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Abstract: This paper targets a stochastic energy management problem. We first decouple the stochas-
ticity of the global scenarios to local scenarios. Then, we use spatial decomposition through ADMM and
time decomposition through Dynamic Programming to find approximate optimal values. The algorithms
are validated on toy problems and a convergence discussion about the coupling of ADMM and Dynamic
Programming is started.



Les Cahiers du GERAD G–2018–39 1

1 Introduction

The main idea of this article is to apply a large stochastic programming model to mid-to-long term energy

management. Three types of couplings make this model particularly hard to solve, namely :

• coupling with respect to time,

• coupling with respect to the scenarios via the non-anticipativity constraints,

• coupling with respect to space connecting the differents zones together.

Those couplings make the problem hard as the number of time steps and zones increase. Also, if a

discretization of the stochastic process is used (i.e. a scenario tree is built), the amount of scenarios increases

exponentially with the number of time steps, making direct solving intractable. In order to be able to work

on such a model, scenarios randomness will be relaxed to zonal scenarios.

1.1 Literature review on mid-term management problem

A lot of work was done regarding relaxations of this problem. Focussing on a single zone, works in that

field go back to the 50s, see Wallace and Fleten’s survey [20]. Important papers and algorithms in this field

include Birge’s Bender’s Decomposition application to the model [3], followed by Pereira and Pinto’s SDDP

algorithm (1985, 1988, 1991) [14].

SDDP has been in use since for multireservoir systems. However, those systems are highly dependant of

one another and usually have a small indecomposable number of dams (and control variables). Our model

aggregates multireservoir systems as a single reservoir, but considers a system of many zones, possibly a large

number of them. This makes the problem larger in the amount of control variables and motivates exploration

of methods other than direct SDDP’s application. Our objective is to use Dynamic Programming’s versatility

to handle stochasticity and couple it with an Operator Splitting Method, namely ADMM.

Dynamic Programming [1] is a classical way to deal with multistage problems. It enables us to split the

problem in multiple (hopefully) small problems through state variables discretization. Efficient stochastic

programming methods spans from this method, namely Stochastic Dual Dynamic Programming presented

before and Approximate Dynamic Programming (ADP) [15]. A main difficulty of basic Dynamic Program-

ming methods follows from the discretization : as the number of state variables grows, computation time

increases exponentially. This is known as the curse of dimensionnality, which motivates the decomposition of

the state variables through ADMM (or the use of refined Dynamic Programming algorithms such as ADP).

Operator splitting methods are well known to solve convex optimisation problems. Back in [10], Lions

and Mercier showed the possibility of solving some coupled convex optimisation problems through finding

the zero of the sum of two monotone operators. Many methods spanned from this, between others Spingarn’s

method [19], Gabay’s ADMM [3] and many other proximal methods, surveyed in [13]. Additionnal details

on different operator splitting algorithms can be found in Lenoir and Mahey’s survey [9].

In Section 2 we will present a quick overview of multistage stochastic programming problems, then apply

it to our hydro-thermal energy management model, as presented in [11]. In Section 3, we will elaborate on

the difficulties of the model, then give insights into potential algorithms to solve it. Some numerical results

will follow in Section 4.

2 Stochastic multizonal model

We start by giving an abstract model to linear multistage stochastic programming problems :

min
xt

Eξ
T∑
t=1

ctxt(ξt)

s.t. Axt(ξt) = b(ξt) almost surely

xt(ξt) ∈ X
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where ξt are random processes and X gives bounds on the control or state variables xt. It is worth noting that

xt will also be stochastic, following from the random processes ξt. This kind of problem requires optimizing

an expectation which makes significantly harder the solving of the problem (see [7] for an intuition of why

this happens). If only b(ξt) is stochastic, then the problem is convex by its linearity [4].

An important remark here is that solving this kind of problem directly without discretizing the random

variables is hard. A way to solve this is therefore to discretize ξt, building a scenario tree in the process. The

amount of scenarios rises exponentially with the number of time steps ; as a quick example, the scenario tree

of a 10 time steps problem with 5 realizations of the random events at each time steps make a scenario tree

of the order of 10 millions of scenarios, clearly intractable to solve directly.

2.1 General formulation of the model

We consider a set Z of spatially-splitted zones (such as geographical zones) where there is a random demand

in a ressource (for example electric energy) for a duration. This time line is split in T time steps indexed by

t ∈ 0 . . . T . The variable dz,t(ξz,t) defines demand of zone z at time t and depends on the random realization

ξz,t. This demand will have to be satisfied through resource generation, either from costly sources pz,t (like

thermal electric generation) which have a piecewise linear cost cz,t or from free (renewable energy) sources

uz,t which are free to use, but limited in capacity through the state xz,t. This free resource’s production

capacity is filled through another random variable iz,t(ξz,t), which can for example be seen as hydro influx

in the dam from hydrology patterns.

The random sources are held in the demand variable dz,t(ξz,t) and free sources inflow iz,t(ξz,t). The

control variables pz,t, uz,t and state variable xz,t will therefore depend from those variables, also making

them random. To simplify the notation, we will use the ξt for the random realizations of all zones at time t

and ξz for the random realizations of zone z for all time steps.

The decision variables are all splitted for each zone. What makes the problem hard is the interconnectivity

between the different zones. The zones can import and export missing or extra resource from each other

through a set of transportation lines e = (z, z′). These connections can be seen as a directed graph with each

zone being a node and each arc being a transportation line e ∈ E. The amount of resource transported in

the line e at time step t is a decision variable denoted fe,t with extra cost le for the transport.

We will work on a decision-hazard strategy, meaning decision at time t is made before realization of the

random events at time t. The taken decisions need to satisfy non-anticipativity constraints, which means

the current decision should not depend on future random realisations since they should not be known at this
current time step.

This is the stochastic energy management model in the probability space on which we will work (bold

variables are random). From here on, we will consider the resource being energy, produced from aggregated

thermal sources and hydro power.

min
p,x,u,f

Eξ

[
T∑
τ=1

(∑
z∈Z

czτpzτ +
∑
e∈E

leτ feτ

)
+
∑
z∈Z

Ψz(xzT )

]
(1)

s.t. uzτ + pzτ −
∑
e∈z+

feτ= dzτ (ξzτ )−
∑
e∈z−

feτ , ∀z ∈ Z, τ ∈ [1, T ] (2)

xz,τ= xz,τ−1 − uzτ + izτ (ξzτ ), ∀z ∈ Z, τ ∈ [1, T ] (3)

x ∈ X,u ∈ U,p ∈ P, f ∈ F (4)

with p,x,u ∈ RT×|Z|, f ∈ R|E|×T and non-anticipative, meaning present decision cannot take into account

future random realizations (more on this will be presented in Section 2.2). The sets X,U, P, F define box

constraints on the variables. The decision variable Ψz(xzT ) is a penalty on the last state’s level in order to

keep the final level of renewable energy storage not too low.
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This problem has some properties which make its study interesting. First of all, with multiple time steps,

zones and random realizations, it gets really large. The high number of zones will make the state variable’s

dimension very large, discarding direct application of Dynamic Programming tools. The high number of total

scenarios makes the application of a sampling algorithm as SDDP also pretty hard or not precise enough.

A first thing we could try out is to split the problem into smaller sub-problems. However, recall this model

has 3 different couplings presented in Section 1. These couplings make impossible the direct splitting of the

problem. We will need to relax some constraints and use decoupling tools. We will therefore aim at decoupling

time and space respectively with Dynamic Programming and Operator Splitting schemes. However, to do

this, we first need to make sure the randomness can be considered locally.

2.2 Uncertainties and how to handle the random processes

The pure random variables are the demand and the renewable energy inflow. These end up making the

problem mainly stochastic in its constraints, which we would want satisfied almost surely. This is hard, so

instead for now we will simply discretize the random processes into multiple realizations for each time step

with a certain probability of realization. The grouping of a realization at each time step for zone z is called

a scenario, noted ξz(ν). We will note Nt the number of possible random processes at time t; therefore the

index νt take values between 1 and Nt. The span of these different random events make a scenario tree,

which gets large as the different parameters Z and T get larger.

A scenario combines the random events occuring in all zones for each time step. As a simple example,

consider a problem of two time steps with two zones, each with three possible realizations of each random

variable. A typical scenario would be :

Time 1 Zone 1 has low demand and renewable inflow realization,

Zone 2 has high demand and mid inflow,

Time 2 Zone 1 has high demand and high inflow,

Zone 2 has high demand and low inflow.

In this particular case, if all events are equiprobable, we would have 32×2×2 = 6561 different scenarios,

giving this particular scenario probability 1/6561. This being said, the number of realizations of each random

process here is only 3 (low, mid or high), so definitely small compared to what would be ideal in order to get

a good representation of the underlying probability law. Despite its small nature compared to our end goal,

this exemple is already large, although still tractable.

It is worth noting that this model has a deterministic equivalent problem, where the expectation is

replaced by the weighted sum of each possible scenario by their respective probabilities. However, such a

formulation requires to take into account another property of the problem, namely the presence of so-called

non-anticipativity constraints. In words, those constraints require any decision for two scenarios with the

same past to be the same. It means we have no knowledge on future random realizations at a certain time

step. It therefore prevents us from splitting the problem on the scenarios and simply solve each scenario

independantly of the others. More on this can be found in Rockafellar and Wets’s article [18].

3 Model reformulation and relaxations

There will be need of some relaxations to keep on working on the model as is. We’ll mainly relax the

stochastic constraints in order to be able to work with them properly, then use splitting methods to handle

the other couplings.

3.1 Relaxation on stochasticity

The model’s stochastic processes were originally considered markovian processes. This makes the analysis of

each time step particularly hard since it does not only depend on the state xt, but also on the last random
realization that happened at time t − 1. In order to avoid this, we will consider time-independant random
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events and, therefore, decision at time t only depends on the current state xt. It will enable us to easily use

Dynamic Programming tools, between others.

3.2 Relaxation from global scenarios to local scenarios

Considering all random realizations for each zone significantly increases the amount of scenarios. To avoid

that, one can try merging constraints on the same variables for scenarios with the same local random re-

alizations. This will split the randomness from scenarios to all zones to small local scenarios applicable on

each zone separately. Doing so, one will also be able to merge some variables together as well as decouple

the randomness of the demand constraints between the zones. This kind of aggregation can be found in [21]

and [2].

The idea is therefore to aggregate the demand constraints (2) through the same zonal scenarios. As an

exemple, taking a small toy problem with 2 zones, 2 time steps and 2 random realizations, we get 16 possible

scenarios. After this relaxation, the scenarios will only be seen locally so optimisation will be done on 4

scenarios for zone 1 and 4 scenarios for zone 2. Although we can still find the 16 scenarios by taking the

product of those 4 × 4 scenarios, optimisation is not done on the complete scenario tree and variables are

aggregated to local scenarios. This kind of relaxation makes sense since while optimizing a zonal problem, a

certain zone should not be able to ”see” what random occurences happen in the other zones.

Looking back at those merged constraints, with i defining scenarios with the same local random event

realization :

2∑
i=1

(uiz,t + piz,t −
∑
e∈z+

f ie,t) =

2∑
i=1

(diz,t −
∑
e∈z−

f ie,t)

we observe that the coupled constraints only differ through the variables fe,t. Additionnally, the decision

variable u1 becomes indissociable from u2, since both are meant to consider local randomness of the other

zone which we can not see anymore. It is then safe to aggregate those variables together through u1 = u2.

The same can be said about the decision variable p, hence taking p1 = p2. It is worth noting that, through

the aggregation of the u variables, we will also aggregate the dynamic constraints (3), hence also aggregating

the state variables xiz,τ .

Up to now, we aggregated some demand (and dynamic) constraints and some u, p and x variables. Fol-

lowing from [21], these two aggregations should end up respectively as a relaxation and a restriction. Also,

we should be able to deduce lower bounds if we implement the constraints relaxation alone and upper bounds

if we implement the variables aggregation alone.

This relaxation and restriction allows us to have, at a certain time step, zonal independance of the

randomness. This also means the variable f will not be considered stochastic anymore. We can therefore use

stochastic programming algorithms on each zone if we end up able to decouple the zones.

3.3 Zonal decomposition

The objective here is to look at strategies to decouple the zones from each others in order to simplify the

problem. With the stochastic events now local, the coupling between the different zones is entirely determined

by the transfer variables f within the coupling constraints

uzτ + pzτ −
∑
e∈z+

feτ = dzτ −
∑
e∈z−

feτ ,∀z ∈ Z, τ ∈ [1, T ]

A way to handle this would be to use convex operator splitting algorithms such as the Alternate Direction

Method of Multipliers (ADMM, [5]). This will allow the decomposition of the problem in two steps : the

local subproblems and the transfer problem.
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Formally, the actual problem can be written:

min
p,x,u,f

E

[
T∑
τ=1

(∑
z∈Z

czτpzτ +
∑
e∈E

leτfeτ

)
+
∑
z∈Z

Ψz(xzT )

]

s.t. uzτ + pzτ −
∑
e∈z+

feτ= dzτ −
∑
e∈z−

feτ , ∀z ∈ Z, τ ∈ [1, T ]

xz,τ= xz,τ−1 − uzτ + izτ , ∀z ∈ Z, τ ∈ [1, T ]

x ∈ X,u ∈ U, p ∈ P, f ∈ F

We decouple the f variables using a zonal aggregation of those transfer with a new variable q. We therefore

add the constraint
∑
e∈z− feτ −

∑
e∈z+ feτ = qz,τ and replace the zonal demand constraint using the variable

q instead of f yielding the following model:

min
f,q

T∑
τ=1

∑
e∈E

leτfeτ + min
p,x,u

E

[
T∑
τ=1

∑
z∈Z

czτpzτ +
∑
z∈Z

Ψz(xzT )

]

s.t. uzτ + pzτ + q = dzτ , ∀z ∈ Z, τ ∈ [1, T ]∑
e∈z−

feτ −
∑
e∈z+

feτ = qz,τ

xz,τ= xz,τ−1 − uzτ + izτ , ∀z ∈ Z, τ ∈ [1, T ]

x ∈ X,u ∈ U, p ∈ P, f ∈ F

which, in turn, can be decomposed as :

min
q
L(q) +

∑
z∈Z

Fz(qz) (5)

with

Fz(qz) = min
p,x,u

E

[
T∑
τ=1

czτpzτ + Ψz(xzT )

]
(6)

s.t. uzτ + pzτ + qz = dzτ , ∀z ∈ Z, τ ∈ [1, T ]

xz,τ= xz,τ−1 − uzτ + izτ , ∀z ∈ Z, τ ∈ [1, T ]

x ∈ X,u ∈ U, p ∈ P

L(q) = min
f

T∑
τ=1

∑
e∈E

leτfeτ (7)

s.t.
∑
e∈z+

feτ −
∑
e∈z+

feτ = q

f ∈ F.

For conciseness, we rewrite the constraint of (7) using the Arc-Node matrix A, making this constraint of the

form Af = q.

With L and F being convex, the form taken by (5) suggests the use of operator splitting algorithms.

Indeed, with L(q) and Fz(qz) associated with convex stochastic minimisation problems, the first order op-

timality conditions of this problem take the form 0 ∈ ∂zL(q) + ∂Fz(qz) with ∂zL(q) a subdifferential on qz
and ∂Fz(qz) also a subdifferential, both being montonone operators (see [16] for details on operator splitting
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Algorithm 1 Alternating Direction Method of Multipliers algorithm

Step 1. Zonal subproblems
Compute qk+1

z as solution of

min
qz

Fz(qz) + 〈πkz , qz〉+ λ
2
‖qz − (Afk)z‖2

Step 2. Network subproblem
Compute fk+1 as solution of

min
f

L(f)− 〈πk, Af〉+ λ
2
‖qk+1 − (Af)‖2

Step 3. Dual update:
πk+1 = πk + λ(qk+1 −Afk+1)

schemes applied to optimisation problems). The current formulation enables us to use the ADMM algorithm

to decompose the problem using the q variables as in-between for the two problems and the Af = q constraint

as Augmented Lagrangian penalty. The resulting procedure is as written in Algorithm 1.

It is pertinent to notice that the use of Augmented Lagrangian methods will result in the cost function

to be now piecewise quadratic instead of piecewise linear. This, however, does not affect the convexity of

the problem.

Although we proposed the use of ADMM, other operator splitting methods could be considered, such as

other proximal-type methods [12] [17] or the Separable Augmented Lagrangian Algorithm [6].

3.4 Time decomposition

The sub-problems resulting from the zonal decomposition are still too large to be solved directly. Indeed, even

though the problem’s size significantly decreased, it is still large as T gets larger and with an exponentially-

increasing amount of scenarios. As we increase the amount of scenarios, the number of non-anticipativity

constraints also increases drastically. Also, the zonal problems are still coupled through time, making the

decision space roughly as large as the number of time steps. We will need another way to find zonal solutions,

ideally with enough precision so the ADMM decomposition method can return with a good solution.

A way to solve such a problem is to use Dynamic Programming. Doing so, we end up finding the solution

to many small almost trivial problems through the discretization of the state space for each time step. This

method therefore considers non-anticipativity constraints without having to deal with them explicitly, as well

as solve a single problem per discretization of the state space for each time steps instead of solving as many

problems as scenarios leading to those time steps.

The zonal subproblems we want to solve are, with z ∈ Z fixed :

min
p,x,u

Eξz

[
T∑
τ=1

(
czτpzτ + 〈πkzτ , qzτ 〉+

λ

2
‖qzτ − (Afkτ )z‖2

)
+ Ψz(xzT )

]

s.t. uzτ + pzτ + qzτ = dzτ , ∀z ∈ Z, τ ∈ [1, T ]

xz,τ= xz,τ−1 − uzτ + izτ , ∀z ∈ Z, τ ∈ [1, T ]

x ∈ X,u ∈ U, p ∈ P.

We can rewrite those problems in the following form to use Dynamic Programming :

VT (xT ) =
∑
z

Ψz(xzT )

for t = T − 1, . . . 0

Vt(xt) = min
ut∈Ut

1

Nt+1

Nt+1∑
νt+1=1

Wt(xt, ut, νt+1)
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for vt+1 = 1, . . . , Nt+1

Wt(xt, ut, νt+1) =


minpt+1,ft+1

∑
z cz(pz,t+1(νt + 1)) +

∑
e le,t+1(fe,t+1(νt+1)) + Vt+1(xt+1)

s.t. uzt + pz,t+1 +
∑
e∈z+ fe,t+1 −

∑
e∈z− fe,t+1 = dz,t+1(νt+1), ∀z

xz,t+1 = xxt − uzt + iz,t+1(νt+1), ∀z
pz,t+1 ∈ Pz, xz,t+1 ∈ Xz, ∀z

Using Dynamic Programming gives an approximate solution. The sharpness of the discretization of the

state space should play a big role as we want to merge it with ADMM. Other methods are to be considered in

order to solve this problem. Namely, we could use Benders-type methods (as SDDP [14] or Nested Benders

Decomposition [3]) or Progressive Hedging [18]. Our actual focus will however be on Dynamic Programming.

The main problem coming from using Dynamic Programming is due to the discretization’s sharpness. It

would be interesting to see if an adaptive Dynamic Programming Algorithm, which sharpens the discretization

near the last iteration’s solution and coarsens it far from it, makes things better. Interresting topics on this

would be the convergence properties when coupled with ADMM as well as how to find a good enough solution

in order to start sharpening around it.

4 Numerical results

The end goal of this modelisation is to solve the global problem doing the following steps:

1. decouple the randomness between zones by aggregating contraints,

2. decouple the zones from each others with ADMM,

3. solve zonal sub-problems with Dynamic Programming.

To validate these steps separately and easily, we will use some small scale toy problems. These toy

problems will be defined in the next subsection, followed by the implementation and validations on decoupling

the randomness. The section will be completed by illustrating the combined algorithm based on ADMM and

Dynamic Programming.

4.1 Toy problems

We will define simple toy problems here to get insights about how each component of the algorithms behave.

With small problems, it is also possible to compute a solution to the deterministic equivalent problem, which

would be impossible for a larger problem.

The idea being to see how each algorithm or relaxation works, we will present four different toy problems.

The first one aims to evaluate the effect of randomness aggregation to local random events. This problem,

noted TP1, will be as follows :

TP1 12 global scenarios, all equiprobable,

• 2 zones, 2 time steps, 2 random occurences per time step per zone,

• zero probability for (ξ211, ξ
1
21), making it 12 scenarios instead of 16,

• modeled with its deterministic counterpart.

The local aggregation will take those 12 scenarios and merge them to 8 zonal scenarios, 4 per zone, as

shown in Figure 1.

Next, we will validate Dynamic Programming’s interaction with ADMM. In order to do this, we simulate

scenarios that are already decoupled locally. Many toy problems will be used to do this, each noted TPx,

with x being the toy problem’s number.
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(b)
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(ξ211, ξ
2
21)

Figure 1: Global Scenario Tree for Toy Problem 1 with local aggregation for both zones. The colors represent each local scenario,
and two global scenario sharing the same color on the last node are locally aggregated together. We can observe the different uij
aggregated together to a single variable uj for each zone. Graph a) represents the aggregation from the global scenario tree for
zone 1, where graph c) represents the aggregation from the global scenario tree for zone 2. Graph b) represents the zonal random
events of a zone, hence the result of the aggregation.

TP2 2 time steps

• 2 zones

• 4 random events (2 demands, 2 inflow).

TP3 Has the aim of evaluating the effect of an increasing amount of zones.

• 5 time steps

• 4 zones

• 4 random events.

TP4 Has the aim of evaluating the effect of an increasing amount of time steps.

• 10 time steps

• 2 zones

• 4 random events.

These toy problems will be used as followed.

• The validations on decoupling the randomness are done with TP1.

• The validations on the interraction between ADMM and Dynamic Programming are accomplished on

TP2, TP3 and TP4.

We recall here that we use a decision-hazard policy. Although this may have a reduced effect when T is

large, our toy problems do not have many time steps and, therefore, this may have a significant impact on

optimal solutions.

4.2 Preliminary results on the Global Scenarios to local scenarios relaxation

This toy problem uses scenario generation data provided from Électricité de France (EDF). As explained in

Section 4.1, this validation aims to see on small scale problems whether or not the aggregation of randomness

to local scenarios have a significant impact on the costs. The scenario aggregations are illustrated on Figure 1.

Our objective here is to verify the aggregation’s difference in cost. We will start our analysis by solving,

on many instances, the original problem’s deterministic equivalent form through Matlab’s linprog. A typical

results table is available in Appendix A. Notice that the non-anticipativity constraints need to be hardcoded

and are identified with (red/green/brown)-colored fonts. The different local randomness are also identified

with background colors, although no aggregation on global scenarios are done.
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Next comes computing solutions of the aggregated form of each instance we solved without relaxation.

Tables 3 and 4 in the appendix section give the local scenarios and their given solutions, again using colors

to identify their local randomness and variables restricted with non-anticipative constraints. Injecting those

solutions in the original global scenarios with transfers yields Table 5. For conciseness, Table 1 sums up

scenario total costs for the instance where transfers vary.

Table 1: Cost Comparison Problem with varying transfers.

Cost comparison Scen.1 Scen.2 Scen.3 Scen.4 Scen.5 Scen.6 Scen.7 Scen.8 Scen.9 Scen.10 Scen.11 Scen.12

Without Aggregation (104) 3.5813 3.6084 3.6732 3.7003 3.7466 3.7736 3.9756 4.0027 4.1541 4.1812 4.3832 4.4102
With Aggregation (104) 3.7112 3.7382 3.7454 3.7725 3.7536 3.7807 3.7535 3.7806 4.2752 4.3022 4.2751 4.3021

Comparing the two results sets with different instances of the toy problem gave interesting insights. We

can notice that :

• “trivial” transfer problems give exact total cost for each global scenario.

• when transfers vary from zone to zone, we get that each scenario ends up with a different cost than the

non-relaxed problem, with the same expected total cost.

First, the “trivial” transfers happen when it is particularly easier for a certain zone to satisfy its demand

at a low-cost rate compared to the other zone, making it always advantageous for the low-cost rate zone to

produce the maximum possible transfer toward the high-cost rate zone. For such problems, the exact total

costs for each scenario can be interpreted as global random scenarios naturally falling back to local ones,

significantly reducing its random nature. This actually makes sense, as the main difference between global

scenarios and local ones are the merged constraints:

2∑
i=1

(ui + pi −
∑
e∈z+

f ie) =

2∑
i=1

(di −
∑
e∈z−

f ie)

The variables ui, pi and di are all the same ∀i = 1 . . . 2. The possible “communication” with non-local

scenarios are done through the f variable. In a case where the f i = f are all the same, this aggregated

constraint simply becomes :

2(u + p−
∑
e∈z+

fe) = 2(d−
∑
e∈z−

fe).

Secondly, when transfers vary, our relaxation becomes an approximation of the optimal cost per scenario

and optimal controls vary a little. However, an interesting conclusion is that expected total cost over every

scenario is still the same! The reason why this is true is the fact that the cost function is not affected by the

random events (see [21] for more bounding results with the aggregated stochastic models).

4.3 Preliminary results on ADMM-Dynamic Programming coupling

This section first presents preliminary results about the ADMM-Dynamic Programming Coupling. The

results will consider already-relaxed local scenarios. The toy problems aim to distinguish how close to

optimality the solutions output from the coupled algorithms are. Also, we want to see how the convergence

of this coupling is limited and the effect of different parameters of the problem.

The results on the second toy problem are rather straightforward. With a deterministic equivalent for-

mulation of the problem, Matlab’s Linprog gets, for a certain instance, a total cost solution of 1.0286× 105.

Using the ADMM decomposition scheme to compute the transfers but using Quadprog to solve the zonal

subproblems gave a total cost of 1.0291× 105, so a relative error of 0.04%, concluding that for small enough

problems, the decomposition scheme doesn’t affect that much the final cost. Lastly, using an intuitive imple-

mentation of Dynamic Programming to solve the subproblems, we end up with a solution of 1.0442× 105, so

a relative error around 1.5% . The problem using Dynamic Programming takes a lot more time to compute
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than ADMM coupled with quadprog, but it is hoped the computation time of using Dynamic Programming

will increase linearly instead of exponentially. Other instances of the toy problem gave similar results.

Next we validate the ADMM-Dynamic Programming coupled algorithm on many instances in order to

see if a solution is found with larger problems. First, we take a five time steps and four zones problem.

With a basic discretization of the state space, convergence seemed limited as the algorithm oscillates between

four different solutions (see Tables 6 and 7). Increasing drastically the discretization’s sharpness of the state

space (from 51 to 201) seemed to help reduce the amount of solutions between which the algorithm ends up

oscillating, although oscillation was still observed between 2 solutions (see Table 8). Second and lastly, we

took a ten time steps problem with two zones in order to see if this oscillating effect was still present with

less zones, but more time steps (this effect did not occur on any generated problem of 2 zones and 5 time

steps). The algorithm still ended up oscillating, this time between two solutions. Slightly increasing the

discretization’s sharpness (51 to 81 states) made the algorithm converge to a single solution.

It is worthwhile to say that computation time before ending up oscillating seemed to increase about

linearly with the parameters that were changed. An exception to this was the discretization’s sharpness,

which seemed to slow down more than linearly the Dynamic Programming algorithm. This makes sense,

since increasing the problem’s discretization makes the amount of states that Dynamic Programming must

pass through larger, but it also gives more choices of possible hydro productions, which are computed for

each discretization of the state space for each time step for each local scenario.

5 Conclusion

This technical report gives a general large multi-zonal stochastic model of an energy management problem

on which the coupling of ADMM and Dynamic Programming might find solutions. Different relaxations

from global scenarios to local scenarios are validated for small toy problems, and solutions seem to be of

exact total expected cost. More precisely, for a certain subset of these problems where transfers are trivial,

the relaxation yields exact costs for each scenario. The ADMM-Dynamic Programming based algorithm is

then roughly validated, confirming on such toy problems the linear increase in computation time of Dynamic

Programming as the number of zones and time steps get larger. A difficulty with the coupled algorithm is

confirmed in which convergence is limited by Dynamic Programming’s discretization sharpness, leading the

coupled algorithm to oscillate between a set of solutions.

Future works includes the implementation of an efficient adaptive Dynamic Programming algorithm which

will sharpen its discretization near the last found optimal solution while coarsing it far from the last found

optimal solution. It would be interresting to test it against Benders-type methods, such as SDDP (see [8]

for a first application of SDDP to a similar model). An extensive analysis of the convergence of the ADMM-

Dynamic Programming scheme should theorically be possible, giving bounds depending on the algorithm’s

discretization sharpness. Those bounds could then be used to give an adapted ADMM ending criterion,

making the algorithm stop before it starts oscillating and giving “good enough” results through the found

bounds.

Appendix A
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Appendix B

Table 3: Four zonal scenarios given from the constraints aggregation for zone 1. Background colors are local random events and
can be linked with those of Table 5.

Zone 1 Scenario 1 Scenario 2 Scenario3 Scenario 4

p time 1 26.2601 26.8866
u time 1 7.2336 7.2336
x time 1 281.2500 281.2500

p time 2 26.1633 27.7378 26.7904 28.8287
u time 2 6.2173 6.2173 6.1540 6.1540
x time 2 280.7040 280.7040 280.6707 280.6707

xT 281.3815 281.2500 281.3815 281.2500

Cost Zone 1 (103) 44.871 48.296 46.977 50.402

Appendix C

Table 4: Four zonal scenarios given from the constraints aggregation for zone 2. Background colors are local random events and
can be linked with those of Table 5.

Zone 2 Scenario 1 Scenario 2 Scenario3 Scenario 4

p time 1 67.7577 68.4055
u time 1 3.4326 3.4326
x time 1 125.0000 125.0000

p time 2 65.3429 67.4763 66.0385 68.1719
u time 2 2.9621 2.9621 2.8496 2.8496
x time 2 124.8310 124.8310 124.7718 124.7718

xT 125.2786 125.0000 125.2786 125.0000

Cost Zone 2 (103) 78.121 80.681 79.733 82.293

Appendix D
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Appendix E

Table 6: Values of Dual Variables of a problem with 4 zones, 5 time steps with an oscillation between 4 solutions. Dynamic
Programming discretize the state variable in 51 states. Two of those solutions are explicited here on two separate iteration each.
Notice values of the dual variables for iteration 43 and 47 are the same, as well as values of the dual variables of iteration 44 and
48. Pale blue lines are variables that converged, where red lines are oscillating variables as seen in Table 7.

Iteration 43 Iteration 47 Iteration 44 Iteration 48

1.16400000e+03 1.16400000e+03 1.16400000e+03 1.16400000e+03
1.15200000e+03 1.15200000e+03 1.15200000e+03 1.15200000e+03
1.80000000e+03 1.80000000e+03 1.80000000e+03 1.80000000e+03
1.16400000e+03 1.16400000e+03 1.16400000e+03 1.16400000e+03
1.28377561e+03 1.28377561e+03 1.28377561e+03 1.28377561e+03
1.30000000e+03 1.30000000e+03 1.30000000e+03 1.30000000e+03
1.80000000e+03 1.80000000e+03 1.80000000e+03 1.80000000e+03
1.21400000e+03 1.21400000e+03 1.25622439e+03 1.25622439e+03
1.28600925e+03 1.28600926e+03 1.28600925e+03 1.28600926e+03
1.30000003e+03 1.30000003e+03 1.30000003e+03 1.30000003e+03
1.80000000e+03 1.80000000e+03 1.80000000e+03 1.80000000e+03
1.21399999e+03 1.21399999e+03 1.25399072e+03 1.25399071e+03
1.16400000e+03 1.16400000e+03 1.16400000e+03 1.16400000e+03
1.15200000e+03 1.15200000e+03 1.15200000e+03 1.15200000e+03
1.80000000e+03 1.80000000e+03 1.80000000e+03 1.80000000e+03
1.16400000e+03 1.16400000e+03 1.16400000e+03 1.16400000e+03
1.28580993e+03 1.28580999e+03 1.28580996e+03 1.28581001e+03
1.30000002e+03 1.30000002e+03 1.30000002e+03 1.30000002e+03
1.80000000e+03 1.80000000e+03 1.80000000e+03 1.80000000e+03
1.21399997e+03 1.21399997e+03 1.25419002e+03 1.25418997e+03

Appendix F

Table 7: Values of Dual Variables for all four solutions of a 4 zones 5 time steps problem with 51 discretizations of the state
space. Pale blue lines are variables that converged, where red lines are oscillating variables. Notice values of iteration 46 and 50
are almost the same for all variables.

Iteration 46 Iteration 47 Iteration 48 Iteration 49 Iteration 50

1.16400000e+03 1.16400000e+03 1.16400000e+03 1.16400000e+03 1.16400000e+03
1.15200000e+03 1.15200000e+03 1.15200000e+03 1.15200000e+03 1.15200000e+03
1.80000000e+03 1.80000000e+03 1.80000000e+03 1.80000000e+03 1.80000000e+03
1.16400000e+03 1.16400000e+03 1.16400000e+03 1.16400000e+03 1.16400000e+03
1.29079025e+03 1.28377561e+03 1.28377561e+03 1.29079024e+03 1.29079024e+03
1.30000000e+03 1.30000000e+03 1.30000000e+03 1.30000000e+03 1.30000000e+03
1.80000000e+03 1.80000000e+03 1.80000000e+03 1.80000000e+03 1.80000000e+03
1.24920975e+03 1.21400000e+03 1.25622439e+03 1.21400000e+03 1.24920976e+03
1.28126154e+03 1.28600926e+03 1.28600926e+03 1.28126153e+03 1.28126153e+03
1.30000000e+03 1.30000003e+03 1.30000003e+03 1.30000000e+03 1.30000000e+03
1.80000000e+03 1.80000000e+03 1.80000000e+03 1.80000000e+03 1.80000000e+03
1.25873846e+03 1.21399999e+03 1.25399071e+03 1.21400000e+03 1.25873847e+03
1.16400000e+03 1.16400000e+03 1.16400000e+03 1.16400000e+03 1.16400000e+03
1.15200000e+03 1.15200000e+03 1.15200000e+03 1.15200000e+03 1.15200000e+03
1.80000000e+03 1.80000000e+03 1.80000000e+03 1.80000000e+03 1.80000000e+03
1.16400000e+03 1.16400000e+03 1.16400000e+03 1.16400000e+03 1.16400000e+03
1.30496381e+03 1.28580999e+03 1.28581001e+03 1.30496378e+03 1.30496376e+03
1.30000001e+03 1.30000002e+03 1.30000002e+03 1.30000001e+03 1.30000001e+03
1.80000000e+03 1.80000000e+03 1.80000000e+03 1.80000000e+03 1.80000000e+03
1.23503618e+03 1.21399997e+03 1.25418997e+03 1.21399999e+03 1.23503623e+03
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Appendix G

Table 8: Values of the Dual Variable for the four last iterations of a 4 zones 5 time steps problem with 201 discretizations of the
state space. Pale blue lines are variables that converged. where the red line is the oscillating variable. We observe less oscillating
variables than results in Table 7. However, the oscillating variable do so with more amplitude.

Iteration 47 Iteration 48 Iteration 49 Iteration 50

1.27600035e+03 1.27600000e+03 1.27600034e+03 1.27600000e+03
1.26402219e+03 1.26402254e+03 1.26402254e+03 1.26402288e+03
1.80000000e+03 1.80000000e+03 1.80000000e+03 1.80000000e+03
1.29997746e+03 1.29997746e+03 1.29997712e+03 1.29997712e+03
1.27600000e+03 1.27600034e+03 1.27600000e+03 1.27600033e+03
1.26402087e+03 1.26402087e+03 1.26402121e+03 1.26402121e+03
1.80000000e+03 1.80000000e+03 1.80000000e+03 1.80000000e+03
1.29997913e+03 1.29997879e+03 1.29997879e+03 1.29997846e+03
1.27600000e+03 1.27600033e+03 1.27600000e+03 1.27600031e+03
1.26402116e+03 1.26402116e+03 1.26402149e+03 1.26402149e+03
1.80000000e+03 1.80000000e+03 1.80000000e+03 1.80000000e+03
1.29997884e+03 1.29997851e+03 1.29997851e+03 1.29997820e+03
1.27600037e+03 1.27600000e+03 1.27600035e+03 1.27600000e+03
1.26402184e+03 1.26402221e+03 1.26402221e+03 1.26402256e+03
1.80000000e+03 1.80000000e+03 1.80000000e+03 1.80000000e+03
1.29997779e+03 1.29997779e+03 1.29997744e+03 1.29997744e+03
1.27600036e+03 1.27600000e+03 1.27600034e+03 1.27600000e+03
1.29997713e+03 1.29997713e+03 1.29997679e+03 1.29997679e+03
1.80000000e+03 1.80000000e+03 1.80000000e+03 1.80000000e+03
1.18879633e+03 1.26402287e+03 1.18879669e+03 1.26402321e+03
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