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Abstract: We propose an iterative method named usymlqr for the solution of symmetric saddle-point
systems that exploits the orthogonal tridiagonalization method of Saunders, Simon, and Yip (1988). By
contrast with methods based on the Golub and Kahan (1965) bidiagonalization process, our method takes
advantage of two initial vectors and splits the system into the sum of a least-squares and a least-norm problem.
In our numerical experiments, usymlqr typically requires fewer operator-vector products than minres, yet
performs a comparable amount of work per iteration and has comparable storage requirements.

Keywords: Symmetric saddle-point systems, iterative methods, orthogonal tridiagonalization

Résumé : Nous proposons une méthode itérative pour la résolution de systèmes de point de selle symétriques
qui exploite la tridiagonalisation orthogonale de Saunders, Simon et Yip (1988). Contrairement aux méthodes
basées sur le processus de bidiagonalisation de Golub et Kahan (1965), notre méthode est construite sur base
de deux vecteurs initiaux et décompose le système en la somme d’un problème aux moindres carrés et un
problème de moindre norme. Notre méthode requiert habituellement moins de produits opérateur-vecteur que
MINRES pour un nombre d’opérations et une empreinte mémoire comparable.
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1 Introduction

We consider the solution of symmetric saddle-point systems

„

M A

AT

 „

s
t



“

„

b
c



, (1)

where A is m-by-n with m ě n, and M is symmetric and positive definite. Such systems arise in numerous

applications, including optimization, fluid dynamics, and data assimilation (Benzi, Golub, and Liesen, 2005).

In the large-scale case, or the case where M and/or A is only available as an operator, it is common to employ

a Krylov method to solve (1). Prime candidates are minres and symmlq of Paige and Saunders (1975), both
of which were designed with general symmetric indefinite systems in mind, but neither of which exploits the

specific block structure of (1).

The main idea of this paper stems from the simple observation that any solution to (1) may be written as

the sum of solutions of
„

M A

AT

 „

r
x



“

„

b
0



and

„

M A

AT

 „

y
z



“

„

0
c



, (2)

which are the optimality conditions of the least-squares and least-norm problems

minimize
x

1
2}b´Ax}2

M
´1 and

minimize
y

1
2}y}

2
M

subject to ATy “ c,
(3)

where the V-norm of p is defined as }p}2V :“ pTVp for any symmetric and positive definite V. In the

least-squares problem, we recover r “M´1
pb´Axq, while in the least-norm problem, we recover z as the

(signed) Lagrange multipliers.

We propose an approach that meshes an iterative method for least-squares problems with one for least-norm

problems in such a way that both problems (3) are solved in one pass. Each iteration of the proposed procedure

has the same cost and almost the same storage requirements as one iteration of minres or symmlq. In our
numerical experiments, we have observed that our approach solves (1) in fewer iterations than minres and

symmlq.

The two iterative methods are based on an orthogonal tridiagonalization process initially proposed

by Saunders et al. (1988) for square, but not necessarily symmetric, matrices. This tridiagonalization

process reduces to the symmetric Lanczos (1952) process when A “ AT but differs from the Lanczos (1952)

biorthogonalization process. By contrast with the Lanczos process, the Arnoldi (1951) process and the Golub

and Kahan (1965) bidiagonalization, it must be initialized with two vectors b and c. Saunders et al. (1988)

note that, as a consequence, the tridiagonalization can be used to solve the pair of systems Ax “ b and

ATy “ c at the same time. The resulting algorithms are named usymqr and usymlq, respectively. Reichel

and Ye (2008) remark that the process also applies with rectangular matrices A, and that usymqr can be

used to solve least-squares problems, but only conduct numerical experiments on square systems.

Because our approach consists in transforming (1) to saddle-point systems with an identity block in place

of M, we do not discuss preconditioning issues in this paper. We assume that the user selected M so that it

corresponds to a natural norm for measuring residuals and solutions. Applying further preconditioning would

change those norms, and therefore, the problems in (2).

The remainder of the paper is organized as follows. We first establish that, for rectangular A, usymlq

solves a least-norm problem, and provide complete implementation details of both usymqr and usymlq.

We show how both methods mesh together to solve both problems of (3) in one pass. Although usymqr

and usymlq individually require more storage and have higher computational cost than methods based on

the Golub and Kahan (1965) bidiagonalization, their combination yields a method with cost and storage

comparable to that of minres or symmlq applied to (1). Our numerical experiments show that our approach
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results in a similar overall number of operator-vector products as minres to decrease the residual by a

comparable amount. The main difference is that we monitor convergence differently than in minres. We

construct approximate solutions to (1) by exploiting the formulation and the related block structure of (2).

In that respect, the strutured backward error analysis detailed in Section 5 shows that monitoring the two

sets of approximate solutions yields an acceptable solution to (4) provided that the blocks are not too ill

conditioned. lsqr and craig could be used to solve the two subproblems separately, whereas usymlqr solves

them concurrently. In Section 7, we explain how to take the elliptic norms of (3) into account and relate

usymlqr to a block-Lanczos approach applied to (4).

Contributions

There are four main contributions: (i) we provide full implementation details on both usymqr and usymlq

for the simultaneous solution of (3) with M “ I; (ii) we provide insight into the performance of the

usymqr/usymlq combination compared to minres applied to (1); (iii) we describe the solution of regularized

problems; and (iv) we provide a variant of the orthogonalization process to general metrics M.

Related research

Reichel and Ye (2008) employ the orthogonal tridiagonalization process of Saunders et al. (1988) to derive a

minimum-residual method for rectangular systems. Their method is named glsqr, and is identical to the

method usymqr proposed by Saunders et al. (1988) for square systems. However, all numerical experiments

in (Reichel and Ye, 2008) are performed on square systems.

Golub, Stoll, and Wathen (2008) solve two square systems Ax “ b and ATy “ c in a scattering amplitude

estimation application. Their approach consists in applying glsqr twice, once to each system. They do not

consider usymlq.

Orban and Arioli (2017) propose families of methods for systems of the form (4) that are also allowed to

contain regularization. They all consist in first shifting the system to obtain a right-hand side with either

b “ 0 or c “ 0, and subsequently shifting the solution. The shifted system is interpreted as a regularized

least-squares problem in elliptic norms.

Notation

The notation ei indicates the i-th canonical basis vector, and Ik is the k-by-k identity matrix. We use bold

lowercase latin letter to denote full-space vectors and corresponding lightface letters to denote their expression

in the basis of a Krylov-like subspace, e.g., x “ Qx, with the exception of ck and sk, which denote a cosine

and a sine participating in an orthogonal transformation. We use 0 to denote the zero (column) vector

of appropriate size. All vectors are column vectors. For aesthetic reasons, we sometimes write a vector

componentwise x “ pξ1, . . . , ξnq in the text instead of x “
“

ξ1 ¨ ¨ ¨ ξn
‰T

.

2 Background and motivation

Our approach can be motivated using
„

I A

AT

 „

s
t



“

„

b
c



, (4)

where we assume that A has full column rank so that (4) possesses a unique solution (Benzi et al., 2005,

Theorem 3.1). In Section 7, we describe modifications allowing changes in the metric used to measure s that

yield a procedure for the solution of (1).

Saunders et al. (1988) introduce an iterative process to tridiagonalize a general square matrix by way of

orthogonal transformations.
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By the end of iteration k, Algorithm 1 has generated matrices Uk “
“

u1 . . .uk
‰

and Vk “
“

v1 . . .vk
‰

with

theoretically orthonormal columns such that

AVk “ UkTk ` βk`1uk`1e
T
k “ Uk`1Tk`1,k (5a)

ATUk “ VkT
T
k ` γk`1vk`1e

T
k “ Vk`1T

T
k,k`1, (5b)

where

Tk “

»

—

—

—

—

–

α1 γ2

β2 α2

. . .

. . .
. . . γk
βk αk

fi

ffi

ffi

ffi

ffi

fl

, Tk`1,k “

„

Tk

βk`1e
T
k



, Tk,k`1 “
“

Tk γk`1ek
‰

.

Algorithm 1 Saunders-Simon-Yip (SSY) Tridiagonalization

Require: A, b, c
1: u0 “ 0, v0 “ 0
2: β1u1 “ b, and γ1v1 “ c, pβ1, γ1q ą 0 so that }u1}2 “ }v1}2 “ 1
3: for k “ 1, 2, . . . do

4: q “ Avk ´ γkuk´1, αk “ u
T
kq

5: βk`1uk`1 “ q´ αkuk, βk`1 ą 0 so that }uk`1}2 “ 1

6: γk`1vk`1 “ A
T
uk ´ βkvk´1 ´ αkvk, γk`1 ą 0 so that }vk`1}2 “ 1

7: end for

In exact arithmetic, we have UT
kAVk “ Tk, so that after n iterations, singular values are preserved in exact

arithmetic. Note that (5) differs from the outcome of the Lanczos (1952) biorthogonalization process for

square matrices A, which also produces tridiagonal Tk but theoretically biorthogonal Wk and Yk such that

WT
kYk “ I, YT

kAYk “ Tk and WT
kA

TWk “ TT
k , so that eigenvalues, not singular values, are preserved after

n iterations. Contrary to the biorthogonalization process, Algorithm 1 equally applies to rectangular matrices.

An approach to solving the least-squares problem in (3) is to seek xk “ Vkxk and select xk so as to

minimize the norm of the residual b ´ Axk “ Uk`1pβ1e1 ´ Tk`1,kxkq. Because Uk`1 has orthonormal

columns, this means finding xk P R
k as a solution of

minimize
x

}β1e1 ´Tk`1,kx}. (6)

To compute an approximate solution of the least-norm problem in (3), we seek yLk “ Uk`1y
L
k where yLk P R

k`1

solves

minimize
y

}y} subject to TT
k`1,ky “ γ1e1, (7)

see (Saunders et al., 1988, §5). If ATy “ c is compatible, (7) possesses a unique solution, even though Tk

could be singular.

If one could guarantee that Tk is nonsingular, it would be possible to devise a conjugate-gradient-type

method that seeks approximate solutions xCk :“ Vkx
C
k and yCk “ Uky

C
k where xCk P R

k and yCk P R
k are

found by imposing the Galerkin conditions UT
k pb ´AxCk q “ 0 and VT

k pc ´ATyCk q “ 0. Introducing the

definition of xCk and yCk into (5a) and (5b), we obtain the tridiagonal systems

Tkx
C
k “ β1e1 and TT

ky
C
k “ γ1e1. (8)

Saunders et al. (1988) call the methods defined by (6) and (7) usymqr and usymlq, respectively. When

A is square and symmetric, usymqr and usymlq coincide with minres and symmlq of Paige and Saunders
(1975), respectively, and the method based on (8) coincides with the conjugate gradient method.

usymqr is referred to as glsqr by Reichel and Ye (2008) and Golub et al. (2008), though it does not

reduce to lsqr (Paige and Saunders, 1982) in any particular case.
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For all i, j ě 0, the vectors ui and vj satisfy

u2i P Spantb, pAAT
qb, . . . , pAAT

q
i´1b,Ac, . . . , pAAT

q
i´1Acu, (9a)

u2i`1 P Spantb, pAAT
qb, . . . , pAAT

q
ib,Ac, . . . , pAAT

q
i´1Acu, (9b)

v2j P Spantc, pATAqc, . . . , pATAqj´1c,ATb, . . . , pATAqj´1ATbu, (9c)

v2j`1 P Spantc, pATAqc, . . . , pATAqjc,ATb, . . . , pATAqj´1ATbu. (9d)

Methods based on the Golub and Kahan (1965) process such as lsqr (Paige and Saunders, 1982) and

craig (Craig, 1955) use a single starting vector but, much like Algorithm 1, build left and right orthonor-
mal bases. LSQR is appropriate for the least-squares problem in (3) and can be initialized with b. It

generates left and right orthonormal vectors that form a basis for Spantb, pAAT
qb, . . . , pAAT

q
i´1bu and

SpantATb, pATAqATb, . . . , pATAqi´1ATbu, respectively. Similarly, CRAIG is appropriate for the least-norm

problem in (3) and can be initialized with c. It generates the left and right orthonormal vectors that form a

basis for SpantAc, . . . , pAAT
q
j´1Acu and Spantc, pATAqc, . . . , pATAqj´1cu, respectively. Thus Algorithm 1

can be interpreted as interleaving and orthogonalizing the LSQR and CRAIG orthogonal sequences.

Regarding the solution of (1), our only assumption is that c P RangepAT
q. Under this assumption, both

problems in (3) are feasible, so that both systems in (2) are consistent, and so is (1).

The following property states that usymqr applied to rank-deficient least-squares problems identifies the

minimum least-squares solution. The proof is similar to that of (Fong and Saunders, 2011, Theorem 4.2).

Theorem 1 If c P RangepAT
q, usymqr finds the minimum-norm solution of the least-squares problem in (3).

Proof. Any solution x of the least-squares problem in (3) with M “ I satisfies ATAx “ ATb. Let x‹ be the

solution identified by usymqr, sx be another solution and d :“ sx´ x‹. Then, ATAd “ 0 and thus, Ad “ 0.

By construction, there exists k such that x‹ P RangepVkq, i.e., there exists x‹ P R
k such that x‹ “ Vkx‹.

For all j ě 0, (9c)–(9d) are satisfied and only v1 has a component along c. Thus, dTx‹ “ dTVkx‹ “ dTv1ξ1,

where ξ1 is the first component of x‹. However, our assumption that c P RangepAT
q implies dTc “ 0 and

therefore dTx‹ “ 0. Consequently,

}sx}2 ´ }x‹}
2
“ }x‹ ` d}2 ´ }x‹}

2
“ }d}2 ` 2dTx‹ “ }d}

2
ě 0,

and x‹ is the minimum-norm least-squares solution.

3 Implementation

In this section, we give complete implementation details of usymqr and usymlq for the solution of (4). We

begin with usymqr, and then explain how it meshes with usymlq in order to solve both problems of (3) at

once. This will put us in good position to explain how to take ellipsoidal norms into account at minimal cost.

3.1 Least-squares subproblem: Usymqr iteration

In this section, we focus on the problem

„

I A

AT

 „

r
x



“

„

b
0



ðñ minimize
x

1
2}Ax´ b}2, (10)

and initialize Algorithm 1 with A, b and c.
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3.1.1 Solution update

The subproblem solved at each iteration of usymqr is the overdetermined linear least-squares problem (6).

The solution xk can be obtained via the QR factorization

Tk`1,k “ Qk`1

„

Rk

0T



, Rk :“

»

—

—

—

—

—

—

—

–

δ1 λ1 ε1

δ2 λ2
. . .

δ3
. . . εk´2

. . . λk´1

δk

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (11)

where QT
k`1 “ Qk,k`1Qk´1,k . . .Q1,2 is a product of reflections, and Rk is upper triangular with three nonzero

diagonals. Then xk is found as the solution of

minimize
x

›

›

›

›

QT
k`1pβ1e1q ´

„

Rk

0T



x

›

›

›

›

. (12)

The subdiagonals of Tk`1,k can be zeroed out by premultiplying with reflections, each of which affects two

rows and three columns. The k-th reflection Qk,k`1 can be represented as

„

k k ` 1

k ck sk
k ` 1 sk ´ck

 „

k k ` 1 k ` 2

sδk sλk
βk`1 αk`1 γk`2



“

„

k k ` 1 k ` 2

δk λk εk
0 sδk`1

sλk`1



, (13)

where elements decorated by a bar are to be updated by the next reflection, and the border indices are row

and column indices. For the purpose of establishing recursion formulae, we define sδ1 :“ α1 and sλ1 :“ γ2. The

k-th reflection zeros out βk`1, i.e.,

δk :“
´

sδ2k ` β
2
k`1

¯
1
2

, ck :“ sδk{δk, sk :“ βk`1{δk. (14)

We then have the recursion formulae

λk “ cksλk ` skαk`1, sδk`1 “ sksλk ´ ckαk`1, (15)

εk “ skγk`2, sλk`1 “ ´ckγk`2. (16)

The effect of QT
k`1 on the right-hand side β1e1 may be described as

„

1 2

1 c1 s1
2 s1 ´c1

 „

β1
0



“

„

φ1
sφ2



,

„

k k ` 1

k ck sk
k ` 1 sk ´ck

 „

sφk
0



“

„

φk
sφk`1



, (17)

with
sφ1 :“ β1, and φk “ ck sφk, sφk`1 “ sk sφk, k “ 1, 2, . . .

Let fk :“ pφ1, . . . , φkq and sfk`1 :“ QT
k`1pβ1e1q “ pφ1, . . . , φk, sφk`1q “ pfk, sφk`1q. Then, the solution of (6)

is xk “ R´1
k fk, and the transformed residual is

QT
k`1pβ1e1q ´

„

Rk

0T



xk “ sφk`1ek`1. (18)

Because Rk is upper triangular, the entire vector xk likely changes at each iteration. Fortunately, we may
update xk directly instead as in (Paige and Saunders, 1975, Equation (4.3)). Indeed,

xk “ Vkxk “ VkR
´1
k fk “Wkfk, Wk :“ VkR

´1
k . (19)

If wj denotes the j-th column of Wk, the identity RT
kW

T
k “ VT

k yields the recursion

w1 :“
v1

δ1
, w2 “

v2 ´ λ1w1

δ2
, wk “

vk ´ λk´1wk´1 ´ εk´2wk´2

δk
, k ě 3.

In turn, this gives the update xk “ xk´1 ` φkwk.
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3.1.2 Residuals

We have from (5a), (11) and (18)

rk “ b´Axk “ Uk`1pβ1e1 ´Tk`1,kxkq “ sφk`1Uk`1Qk`1ek`1 “ Uk`1rk. (20)

Thus,

}rk} “ |sφk`1| “ |sk sφk| “ ¨ ¨ ¨ “ |sksk´1 . . . s1|β1. (21)

From the above expression, it is clear that the residual norm is non-increasing. Note that a simple recursion

for rk is available in case the residual vector is required. The definitions of Uk`1 and Qk`1 together with (20)

yield

rk “ sφk`1

“

Uk uk`1

‰

„

Qk

1



QT
k,k`1ek`1

“ sk sφk
“

Uk uk`1

‰

„

Qk

1



pskek ´ ckek`1q

“ s2k sφkUkQkek ´ skck sφkuk`1

“ s2krk´1 ´ ck sφk`1uk`1.

Note that (11) and (20) together imply TT
k`1,krk “ sφk`1T

T
k`1,kQk`1ek`1 “ 0. In effect, we have

approximated the solution of (10) with that of

„

Ik`1 Tk`1,k

TT
k`1,k 0k

 „

rk
xk



“

„

β1e1
0



.

Finally we need an expression for the optimality residual }ATrk} of the least-squares problem in (10). The
expression (20) combines with (5b) to yield

ATrk “ sφk`1A
TUk`1Qk`1ek`1 “

sφk`1Vk`2T
T
k`1,k`2Qk`1ek`1.

But

TT
k`1,k`2 “

„

TT
k`1

γk`2e
T
k`1



“

»

–

TT
k βk`1ek

γk`1e
T
k αk`1

0 γk`2

fi

fl “

»

–

TT
k`1,k

γk`1e
T
k ` αk`1e

T
k`1

γk`2e
T
k`1

fi

fl ,

so that

TT
k`1,k`2Qk`1ek`1 “

»

–

“

RT
k 0

‰

γk`1e
T
kQk`1 ` αk`1e

T
k`1Qk`1

γk`2e
T
k`1Qk`1

fi

fl ek`1.

It is not difficult to verify that eT
kQk`1ek`1 “ ´ck´1sk and eT

k`1Qk`1ek`1 “ ´ck, and therefore,

TT
k`1,k`2Qk`1ek`1 “

»

–

0
´ck´1skγk`1 ´ ckαk`1

´ckγk`2

fi

fl “

»

–

0
sksλk ´ ckαk`1

sλk`1

fi

fl “

»

–

0
sδk`1
sλk`1

fi

fl .

Finally,

ATrk “ sφk`1p
sδk`1vk`1 `

sλk`1vk`2q, (22)

and by orthogonality,

}ATrk} “ |sφk`1|

b

sδ2k`1 `
sλ2k`1, (23)

which is readily available.
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3.2 Least-norm subproblem: Usymlq iteration

We consider
„

I A

AT

 „

y
z



“

„

0
c



ðñ minimize
y

1
2}y}

2 subject to ATy “ c, (24)

and Algorithm 1 initialized with A, b and c as in subsection 3.1.

3.2.1 Solution update

We use the factorization of Tk`1,k to update an approximate solution of the adjoint system ATy “ c during

the usymqr iterations. Indeed, we now seek an approximation of the form yk :“ Uk`1yk as a solution to the

least-norm problem in (3). After the reflection Qk,k`1, we have the LQ factorizations

TT
k`1,kQk`1 “

“

RT
k 0

‰

and TT
k`1 “

sRT
k`1Q

T
k`1, (25)

where sRk`1 differs from Rk`1 only in the pk ` 1, k ` 1q-th element, denoted sδk`1. This factorization allows
us to rewrite the constraints of (7) as

RT
khk´1 “ γ1e1, hk :“ QT

k`1yk “ phk´1, ηkq P R
k`1. (26)

Because RT
k is lower triangular, we obtain an update for hk´1 “ pη1, . . . , ηk´1q:

η1 “ γ1{δ1, η2 “ ´λ1η1{δ2, ηk “ ´pλk´1ηk´1 ` εk´2ηk´2q{δk, k ě 3, (27)

so that the solution of (7) is yLk “ Qk`1phk´1, 0q. Similarly, yCk`1 “ Qk`1
shk where shk`1 “ phk´1, sηk`1q with

sηk`1 “ ´pλkηk ` εk´1ηk´1q{
sδk`1

solves the second system of (8) at iteration k` 1. Each sηj is updated to ηj “ sηjsδj{δj “ cjsηj when δj becomes

available. As in symmlq (Paige and Saunders, 1975), δk ą sδk so long as βk`1 ‰ 0, so that Rk should be

better conditioned than sRk and the computed hk should be more accurate than the computed shk. Both

yLk :“ Uk`1y
L
k and yCk`1 :“ Uk`1y

C
k`1 may be updated efficiently once we define

sPk`1 :“ Uk`1Qk`1 “
“

p1 ¨ ¨ ¨ pk spk`1

‰

,

using the recursions

yLk “ yLk´1 ` ηkpk

yCk`1 “ yLk ` sηk`1spk`1

pk`1 “ ck`1spk`1 ` sk`1uk`2

spk`2 “ sk`1spk`1 ´ ck`1uk`2.

The recursions are initialized with yL0 :“ 0, sp1 :“ u1, and yC1 :“ sη1sp1.

3.2.2 Residuals

The residual at yLk “ Uk`1y
L
k or yCk`1 “ Uk`1y

C
k`1 is

rk`1 :“ c´ATy

“ γ1v1 ´Vk`1T
T
k`1y ´ γk`2vk`2e

T
k`1y

“ Vk`1pγ1e1 ´TT
k`1yq ´ γk`2vk`2e

T
k`1y. (28)

The definition of Tk yields

TT
k`1y “

„

γ1e1
γk`1e

T
ky ` αk`1e

T
k`1y



.
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Neither yLk nor yCk`1 is directly available, but because

yLk “ Qk`1

„

hk´1

0



,

we have eT
ky

L
k “ sk´1ηk´1 ´ ck´1ckηk and eT

k`1y
L
k “ skηk. Similarly, because yCk`1 “ QT

k`1
shk`1, we obtain

θk`1 :“ eT
k`1y

C
k`1 “ skηk ´ cksηk`1, by identification.

The residual associated to yLk is then

rLk “ ´pγk`1psk´1ηk´1 ´ ck´1ckηkq ` αk`1skηkqvk`1 ´ γk`2skηkvk`2

“ ´pεk´1ηk´1 ` λkηkqvk`1 ´ εkηkvk`2

“ ´δk`1ηk`1vk`1 ´ εkηkvk`2, (29)

where we used the recursions (15) and (27). By orthogonality,

}rLk }
2
“ pδk`1ηk`1q

2
` pεkηkq

2
.

The residual associated to yCk`1 “ Uk`1y
C
k`1 is simpler to calculate because (8) and (28) directly imply

rCk`1 :“ Vk`1pγ1e1 ´TT
k`1y

C
k`1q ´ γk`2vk`2e

T
k`1y

C
k`1 “ ´γk`2θk`1vk`2. (30)

Because vk`2 is a unit vector,

}rCk`1} “ γk`2 |θk`1|.

3.2.3 Computation of z

There remains to determine a recursion for z such that Az “ ´y in (24). In view of (5a), because y must lie

in the range of A, we seek approximations zk “ Vkzk, and note that

Azk “ AVkzk “ Uk`1Tk`1,kzk “ ´Uk`1yk.

Premultiplying both sides of the last equality by UT
k`1 yields the subproblem

Tk`1,kzk “ ´yk. (31)

We premultiply with QT
k and use the QR factorization (11), to obtain

„

Rk

0T



zk “ ´hk,

which is a situation similar to (19). Thus, because hk “ phk´1, 0q for yLk , we may define zLk as the solution of

Rkzk “ ´hk´1.

If we use Wk “ VkR
´1
k from (19), we have

zLk “ Vkz
L
k “ ´VkR

´1
k hk´1 “ ´Wkhk´1 “ zLk´1 ´ ηkwk, (32)

initialized with zL0 :“ 0. By analogy with yCk`1, we define

ĎWk`1 :“ Vk`1
sR´1
k`1 “

“

Wk swk`1

‰

,

with zCk`1 :“ Vk`1z
C
k`1, initialized with zC1 :“ ´sη1 sw1, and updated according to

zCk`1 “ zLk ´ sηk`1 swk`1.
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The next iteration will update wk`1 “ ck`1 swk`1. Thus zCk`1 solves Tk`1z “ ´y
C
k`1, while zLk solves

minimize
z

}Tk`1,kz ` y
L
k }.

In effect, we have approximated the solution of (24) with that of
„

Ik`1 Tk`1,k

TT
k`1,k 0k

 „

yk
zk



“

„

0
γ1e1



.

As before, zCk`1 need not be computed at each iteration, but one final step from zLk to zCk`1 may be taken

after convergence has occurred.

3.3 Complete algorithm

The complete procedure, named usymlqr, is summarized in Algorithm 2. We denote rk the residual of (10),

which can be updated iteratively or directly as b´Axk once }ATrk} is sufficiently small. The estimates yCk
and zCk need not be updated at each iteration but could be computed if }rCk } ă }r

L
k´1}.

Overall, Algorithm 2 stores 6 m-vectors (uk, uk`1, q, pk, spk and yLk ) if rk is not updated iteratively, and

7 n-vectors (vk´1, vk, vk`1, wk´1, wk, xk and zLk ). If yCk`1 should be computed at the end, its storage can

be shared with that of spk`1. If zCk`1 should be computed at the end, its storage can be shared with that of

wk and swk`1.

For comparison, minres requires 7 pn`mq-vectors of storage, which amounts to one extra m-vector and

we are assuming that m ě n. A tally of storage and work for Algorithm 2 and minres appears in Table 1. In

Table 1, “dots/iter” refers to the number of dot products per iterations, “scal/iter” refers to the number of
operations of the form xÐ αx per iteration, where x is a vector and α a scalar, beyond normalization of the

basis vectors, and “axpy/iter” refers to the number of operations of the form xÐ x` αy per iteration, where

y is a vector. The factors of m and n indicate the number of such operations on m-vectors and n-vectors,

respectively. Table 1 shows that the storage and work per iteration is comparable to, or slightly lower than,

minres.

Table 1: Storage and work per iteration of Algorithm 2 and minres for the solution of (4).

vectors dots/iter scal/iter axpy/iter

usymlqr 6m` 7n 1m 2m 5m` 4n
minres 7pm` nq 1pm` nq 1pn`mq 6pm` nq

4 Estimation of norms

4.1 Computing }x}

An estimate of }xk} may be obtained as in (Paige and Saunders, 1982, §5.2). It is possible to reduce Rk to
lower triangular form using appropriate reflections, i.e., Rk

rQT
k “

rLk, where rLk is lower triangular with three

diagonals. Define rpk as the solution of rLkrpk “ fk and note that

xk “ Vkxk “ VkR
´1
k fk “ Vk

rQT
k
rL´1
k fk “ Vk

rQT
k rpk.

By orthogonality, }xk} “ }rpk}, which is easily accumulated. If we denote

rLk “

»

—

—

—

—

—

—

–

9δ1
9λ1 9δ2
9ε1 9λ2 9δ3

. . .
. . .

. . .

9εk´2
9λk´1

rδk

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
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Algorithm 2 usymlqr: Orthogonal Tridiagonalization for the solution of (4)

Require: A, b, c
1: Choose stopping tolerances εLS ą 0 for (10) and εLN ą 0 for (24)
2: set ls converged and ln converged to false

3: u0 “ 0, v0 “ 0, x0 “ 0, w0 “ 0
4: β1u1 “ b, and γ1v1 “ c pβ1, γ1q ą 0 so that }u1}2 “ }v1}2 “ 1

5: q “ Av1, α1 “ u
T
1q

6: c0 “ ´1, s0 “ 0, sφ1 “ β1, λ0 “ 0, ε´1 “ 0, η0 “ 0
7: r0 “ b, }r0} “ sφ1 least-squares residual of (10)

8: sδ1 “ α1, sw1 “ v1{
sδ1, z

L
0 “ 0, z

C
1 “ ´sη1 sw1

9: sη1 “ γ1{sδ1, sp1 “ u1, y
L
0 “ 0, y

C
1 “ sη1sp1

10: for k “ 1, 2, . . . do
11: βk`1uk`1 “ q´ αkuk βk`1 ą 0 so that }uk`1}2 “ 1

12: γk`1vk`1 “ A
T
uk ´ βkvk´1 ´ αkvk γk`1 ą 0 so that }vk`1}2 “ 1

13: sλk “ ´ck´1γk`1, εk´1 “ sk´1γk`1 continue QR factorization

14: δk “ psδ
2
k ` β

2
k`1q

1
2 , ck “ sδk{δk, sk “ βk`1{δk

15: wk “ ck swk

16: if ls converged is false then

17: }A
T
rk´1} “ |

sφk|

b

sδ
2
k `

sλ
2
k optimality residual of (10) at xk´1

18: ls converged “ }A
T
rk´1} ď εLS

19: end if
20: if ls converged is false then
21: φk “ ck sφk, sφk`1 “ sk sφk
22: xk “ xk´1 ` φkwk update solution of (10)

23: rk “ s
2
krk´1 ´ ck sφkuk`1, }rk} “ |sφk`1| residual of (10) at xk

24: end if
25: q “ Avk`1 ´ γk`1uk, αk`1 “ u

T
k`1q

26: λk “ cksλk ` skαk`1, sδk`1 “ sksλk ´ ckαk`1

27: if ln converged is false then
28: ηk “ cksηk

29: }r
L
k´1} “ ppδkηkq

2
` pεk´1ηk´1q

2
q
1
2 residual of (24) at y

L
k´1

30: ln converged “ }r
L
k´1} ď εLN

31: end if
32: swk`1 “ pvk`1 ´ λkwk ´ εk´1wk´1q{

sδk`1

33: if ln converged is false then
34: pk “ ckspk ` skuk`1

35: y
L
k “ y

L
k´1 ` ηkpk update LQ solution of (24)

36: z
L
k “ z

L
k´1 ´ ηkwk update LQ multipliers of (24)

37: }r
C
k } “ γk`1|sk´1ηk´1 ´ ck´1sηk| residual of (24) at y

C
k

38: spk`1 “ skspk ´ ckuk`1

39: sηk`1 “ ´pλkηk ` εk´1ηk´1q{
sδk`1

40: y
C
k`1 “ y

L
k ` sηk`1spk`1 update CG solution of (24)

41: z
C
k`1 “ z

L
k ´ sηk`1 swk`1 update CG multipliers of (24)

42: end if
43: end for
44: return psk, tkq “ prk,xkq ` py

L
k , z

L
k q (or psk, tkq “ prk,xkq ` py

C
k , z

C
k q)

we find rpk “ pπ1, . . . , πk´1, rπkq recursively as

π1 “
φ1
9δ1
, π2 “

φ2 ´ 9λ1π1
9δ2

, πj “
φj ´ 9λj´1πj´1 ´ 9εj´2πj´2

9δj
, pj “ 3, . . . , k ´ 1q,

and

rπk “
φk ´ 9λk´1πk´1 ´ 9εk´2πk´2

rδk
.

Thus, we may update an accumulator ξ2k´1 :“ π2
1 ` ¨ ¨ ¨ ` π

2
k´1 and

}xk}
2
“ ξ2k´1 ` rπ2

k. (33)
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Two additional reflections per iteration are required to reduce Rk to lower triangular form. The first

reflection, designed to zero out the first superdiagonal, can be represented as

«

k k ` 1 k ` 2

k
rδk qλk εk

k ` 1
qδk`1 λk`1

ff

„

k k ` 1

qck qsk
qsk ´qck



“

«

k k ` 1 k ` 2

:δk 0 εk
:λk rδk`1 λk`1

ff

,

and is defined by

:δk “

b

rδ2k ` qλ2k, qck “ rδk{:δk, qsk “ qλ2k{:δk.

The first reflection produces
:λk “ qskqδk`1, and rδk`1 “ ´qckqδk`1,

and is initialized with rδ1 “ δ1, qλ1 “ λ1, and qδ2 “ δ2.

The second reflection, designed to zero out the second superdiagonal, can be represented as

»

–

k k ` 1 k ` 2

k
:δk 0 εk

k ` 1
:λk rδk`1 λk`1

k ` 2 δk`2

fi

fl

„

k k ` 2

9ck 9sk
9sk ´ 9ck



“

»

—

–

k k ` 1 k ` 2

9δk 0 0
9λk rδk`1

qλk`1

9εk qδk`2

fi

ffi

fl

,

and is defined by

9δk “

b

:δ2k ` ε
2
k, 9ck “ :δk{ 9δk, 9sk “ εk{ 9δk.

It produces

9λk “ 9ck:λk ` 9skλk`1, 9εk “ 9skδk`2, qλk`1 “ 9sk:λk ´ 9ckλk`1, qδk`2 “ ´ 9ckδk`2,

and thus the k-th column of Lk.

4.2 Estimating }y}

Because both yLk and yCk are updated using orthonormal directions, we have

}yLk }
2
“

k´1
ÿ

j“1

η2j and }yCk`1}
2
“

k´1
ÿ

j“1

η2j ` sη2k.

In exact arithmetic, the minimum-norm solution y˚ will be identified after at most n, iterations, i.e., y˚ “ yLn`1

so that the error eLk :“ y˚ ´ yLk satisfies

}eLk }
2
“

n
ÿ

j“k

η2j .

If monitoring the error is of interest, Hestenes and Stiefel (1952) suggest choosing a small delay d P N0 and a

tolerance ε ą 0, and using the stopping condition

k
ÿ

j“k´d`1

η2j ď ε2
k
ÿ

j“1

η2j .

The left-hand side of the stopping test yields a lower bound on }eLk´d`1}
2.
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4.3 Estimating }A} and condpAq

We have from (5a) that

VT
kA

TAVk “ TT
k`1,kTk`1,k,

so that the eigenvalues of TT
k`1,kTk`1,k interlace those of ATA. Consequently, the singular values of Tk`1,k

also interlace those of A, and we have }Tk`1,k}F ď }A}F . It is easy to accumulate }Tk`1,k}F during the

iterations of Algorithm 1 using the recursion

}Tk`1,k}
2
F “ }Tk,k´1}

2
F ` γ

2
k ` α

2
k ` β

2
k`1.

In usymqr, we may derive an estimate of condpAq as in (Paige and Saunders, 1982). The factorization (11)

yields TT
k`1,kTk`1,k “ RT

kRk, and therefore

}R´1
k }F “ }T

`
k`1,k}F ď }A

`
}F .

Using now (19), }T`k`1,k}F “ }R
´1
k }F “ }Wk}F and

condpTk`1,kq “ }Tk`1,k}F }T
`
k`1,k}F “ }Tk`1,k}F }Wk}F ď condpAq.

5 Backward error analysis

One way to determine whether a computed solution ps, tq is a good enough approximate solution to (4) might

be to consider the residual norm. It is well known that the residual norm is related to the normwise backward

error : if
›

›

›

›

„

b
c



´

„

I A

AT

 „

s
t


›

›

›

›

ď α

›

›

›

›

„

I A

AT


›

›

›

›

F

›

›

›

›

„

s
t


›

›

›

›

` β

›

›

›

›

„

b
c


›

›

›

›

then there exist perturbations ∆A and ∆B such that
ˆ„

I A

AT



`∆A
˙„

s
t



“

„

b
c



`∆B, (34)

with

}∆A}F ď α

›

›

›

›

„

I A

AT


›

›

›

›

F

, }∆B} ď β

›

›

›

›

„

b
c


›

›

›

›

,

(Rigal and Gaches, 1967). However, the perturbation ∆A in (34) does not necessarily have the same block

structure as the original matrix. As we are solving a structured problem using a structured approach, we

believe it is more appropriate to consider the structured backward error. We seek perturbations in the data

of (4) that maintain the saddle-point structure, i.e., perturbations of the form
„

I A`∆A

AT
`∆AT

 „

s
t



“

„

b`∆b
c`∆c



. (35)

Given a computed solution ps, tq of (4), a structured backward error analysis asks the question: is ps, tq the

exact solution of a nearby system of the form (35)? If the resulting perturbations ∆A, ∆b, and ∆c can be

made small enough relative to A, b, and c, then we may be satisfied with ps, tq as a computed solution of (4).

Clearly, the condition (35) is more stringent than (34). Sun (1999) gives examples in which the structured

backward error for saddle point problems is arbitrarily larger than the unstructured one. Extending the

results of Sun (1999), Xiang and Wei (2007) define a structured nearness measure γλ,µps, tq as the optimal

objective value of the constrained optimization problem

γλ,µps, tq :“

$

’

’

&

’

’

%

minimize
∆A,∆b,∆c

´

}∆A}2F ` λ
2
}∆b}2 ` µ2

}∆c}2
¯

1
2

subject to

„

I A`∆A

AT
`∆AT

 „

s
t



“

„

b`∆b
c`∆c



,
(36)
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where λ and µ are weights that may be adjusted to emphasize one perturbation more than another. An

interesting selection is λ‹ :“ }A}F {}b} and µ‹ :“ }A}F {}c}, which yields the normwise relative measure

γSps, tq “

˜

ˆ

}∆A}F
}A}F

˙2

`

ˆ

}∆b}

}b}

˙2

`

ˆ

}∆c}

}c}

˙2
¸

1
2

“ }A}´1
F γλ‹,µ‹

ps, tq. (37)

If γSps, tq is smaller than a chosen tolerance, then ps, tq is the exact solution of a nearby system of the

form (35) to within the same tolerance. This criterion can be used to determine when to stop the iteration.

Xiang and Wei (2007) establish that

γλ,µps, tq
2
“
λ2

θλ
}rb}

2
`
µ2

θµ
}rc}

2
´ 2

λ2µ2

θ
prT
b sqpr

T
c tq

`
λ2µ2

pθλ ´ 1q

θλθ
prT
b sq

2
`
λ2µ2

pθµ ´ 1q

θµθ
prT
c tq

2,

(38)

where rb :“ b´ s´At, rc :“ c´ATs, θλ :“ 1` λ2}t}2, θµ :“ 1` µ2
}s}2, and θ :“ 1` λ2}t}2 ` µ2

}s}2.

It is also possible to monitor the convergence of the least-squares subproblem (10) and the least-norm

subproblem (24) separately. This approach simplifies the stopping criterion, and can be justified as follows.

Suppose pr,xq and py, zq are good approximate solutions to (10) and (24), respectively, in the sense that

„

I A`∆A1

AT
`∆AT

1

 „

r
x



“

„

b`∆b
0



, and

„

I A`∆A2

AT
`∆AT

2

 „

y
z



“

„

0
c`∆c



,

where
}∆A1}F

}A}F
,
}∆A2}F

}A}F
,
}∆b}

}b}
,
}∆c}

}c}
ď ε.

Let ps, tq “ pr,xq ` py, zq. It is straightforward to verify that there exist perturbations ∆b2 and ∆c2 such

that
„

I A`∆A2

AT
`∆AT

2

 „

s
t



“

„

b`∆b2

c`∆c2



,

where

}∆b2} ď εp}b} ` 2}A}F }x}q, }∆c2} ď εp}c} ` 2}A}F }r}q.

In other words, provided the problem is not too badly scaled (in that }A}F }x} is not much larger than }b}

and }A}F }r} is not much larger than }c}), then ps, tq is a good approximate solution as per (35).

We provide details on the two separate subproblems in the next sections.

5.1 Least-squares subproblem

In the least-squares problem, c “ 0 and we impose ∆c “ 0. In the notation of (10), we rename sÐ r and

tÐ x in (35). In other words, we seek peturbations of the form

„

I A`∆A

AT
`∆AT

 „

r
x



“

„

b`∆b
0



.

Xiang and Wei (2007) indicate that the relevant measure results from taking the limit when µÑ8 in (38).

In addition, in Usymqr, rb “ b´ r´Ax “ 0 by construction—see (20). Thus,

γλ‹,8
pr,xq2 “

}ATr}2

}r}2
`

}A}2F

}b}2 }r}2
pxTATrq2
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and, as in (37),

γLSpr,xq :“ }A}´1
F γλ‹,8

pr,xq “

˜

}ATr}2

}A}2F }r}
2 `

pxTATrq2

}b}2 }r}2

¸
1
2

. (39)

In theory, in Usymqr, xk P RangepVkq while ATrk is a combination of vk`1 and vk`2, and thus xT
kA

Trk “ 0.

Unfortunately, in finite-precision arithmetic, orthogonality is soon lost, and the second term in (39) may

contribute to the backward error. In any case, note that

}ATr}

}A}F }r}
ď γLSpr,xq ď

}ATr}

}A}F }r}

˜

1`
}A}2F }x}

2

}b}2

¸
1
2

.

Thus, provided }A}F }x} is not much larger than }b}, we can accept pr,xq as computed solution and stop

updating pr,xq when

}ATr}

}A}F }r}
ď tol. (40)

This stopping condition is often used in the iterative solution of least-squares problems (Paige and Saunders,

1982; Fong and Saunders, 2011). If }A}F }x} " }b}, the backward error (39) can be computed exactly at the

cost of an extra dot product between x and ATr as given in (22).

5.2 Least-norm subproblem

In the least-norm problem, we have b “ 0 and impose ∆b “ 0. In the notation of (24), we rename sÐ y

and tÐ z in (35). In other words, we seek perturbations of the form

„

I A`∆A

AT
`∆AT

 „

y
z



“

„

0
c`∆c



.

Additionally, rb “ ´py`Azq “ 0 by construction of z—see Section 3.2.3. We take the limit as λÑ8 in (36)

and obtain

γ8,µ‹
py, zq2 “

}A}2F }c´ATy}2

}c}2 ` }A}2F }y}
2 `

}A}4F }y}
2

}c}2p}c}2 ` }A}2F }y}
2
q

´

pc´ATyqTz
¯2

,

and, as in (37) and (39),

γLNpy, zq “ }A}
´1
F γ8,µ‹

py, zq

“

˜

}c´ATy}2

}c}2 ` }A}2F }y}
2 `

}A}2F }y}
2

}c}2p}c}2 ` }A}2F }y}
2
q

´

pc´ATyqTz
¯2
¸

1
2

. (41)

By construction, zk P RangepVkq while c ´ ATy is a combination of vk`1 and vk`2. If orthogonality is

maintained, the above expression reduces to

γLNpy, zq “
}c´ATy}

b

}c}2 ` }A}2F }y}
2
, (42)

which is similar to the unstructured normwise relative backward error for ATy “ c. It is also possible

to implement (41) directly at the expense of an extra dot product between (29) and (32), or to bound

pc´ATyqTz ď }c´ATy} }z}.
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6 Numerical experiments

Our implementation of usymlqr in the Julia1 language is available from github.com/JuliaSmoothOptimizers/

Krylov.jl. We stop updating x as soon as convergence occurs for (10), and stop updating y and z as soon as

convergence occurs for (24). When one of the two subproblems is solved, subsequent iterations only generate

the quantities necessary to update the iterates of the other one. We compute the residual (20) once at the

end instead of updating it along the iterations.

We perform preliminary experiments on rectangular matrices from the SuiteSparse Matrix Collection2

(Davis and Hu, 2011) that provide an accompanying right-hand side and compare our results with minres

and symmlq. When a tall and skinny matrix is read, it plays the role of A while a short and wide matrix

plays the role of AT. In each case, we scale the matrix so the columns of the tall matrix have unit norm. For

each matrix, we construct (4) where b and c are the accompanying right-hand side and the vectors of ones.

The overall right-hand side pb, cq is subsequently normalized.

For minres applied to consistent systems, we use as convergence criterion

}srk}

}K} }psk, tkq}
ď ε, (43)

where K and sr are the matrix and the residual of (4), respectively, }K} is approximated by the running

estimate of the norm of K, and ε ą 0 is a user-chosen tolerance. The first condition is the optimality condition

corresponding to a minimum-norm residual while the second applies to zero-residual problems. Likewise,

usymlqr uses the stopping condition γLS ď ε and γLN ď ε, where γLS and γLN are defined in (40) and (42),

respectively. usymlqr is also equipped with a stopping condition for zero-residual problems similar to that

of minres but it was never triggered in the experiments below. All our experiments use ε “ 10´8. In the

case of minres, this corresponds to setting atol=1.0e-8 and rtol=0. Because the subspaces explored by

usymlqr are related to those explored by methods based on the Golub and Kahan (1965) process, we include

convergence curves corresponding to lsqr (Paige and Saunders, 1982) and the method of Craig (1955) for

comparison purposes. The reader should keep in mind that lsqr and craig each solve one of (3), while

usymlqr solves both simultaneously. The maximum number of iterations of usymlqr, lsqr and craig is

set to the larger dimension of A while the maximum number of minres iterations is set to m` n.

The figures report the backward error appropriate for each method: for lsqr and the least-squares part of

usymlqr, we report (40), for craig and the least-norm part of usymlqr, we report (42), and for minres,

we report (43).

Figure 1 and Figure 2 summarize the results for two over-determined problems arising from a least-squares

application and two under-determined problems arising from linear optimization. The figures make it apparent

that usymlqr stops updating the solution of one of (10) and (24) before the other. On problem wellc1850,

usymqr and usymlq terminate after 456 and 495 iterations, respectively, while minres terminates after 699

iterations. On problem illc1850, those numbers are 1, 204, 1, 647 and 2, 199, respectively. The situation is

similar for the remaining problems.

Problem lp d6cube is row rank deficient but the under-determined system is nonetheless consistent and

convergence occurs in a small number of iterations. Problem lp czprob has full row rank and is consistent. In

both cases, we observe that minres requires more iterations to converge.

It is clear in the plots that neither }ATr} nor }ATy ´ c} is monotonic, while the minres residual is

monotonic by design. However, the results illustrate the fact that usymlqr can terminate in fewer iterations,

and therefore fewer operator-vector products, than minres. Although certain curves show a staircase behavior,

it is not clear that there is a relation between the minres iterations and those of usymlqr.

We caution the reader that we explicitly assume that (4) is consistent. On inconsistent systems, usymlq,

and therefore usymlqr, diverges much as in the same way as craig or symmlq would diverge.

1
julialang.org

2
Formerly the University of Florida Sparse Matrix Collection.

github.com/JuliaSmoothOptimizers/Krylov.jl
github.com/JuliaSmoothOptimizers/Krylov.jl
https://julialang.org
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well1850 (1850 x 712), tol=1.0e-08

LS USYMLQR
LN USYMLQR
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Figure 1: Convergence curves on under-determined problems from the SuiteSparse Matrix Collection. The horizontal axis
represents iterations. In red and blue are the backward errors (40) and (42), respectively, along the usymlqr iterations. The green
dotted curve is the backward error (43) for (4) along the minres iterations. The black dash-dotted curve is the backward error (40)
along lsqr iterations, while the gray curve is the backward error (42) along the craig iterations.

7 Extension: Tridiagonalization in elliptic norms

In this section, we focus on the general saddle-point system (1) and assume that the x part of the solution is

naturally measured in a norm defined by the symmetric and positive-definite matrix N. Consider the scaled
formulation of (1)

«

M´ 1
2

N´ 1
2

ff«

M A

AT

ff«

M´ 1
2

N´ 1
2

ff«

M
1
2 r

N
1
2x

ff

“

«

M´ 1
2b

N´ 1
2 c

ff

. (44)

We apply Algorithm 1 to the scaled operator M´ 1
2AN´ 1

2 with initial vectors M´ 1
2b and N´ 1

2 c and

perform the change of variable uk ÐM´ 1
2uk and vk Ð N´ 1

2vk, and obtain Algorithm 3.

Algorithm 3 Saunders-Simon-Yip Tridiagonalization in Elliptic Norms

Require: A, b, c, M
´1

, N
´1

1: β1Mu1 “ b, and γ1Nv1 “ c, pβ1, γ1q ą 0 so that }u1}M “ }v1}N “ 1
2: for k “ 1, 2, . . . do

3: q “ Avk ´ γkMuk´1, αk “ u
T
kq

4: βk`1Muk`1 “ q´ αkMuk, βk`1 ą 0 so that }uk`1}M “ 1

5: γk`1Nvk`1 “ A
T
uk ´ βkNvk´1 ´ αkNvk, γk`1 ą 0 so that }vk`1}N “ 1

6: end for
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LS USYMLQR
LN USYMLQR

MINRES
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LN CRAIG
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LS USYMLQR
LN USYMLQR
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LN CRAIG

Figure 2: Convergence curves on under-determined problems from the SuiteSparse Matrix Collection. The horizontal axis
represents iterations. In red and blue are the backward errors (40) and (42), respectively, along the usymlqr iterations. The green
dotted curve is the backward error (43) for (4) along the minres iterations. The black dash-dotted curve is the backward error (40)
along lsqr iterations, while the gray curve is the backward error (42) along the craig iterations.

Line 1 of Algorithm 3 is compact notation for the sequence of operations

1. solve Mu1 “ b;

2. compute β1 “ pu
T
1bq

1
2 ;

3. scale u1 Ð u1{β1 if β1 ‰ 0,

and similarly for v1. Lines 4–5 are similar.

Algorithm 3 generates matrices Uk and Vk that are M- and N-orthgonal, respectively. The process is

characterized by the identities

AVk “MUkTk ` βk`1Muk`1e
T
k “MUk`1Tk`1,k (45a)

ATUk “ NVkT
T
k ` γk`1Nvk`1e

T
k “ NVk`1T

T
k,k`1. (45b)

Provided systems with matrices M and N can be solved efficiently at each iteration, it suffices to replace

Algorithm 1 with Algorithm 3 to solve (1) with the usymqr/usymlq combination. An example such situation

occurs in certain regularization methods for constrained optimization, where N is typically a multiple of the

identity and M is a limited-memory quasi-Newton approximation whose inverse can be applied efficiently—see,

e.g., (Arreckx and Orban, 2018).

Above, N may be viewed as a preconditioner as it preserves the zero bottom block of (1), and can be

chosen to cluster the singular values of M´ 1
2AN´ 1

2 . However, we do not favor this interpretation in terms of
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preconditioner as it does not persist in the presence of regularization, where both M and N define the norms

in which the least-squares and least-norm residuals should be measured, and those norms are typically defined

by the user beforehand.

Golub et al. (2008) futher Saunders, Simon, and Yip’s interpretation of Algorithm 1 as a block Lanczos

method on an augmented system and their results elegantly carry over to the present framework. Pasting (45)

together results in

„

M A

AT

 „

Uk

Vk



“

„

M
N

 „

Uk

Vk

 „

Ik Tk

TT
k



`

„

βk`1Muk`1e
T
k

γk`1Nvk`1e
T
2k



, (46)

i.e., a block-lanczos process applied to the operator of (4) in the norm defined by blkdiagpM,Nq. The Lanczos

vectors have the form puk,0q or p0,vkq. The permutation

Π :“
“

e1 ek`1 e2 ek`2 . . . ek e2k
‰

,

introduced by Paige (1974) restores the order in which Algorithm 3 generates them:

„

Uk

Vk



ΠT
“

„

u1 0 u2 . . . uk 0
0 v1 0 . . . 0 vk



.

The permutation Π also shuffles the small symmetric saddle-point operator in the right-hand side of (46) to

block tridiagonal form with blocks of size 2:

Π

„

Ik Tk

TT
k



ΠT
“

»

—

—

—

—

–

α1 βT
2

β2 α2

. . .

. . .
. . . βT

k´1

βk´1 αk

fi

ffi

ffi

ffi

ffi

fl

,

αj :“

„

1 αj
αj



,

βj`1 :“

„

0 βj`1

γj 0



.

As a result of this block-Lanczos interpretation usymlqr sometimes terminates in about half as many

iterations as minres. Figure 3 illustrates convergence curves on such a problem.

0 50 100 150 200 250

10 8

10 6

10 4

10 2

100

well1033 (1033 x 320), tol=1.0e-08

LS USYMLQR
LN USYMLQR

MINRES
LS LSQR
LN CRAIG

Figure 3: Convergence curves on an over-determined problems from the SuiteSparse Matrix Collection. The horizontal axis
represents iterations. In red and blue are the backward errors (40) and (42), respectively, along the usymlqr iterations. The green
dotted curve is the backward error (43) for (4) along the minres iterations. The black dash-dotted curve is the backward error (40)
along lsqr iterations, while the gray curve is the backward error (42) along the craig iterations.

We implemented Algorithm 3 as a generalization of Algorithm 1. Only the basis-generation process is

affected by the change and the updated implementation requires extra storage for vectors Mu and Nv at

iterations k´1, k, and k`1. We illustrate the behavior of the backward errors (39) and (41) and compare them

to (43) generated by minres with preconditioner blkdiagpM,Nq. Our test systems were generated during the
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iterations of an interior-point method for convex quadratic optimization and are described by Orban (2015a).

The quadratic problems originate from the CUTEst collection (Gould, Orban, and Toint, 2015). All systems

are available in MatrixMarket format (Orban, 2015b) and have the form (4) with M “ H`D`ρI, where H is

the Hessian of the objective, D is diagonal and positive semi-definite, and ρ ą 0 is a regularization parameter.

The leading block M becomes increasingly ill conditioned as the interior-point iteration counter grows. In

each experiment, we select N “ I. For our current purpose of illustrating Algorithm 3, we precompute the

Cholesky factorization of M prior to calling usymlqr, and perform a forward and a backsolve each time

applying M´1 is requested.

Figure 4 illustrates the behavior of usymlqr, lsqr, craig and minres on problems primalc1 and dualc1

at interior-point iterations 0, 5 and 10. The elliptic-norm variants of lsqr and craig are as described by
Orban and Arioli (2017). Note that as the interior-point iteration counter increases, the convergence curves

of usymlqr, lsqr and craig become progressively more oscillatory. On primalc1, usymlqr and minres

perform comparably at interior-point iterations 0 and 5, but the convergence of usymlqr deteriorates at

iteration 10, probably due to the increasing ill conditioning of M. On dualc1, we set the tolerance to 1.0e´7

at iteration 0. usymlqr manages to decrease both (39) and (41) below 1.0e´7, The measure (39) drops

below 1.0e´8 after an additional iteration, but (39) diverges soon after. By contrast, the minres residual

drops below 1.0e´8 after 15 iterations. usymlqr terminates earlier than minres at interior-point iterations 5

and 10. In all cases however, usymlqr performs comparably to lsqr and craig but has the advantage of

solving both problems in (3) simultaneously.

8 Conclusion

Contrary to the Golub and Kahan bidiagonalization and Lanczos processes, the orthogonal tridiagonalization

of Saunders et al. requires two initial vectors. This distinguishing feature makes it particularly suited to the
solution of symmetric saddle-point systems with a positive definite leading block. Thanks to an appropriate

decomposition of the saddle-point system into a least-squares and a least-norm problem, it is possible to solve

the system in one pass by combining the solutions of the two problems, which can be solved concurrently. An

appropriate structured backward-error analysis provides stopping criteria for the least-squares and least-norm

problems guaranteeing that the combined solution is backward stable for (4). The overall storage and

computational effort is comparable to that of minres.

A side benefit of the present research is to provide a numerical evaluation of usymqr and usymlq on

rectangular problems, as they had so far only been run on square problems in the literature.

usymlqr is closer to symmlq than to minres in that it is only well defined for consistent systems and

will stagnate or diverge on inconsistent systems. Despite the fact that only the usymqr least-squares residual

and usymlq error norm are monotonic, usymlqr is attractive as it often converges in fewer iterations than

minres.
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Figure 4: Convergence curves on problems primalc1 (left) and dualc1 (right) from the CUTEst collection. The horizontal axis
represents iterations. In red and blue are the backward errors (40) and (42), respectively, along the usymlqr iterations. The green
dotted curve is the backward error (43) for (4) with block-diagonal preconditioner along the minres iterations.
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