three times less than the number of evaluations in Abdollahi et al. (2016).

• Imperialist competitive algorithm in Abdollahi et al. (2013) finds also 2 solutions, but with EqTol =

10−12, using 250 iterations and 200 countries (50000 function evaluations). From the presented conver-

gence graph, for EqTol = 10−7, it would be required 20 iterations (around 4000 function evaluations).

As it was said earlier, for the same tol = 10−7, our method is able to find both solutions for 608 function

evaluations, which is more than six times less than the method proposed in Abdollahi et al. (2013).

Effati-Grosan-1 problem, defined in 5.1.6. and solved by C-VNS in 5.2.2.

• Differential evolution invasive weed optimization algorithm in Zhou et al. (2013) finds a solution with not

specified domain, and with EqTol < 10−5. In addition, 500 iterations are spent, maximum population

size is set to 15, hence, 7500 function evaluations are used. Our method finds one solution (case a = 2)

with tol = 10−7 after 739 function evaluations (see Table 4). This means that we have made more than

10 times less computational efforts.

• Fuzzy adaptive simulated annealing algorithm in Oliveira and Petraglia (2013) obtained one solution in

the domain [0, 10]2 with EqTol ∈ [9 · 10−15, 7 · 10−8] with 5000000 function evaluations. Our method,

with EqTol = 10−10, found 7 solutions in the domain [0, 10]2.
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Effati-Grosan-2 problem. defined in 5.1.7. and solved by C-VNS in 5.2.2.

• Differential evolution invasive weed optimization algorithm in Zhou et al. (2013) found a solution, in

the domain not specified, with EqTol < 10−5 after 500 iterations, population max. 15 (max. 7500

function evaluations). Our method found a solution with tol = 10−7 after 530-2093 function evaluations,

depending on a region, as can be seen from Table 4.

• Fuzzy adaptive simulated annealing algorithm in Oliveira and Petraglia (2013) obtained one solution

with EqTol < 10−15 in the domain [−10, 10]2 with 450000 function evaluations. Our method, in the

same domain, found the solution with less stringent tol = 10−7 after only 973 function evaluations, as

can be seen from Table 4.

Equilibrium Combustion from Table 8. In Floudas et al. (1999), the solution space is defined as [0.001, 10]5,

since the variables must be positive by their nature. In this domain, there is only one solution. In the

following two papers, the solution space was set to [−10, 10]5, resulting in multiple solutions. This is a good

example to demonstrate how large tolerance may result in many false solutions. In the domain [0.001, 10]5,

our algorithm (with p = 1) detected over 100 solutions for tol = 10−3, over 70 solutions for tol = 10−4, 8

solutions for tol = 10−4, and just one solution for tol ≤ 10−5.

• Differential evolution invasive weed optimization algorithm in Zhou et al. (2013) found 14 solutions

with EqTol > 10−2 after 800 iterations, population max. 15. Two of those solutions were with positive

coordinates.

• Fuzzy adaptive simulated annealing algorithm in Oliveira and Petraglia (2013) found 7 solutions with

EqTol > 6 ·10−3 after 1100000 function evaluations; 4 of those solutions were with positive coordinates.

Test Problem 6 from Table 8.

• Imperialist competitive algorithm in Abdollahi et al. (2013) presented a single solution (out of 16) with

EqTol ∼ 10−15 after 1000 iterations with 300 countries (300000 function evaluations). Our algorithm

found all 16 solutions with tol = 10−7 after 5926615 function evaluations, as can be seen from Table 8.

• Biased random-key genetic algorithm in Silva et al. (2014) with EqTol > 10−3 found all 16 solutions

for more than 110s. Our algorithm found all 16 solutions with tol = 10−7 after 2.7s, as can be seen

from Table 8.

• Particle swarm optimization algorithm in Turgut et al. (2014) presented a single solution (out of 16),

EqTol ∼ 10−18, 219 generations, unknown population size. Our algorithm found all 16 solutions with

tol = 10−7.

4.9.2 Comparison on other commonly used instances.

In this subsection, we present test results of our method for three commonly used test problems (see Zhou

et al. (2013) or Oliveira and Petraglia (2013)).

1) Neurophysiology application. This system of n = 6 nonlinear equations has 4 parameters ci, i = 1, ..., 4.

In all tests found in literature, only the special case ci = 0, i = 1, ..., 4 is considered. In that case, the system

has infinite number of solutions in the domain [−10, 10]6 (and in [−a, a]6 for a ≥ 1).

2) Economics modeling application. This system of n nonlinear equations has n − 1 parameters ci, i =

1, ..., n− 1. In all tests found in literature, only the special case ci = 0, i = 1, ..., n− 1 is considered. In that

case, the system has infinite number of solutions in the domain [−10, 10]n (and in [−a, a]n for a ≥ 1). In all

tests, the dimension of the problem was set to n = 20.

3) Interval arithmetic benchmark. This is a system of n = 10 nonlinear equations. In the domain [−2, 2]10,

the system has exactly one solution, as shown in Oliveira and Petraglia (2013).

In all tests we used ρ0 = 0.01, ρmin = 0.001, qρ = 0.1, a0 = 1, qa = 0.5, p = 1, ϕ(x) = 1 − |x|, and

Nelder-Mead local minimizer. Three different tolerances were used: tol = 10−3, tol = 10−7, tol = 10−15. For
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the first two problems, we set the maximum of different found solutions to 1, 10, 20, 50, and 100, respectively.

For the third problem, this maximum was set to 20, but exactly one solution was found in every run. Each

experiment was repeated 30 times, and average times, and number of function evaluations until all listed

number of solutions were found, are presented in Table 14.

Table 14: C-VNS results for commonly used test problems

number of tol=1e-3 tol=1e-7 tol=1e-15

Problem name solutions time comp. eff. time comp. eff. time comp. eff.

1) Neurophysiology 1 < 1ms 736 0.001 1680 0.001 4428
application 10 0.005 11434 0.006 18984 0.041 132750

20 0.022 52904 0.053 123867 0.113 304939
50 0.197 311185 0.423 682345 1.009 1574310

100 1.125 1132651 2.559 2538378 3.946 4320766

2) Economics 1 0.001 967 0.002 1893 0.003 3176
modeling application 10 0.011 11472 0.020 21977 0.035 40933

20 0.027 26323 0.052 51665 0.088 92042
50 0.137 99320 0.243 178726 0.383 293335

100 0.558 278508 0.907 461721 1.194 652238

3) Interval arithmetic benchmark 1 0.001 2021 0.003 7754 0.011 27047

As we discussed it earlier, comparison with other methods is difficult since different objective functions

are used, and often, there is no data on running time of algorithms, and no report on the number of function

evaluations until the solutions are found, etc. Also,it is not clear how many function evaluations are performed

in one iteration of population based methods. When the solutions were presented, we calculated the value

EqTol as the value of our objective function (3) (p = 1) on those solutions. We present test data for these

three problems for other methods from literature.

Differential evolution invasive weed optimization (Zhou et al. 2013)

1. 12 solutions, EqTol > 2 · 10−3, time=13.11s, 800 iterations, population max. 15.

2. 4 solutions, EqTol > 10−3, time=18.14s, 800 iterations, population max. 15.

3. 8 solutions, EqTol > 10−3, time=15.05s, 2000 iterations, population max. 15.

Fuzzy adaptive simulated annealing (Oliveira and Petraglia 2013)

1. 8 solutions, EqTol ∈ [10−17, 3 · 10−7], < 60000 function evaluations.

2. 4 solutions, EqTol < 10−80, < 21000 function evaluations.

3. 1 solution, EqTol < 10−15, < 50000 function evaluations.

Genetic algorithm (Pourrajabian et al. 2013)

1. 4 solutions presented, but 20 solutions on the graph with EqTol > 10−7, Time execution is > 2s for

population of 10, > 10s for population of 40.

2. 1 solution, EqTol > 10−8, execution time 2-5s depending on the population size from 10 to 100.

Multi-objective optimization evolutionary algorithm (Song et al. 2015)

1. average of 73.1 solutions found with EqTol > 2 ·10−2, after 500 generations of population of 100 (50000

function evaluations).

2. average of 20.2 solutions found with EqTol > 10−1, after 500 generations of population of 100 (50000

function evaluations).

Many-objective Hype algorithm (Qin et al. 2015)

1. average of 38.2 solutions found, after 500 generations of population of 100 (50000 function evaluations).

2. average of 13.0 solutions found, after 500 generations of population of 100 (50000 function evaluations).
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Particle swarm optimization (Turgut et al. 2014)

1. 1 solution, EqTol < 10−16, 747 generations, unknown population size.

2. 1 solution, EqTol < 10−16, 487 iterations, unknown population size.

Hybrid artificial bee colony algorithm (Jia and He 2012)

1. 1 solution, EqTol ∼ 10−8, 1000 iteration, population size 50 for ABC and 50 for PSO (100000 function

evaluations).

Imperialist competitive algorithm (Abdollahi et al. 2013)

1. 1 solution, EqTol < 10−10 for the best solution, 200 iteration with 300 countries (60000 function eval-

uations), with average EqTol > 10−2 for all countries. After 20 iterations (6000 function evaluations)

EqTol > 10−5 for the best solution.

When comparing the results of presented methods with our results, given in Table 14, it is clear that our

C-VNS based heuristic outperforms all presented methods in terms of the number of solutions found, and in

terms of execution time spent. Fuzzy adaptive simulated annealing heuristic (Oliveira and Petraglia 2013)

finds solutions with small error, but fails to find more solutions for problems [1] and [2]. We found that for

tol = 10−15, our method requires similar number of function evaluations, taking into account the number of

solutions they found. Only in Song et al. (2015), larger number of solutions are found, but with very large

tolerance. In Zhou et al. (2013), the large number of false solutions for problem 3) is reported due to the

large tolerance.

5 Conclusions

In this paper we propose Continuous variable neighborhood search (C-VNS) based heuristic for finding all

solutions of a non-linear system of equations (NSE). As it is usually done, we first transform the system into an

optimization problem and propose a new objective function for finding all roots. Theoretical results regarding

the accuracy of such a new function are provided. As a consequence, it is shown why some commonly used

transformation functions wrongly report more solutions than the system actually has. We then select the

transformation function that theoretically produces the most precise solutions. Extensive computational

results show that our C-VNS based heuristic has solved successfully and efficiently all test problems where

optimal solutions are known; it finds all solutions very fast without producing wrong roots. Comparison of

absolute value function and a smooth quadratic transformation function, using our C-VNS heuristic in both

cases, confirms theoretical observation that the usual quadratic transformation function may produce a large

number of wrong solutions. Moreover, our heuristic outperforms two recently proposed heuristics, based on

two other meta-heuristic paradigms, i.e., on C-GRASP and Harmony search. The extensive computational

comparative analysis is performed as well, showing that our new C-VNS based heuristic may be considered

among the very best methods for solving NSE.

Future work may include application of the new heuristic in solving numerous engineering and manufac-

turing problems that can be modeled as NSE.
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