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Abstract: Nanotherapy represents a promising approach to target tumors with anticancer drugs while
minimizing systemic toxicity. Evaluation of nanoparticle (NP) designs could benefit from computational
analyses. Here, an optimization study was performed using an existing tumor model to find NP size and
ligand density that maximize tumoral NP accumulation while minimizing tumor size. Optimal NP avidity lies
at lower bound of feasible values, suggesting reduced ligand density to prolong NP circulation. For the given
set of tumor parameters, optimal NP diameters were 288 nm to maximize NP accumulation and 334 nm to
minimize tumor diameter, leading to uniform NP distribution and adequate drug load. Results further show
higher dependence of NP biodistribution on the NP design rather than on tumor morphological parameters.
A parametric study with respect to drug strength was performed. The weaker the drug, the bigger the
difference is between the maximizer of NP accumulation and the minimizer of tumor size, indicating the
existence of a specific drug strength that minimizes the differential between the two optimal solutions. This
study shows the feasibility of applying optimization to NP designs to achieve efficacious cancer nanotherapy,
and offers a first step towards a quantitative tool to support clinical decision making.

Keywords: Mathematical oncology, derivative-free optimization, cancer nanotherapy
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1 Introduction

Targeted cancer nanotherapy relies on nanocarriers to deliver anticancer agents safely to tumors while min-

imizing systemic toxicity. Nanocarrier-mediated drug delivery has been associated with up to an 8-fold

increase in drug efficacy compared to conventional chemotherapy [2]. Both drug and nanocarrier design play

important roles in treatment efficacy. In general, drug design focuses on finding compounds that inhibit

cancerous cell viability or proliferation, while nanocarrier design aims at developing nano-vehicle structures

that maximize drug concentration in tumor relative to healthy tissue, thus reducing adverse drug effects.

Experimental and computational methods have been employed to pursue such designs.

Specifically for vasculature-bound nanoparticles, in vitro studies have focused on characterizing the effect

of nanocarrier design on margination, adhesion, and uptake while flowing through the tumoral vasculature.

The tendency for vascular-borne liposomes and metal nanoparticles to drift from the blood streamlines

towards the tumor vessel walls was studied by Toy et al. [3] using an in vitro microcirculation model.

Considering different designs that vary in nanocarrier diameter {56, 60, 65, 100, 300 nm} as well as aspect

ratio {0.45, 1}, it was shown that small eccentric nanoparticles are associated with stronger margination

tendency. Larger nanoparticles, however, have exhibited a different correlation. Charoenphol et al. [4]

examined the margination of nanoparticles of larger diameters {200, 500, 2000, 5000 nm}, flowing in an in

vitro parallel flow chamber, showing that the margination rate increases with size. Patil et al. [5] measured

in vitro the adherence strength of nanoparticles with diameters {5, 10, 15, 2 µm} coated with P-selectin

glycoprotein ligands, showing that large nanoparticles have strong adherence properties due to a high contact

area with the vascular endothelium. Importantly, large nanoparticles are subjected to stronger hemodynamic

forces and torques that may dissociate them from vessel walls [6]. Boso et al. [7] measured the accumulation of

nanoparticles of {0.75, 1, 2, 4, 6 µm} diameters in a parallel flow chamber. Data was fitted using an artificial

neural network to correlate nanoparticle accumulation and size. As the size increases, the accumulation

increases until it saturates or starts declining after a certain diameter that ranges between 4 and 6 µm

depending on the wall shear rate. The study indicates the presence of moderate nanoparticle size that

maximizes the adherence properties.

In addition to the aforementioned in vitro studies, in vivo investigations have evaluated the overall efficacy

of nanoparticles in living subjects. Rostami et al. [8] showed that encapsulating doxorubicin (DOX) in H6-

equipped nanocarriers trebles the inhibition of mammary gland tumors in a mouse model compared to free

DOX. Docetaxel-loaded nanoparticles of 349nm diameter were delivered to mouse mammary tumors in [9].

Significant improvement in antitumor activity was obtained by delivering the drug through nanoparticles.

The effect of nanoparticle size was studied by Joshi et al. [10]. Liposomes of diameters {60, 80, 200, 650,

670 nm} delivered to gliomas have indicated that 200 nm had the highest uptake rate. Other in vivo studies

are reviewed in Zhang et al. [11], for which nanoparticle design recommendations were based on increasing

circulation time, taking advantage of the enhanced penetration and retention (EPR) effect, and maintaining

high drug entrapment efficiency in the nanoparticle synthesis stage.

Quantifying nanotherapy efficacy using in vitro assays may require lengthy preparatory steps, which

include setting up proper cell lines and reagents, synthesizing nanoparticles, and tailoring experimental pro-

tocols. The complexity of these studies is further escalated in vivo. The cost and time associated with

in vivo studies present limitations to evaluating different designs. Not only is acquiring and maintaining

animal models expensive, but there may exist a long process from the initiation of oncogenic mutation or

transplantation of xenografts, tumor proliferation, to monitoring tumor regression after nanoparticle injec-

tion. This also requires advanced imaging techniques and multidisciplinary expertise. For these reasons,

computational modeling offers an attractive option for exploratory evaluation of nanoparticle design that

complements experimental work, including investigation of a wide range of variables.

Computational modeling of tumor growth and nanoparticle delivery is, however, non-trivial. Such models

need to consider a variety of biological processes such as angiogenesis and drug cellular uptake in order to

yield informative results. The models typically consist of submodels, coupled sequentially or iteratively, which

may be difficult to solve and slow to converge to a solution. Decuzzi et al. [12] modeled the margination of

nanoparticles by taking into consideration buoyant and hemodynamic forces, as well as van der Waals inter-
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actions. The model explored a wide range of sizes, with results showing that diameters between 100 and 400

nm have relatively slower margination rates. Decuzzi and Ferrari [6] modeled the probability of nanoparticle

adhesion at the vasculature wall. Parameters included nanoparticle size, aspect ratio, vessel wall shear stress,

receptor-ligands association constant, ligand density, and receptor density. In parallel, tumor growth in two

spatial dimensions coupled with neovasculature development was modeled mathematically in [13, 14, 15, 16].

In [17], Frieboes et al. integrated the nanoparticle delivery model of [6] with the tumor mechanics mod-

els of [15, 16] to create a comprehensive model to predict the intra-tumoral distribution and accumulation

of vasculature-bound nanoparticles. However, the computational cost of the integrated model hinders the

evaluation of all possible nanoparticle designs of interest. Nanospheres of {100, 600, 1000} nm diameters

were simulated using different values of nanoparticle avidity and tumor conditions. The results showed that

large nanoparticles accumulate at higher rates at the tumor periphery, while smaller nanoparticles have lower

adherence strength but are distributed more uniformly throughout the tumor tissue. Van de Ven et al. [18]

used the model in [16] to study the effect of drug strength on tumor growth inhibition and to determine the

number of nanoparticles needed to reach a half maximal effective concentration IC50. Wu et al. [19] used the

model in [16] to study how the tumor interstitial pressure and fluid flow affect nanoparticle transport and

distribution. Recently, the model in [17] was extended to simulate the tumor response to drug release from

vasculature-bound nanoparticles [1]. Further information regarding mathematical characterizations of tumor

nanotherapy can be found in [20, 21].

Previous computational and experimental work has primarily investigated the performance of nanocarriers

using selected values of design variables such as nanoparticle size, aspect ratio, and ligand density. Optimizing

nanoparticle design, however, requires design space exploration, which may be impractical to accomplish solely

via empirical methods or computational models. Recently, Chamseddine and Kokkolaras [22] addressed this

issue by applying rigorous optimization to the design of nanoparticles in order to maximize the tumoral

nanoparticle accumulation and distribution with respect to the nanoparticle physical and chemical properties.

The model was static, i.e., considered a single injection and does not update the tumor size and vasculature

in response to the treatment. Although a sensitivity analysis was conducted to prove the robustness of the

optimal design with 20% change in the average wall shear stress, the proposed design is not guaranteed

to remain optimal if the tumor structure changes drastically. In this paper, optimization is applied to a

“blackbox” version of the model, presented in [1], that considers the dynamic changes in the tumor size

and vasculature, enabling to obtain a nanoparticle design that is potentially optimal over the course of

treatment. This represents a first step toward the goal of developing a clinically-relevant numerical tool to

assist nanoparticle design on a patient-specific basis.

2 Methods

2.1 Computational model

A previously developed numerical model is used to compute tumor growth and response to nanoparticle drug

delivery. The model [1] builds upon the work of [6, 14, 15, 16, 17], and is used in this study as a “blackbox”

system with a limited set of inputs to calculate nanoparticle accumulation and tumor regression as a function

of the nanoparticle design. Briefly, the model is composed of 4 submodels that are coupled in the configuration

shown in 1a [17]. The “Tumor Compartment” submodel computes the progression/regression of the tumor

as a function of drug, oxygen, and nutrient concentrations. It also creates hypoxic and necrotic regions,

which induce angiogenic factors (TAF). TAF drives the “Angiogenesis” submodel to develop new blood

vessels. “Angiogenesis” is coupled with the “Flow” submodel, which determines the wall shear stress among

other flow properties in the preexisting and neo-vasculatures. The “Nanoparticle” submodel determines the

nanoparticle accumulation and drug release to the cancerous tissue as a function of the nanoparticle design

and tumor parameters. Table 1 lists the input parameters to the “blackbox” system and their values as

used in this study, unless it is otherwise specified in the text. The complete list of the computational model

parameters is reported in [15, 16, 17, 1].
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Figure 1: Tumor model used for analysis. (a) Interaction among the different submodels as described in [17]. (b) Simulated tumor
formation due to loss of growth control using the computational model. Viable, necrotic, and hypoxic tissues are represented in
red, blue, and brown respectively. (c) Tumor regression in the treatment phase using different nanoparticle diameters.

Table 1: Main parameters used in the computational model.

Parameter Value

Drug decay rate 4.1588s−1

Drug diffusion coefficient 3.334 × 10−3mm2/s
Drug effect 1 (calibrated to moderate drug)
Measure of nanoparticle dissociation tendency (β in [17]) 6.63 × 10−4m−2.s
Measure of receptor deficiency (γ in [17]) 1.07 × 103m−1.57

Nanoparticle avidity (α in [17]) 2.95 × 1010m−2
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2.1.1 Growth phase

At day 0, a transformed group of cells is placed in the middle of a two-dimensional panel representing a tissue

with blood vessels that are laid orthogonally as shown in Figure 1b to simulate the regular vascularization

of normal tissue. Blood enters the tissue from the left and bottom sides to supply oxygen and nutrients.

This enables the cancerous cells to proliferate and develop into a mass (tumor) due to the suppression of

apoptosis. As the tumor grows, some cancerous cells distal from the blood vessels become hypoxic. This

tissue produces TAF to stimulate new blood vessels that sprout from the existing vessels in order to supply

the tumor tissue with blood. The neovasculature has an irregular structure and promotes tumor progression

as shown in 1b. The growth phase is stopped at day 18 when the tumor reaches a diameter of 780 µm, after

which the treatment phase starts.

2.1.2 Treatment phase

Drug-carrying nanoparticles are injected into the blood vessel inlets at day 18. A fraction of the nanoparticles

adhere to the tumor vessels. This fraction depends on the nanoparticle design. Anticancer agents are then

released to the cancerous tissue. If the drug concentration exceeds a specific threshold, which depends on

the drug strength (see Table 1), the tissue will die via apoptosis.

A preliminary investigation of a 6-day treatment phase was simulated using different nanoparticle diame-

ters. The change in tumor diameter in response is depicted in Figure 1c. Since the curves do not intersect after

1 day of treatment, the treatment duration does not affect the relative performance for different nanoparticle

sizes. Therefore, in our search for the optimal diameter, the treatment phase is stopped after 36 hours of

nanoparticle injection, saving substantial computational time. Note that after a certain time of nanoparticle

injection, a relapse is observed. This regrowth could be caused by two factors: either the drug is exhausted

or the drug does not reach cytotoxic concentration for all of the proliferating tumor tissue.

2.2 Optimization

The ultimate goal of drug-based cancer treatments is to eradicate tumors completely or reduce their size prior

to radical treatment intervention as a neoadjuvant therapy. Additionally, the aim of using nanoparticles as

drug carriers is to reduce the side-effects associated with conventional chemotherapy while maximizing the

drug delivery to the tumor tissue. Hence, we consider two objectives: minimizing the tumor size at the end of

the treatment phase, and minimizing the treatment toxicity by maximizing the accumulation of nanoparticles

in the tumor. Accordingly, two objective functions are defined:

1. Tumor Diameter (TD) : the tumor diameter at the end of the treatment (day 19.5) normalized to its

value at the beginning of the treatment (day 18)

2. Tumor Nanoparticles (TNP) : the fraction of the injected nanoparticles that adhere to the tumor at the

injection time (day 18)

Let x denote the set of nanoparticle design variables. In general, the vector x may include nanopaticle

diameter, aspect ratio, elasticity, ligand density, ligand-receptor affinity constant, drug release rate, and

drug load. In this study, we consider spherical nanoparticles (aspect ratio of 1) because they are easy to

manufacture [23], and because they are predominant in current clinical and experimental studies [24, 25].

For instance, the clinically proven nanodrug Doxil - used to treat different types of cancers such as breast

and ovarian - is composed of 100 nm spheres. The optimal values of x that minimize TD, called minimizers

of TD, can be obtained by solving:
min
x∈Rn

TD(x)

subject to lb ≤ x ≤ ub

where lb,ub ∈ Rn,

(1)

where n is the number of variables considered, and lb and ub are the lower and upper bounds that define the

feasible region of x. Constraints are implemented implicitly in the analysis model. The maximizers of TNP
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are determined by solving:
max
x∈Rn

TNP(x)

subject to lb ≤ x ≤ ub

where lb,ub ∈ Rn.

(2)

Problems (1) and (2) are solved using the Mesh Adaptive Direct Search algorithm (MADS) [26]. Since the

gradients of the computational model cannot be approximated reliably, we use MADS, which is a derivative-

free optimization algorithm that has rigorous convergence properties. Moreover, the computational model

used here as a blackbox for analysis is computationally expensive. To examine a single nanoparticle design,

an Intel(R) Core(TM) i7-3770 CPU @ 3.4GHz processor requires 1.5 hours of CPU time. For this reason,

we use a surrogate-assisted optimization approach to reduce the number of computational model evaluations

required to obtain the optimal design. Specifically, we utilize the search step of the iterative mesh adaptive

direct search (MADS) algorithm [27] to solve a surrogate of the optimization problem, i.e., we solve the

optimization problem using surrogate models of the objective functions. To enhance the efficiency of the

MADS algorithm we build and update ensembles of surrogates and use a novel order-based error metric

tailored specifically for surrogate optimization to utilize the best surrogate at each iteration [28]. In this

manner, we generate several candidates for the next iterate, which we combine with the candidates generated

at the poll step of MADS, which is the foundation of its convergence properties. The computational model

is then used only to evaluate all these candidates opportunistically to select the next iterate. In other words,

we generate a lot of useful information by means of computationally inexpensive surrogate models but make

algorithmic decisions using the high-fidelity computational model.

2.3 Data availability

All data analysed during this study are included in this published article. Additional datasets generated are

available from the corresponding author upon request.

3 Results

3.1 Optimizing nanoparticle diameter

The drug biodistribution depends on the diameter d of the drug-carrying nanoparticles, which are localized

depending on their size [22, 17, 29]. Small nanoparticles are associated with longer circulation time, increasing

their chance to reach the tumor. Their adherence properties are poor, however, due to the low contact area

between ligands on the surface of the nanoparticles and receptors over-expressed in the vascular endothelium

of the malignant lesion. On the other hand, large nanoparticles have strong binding affinity, but they are

also exposed to high hemodynamic loadings that may dissociate them from the endothelium. In addition,

large nanoparticles tend to accumulate at the periphery of the tumor or bind to healthy tissues before they

reach the tumor site due to their low circulation time. The optimal nanoparticle diameter d? lies within this

range and is obtained by solving Problems (1) and (2) while setting x = [d]. Nanoparticles smaller than 10

nm are exposed to renal clearance, and nanoparticles larger than 1000nm may not be able to flow in narrow

tumor vessels and cause embolism. Therefore, d lies between lb = 10nm and ub = 1000nm in this study. For

this evaluation, the nanoparticle avidity α = 2.95× 1010m−2, calculated by considering typical values for the

receptor density, ligand density, and receptor-ligand binding constant under zero load, which are in the order

of 1012#/m2, 1014#/m2, and 10−14m2 respectively [17].

Figure 2a compares empirically-selected points with MADS-selected points in an attempt to minimize

TD. In empirical methods, trial points are randomly chosen; however, using MADS, trial points are selected

systematically to converge to the optimal solution. Note that when MADS approaches the optimal diameter,

it tries many points in the vicinity before terminating at the best solution. The obtained optimal nanoparticle

diameter up to 1 nm accuracy is d? = 190nm, reducing TD? = 0.683.

Similarly, Problem (2) is solved to maximize the tumor nanoparticle accumulation. The progress of

MADS is shown in Figure 2b. The optimal nanoparticle size that maximizes TNP is d? = 147nm leading
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Figure 2: Simulation of tumor treatment using optimal nanoparticle designs. Comparison of MADS-selected points with sample
designs selected manually to find the (a) minimizer of TD, and (b) maximizer of TNP. Simulated tumor (c) before treatment, (d)
after 36 hours of treatment using the minimizer of TD d? = 190nm showing a reduction to 68.3% of its initial diameter, (e) after
36 hours of treatment using the maximizers of TNP d? = 147nm showing a reduction to 69.6% of its initial diameter, and (f)
after 36 hours of treatment with nanoparticles of (d? = 334nm,α? = 1e10m−2) obtained after expanding x to [d, α] showing a
reduction to 50.5% of its initial diameter.

to TNP?=0.137; i.e., around 14% of the injected nanoparticles successfully reach and adhere to the tumor.

The corresponding TD is 0.484. Both optimal solutions are summarized in Table 2. Figure 2d,e shows the

regression of the tumor by injecting both optimal solutions.

Table 2: Solutions of Problems (1) and (2) with x = [d].

Objective Function Optimizer Optimum

Minimize Tumor Diameter (normalized) d? = 190nm TD? = 0.683
Maximize Tumor Nanoparticle Fraction d? = 147nm TNP? = 0.137

3.2 Effect of nanoparticle avidity

Vasculature-bound nanoparticles are equipped with ligands of high binding affinity to receptors over expressed

in the vascular endothelium of tumor vessels. In the model, we assume that the integrin ανβ3 exists with

an area density mr in the malignant lesion. Corresponding ligands such as vitronectin [30], fibronectin [31],

fibrinogen [32], and osteopontin [33] are available at the surface of the nanoparticles with density m`. Each

receptor-ligand pair has a certain affinity that is quantified by the binding constant under zero load K0
A. The

nanoparticle avidity α ∝ mrm`K
0
A corresponds to the overall affinity of the nanoparticle [17].

The optimization problems (1) and (2) are solved again using a different value of α to check if the optimal

diameters change. Changing the parameter α has an effect on the optimal nanoparticle diameters as shown

in Table 3, where the cases of α = 1× 1011m−2 and α = 1× 1012m−2 are listed. It can be observed that as α

increases, the diameter that maximizes TNP decreases. This decrease in d? can be explained by the increased
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ligand and receptor densities to the point that the nanoparticle-endothelium contact area required to cause

binding is reduced. The minimal TD is altered, however, since smaller nanoparticles have lower drug loads.

Since the value α has an effect on the optimal nanoparticle diameter, it is necessary to add it to the set of

variables to optimize it along with d in an all-in-one optimization problem.

Table 3: Solutions of Problems (1) and (2) with x = [d] using different values of α.

Solution of Problem (1) Problem (2)

α = 2.95 × 1010m−2 d? = 190nm TD? = 0.683 d? = 147nm TNP? = 0.137
α = 1 × 1011m−2 d? = 90nm TD? = 0.866 d? = 69nm TNP? = 0.137
α = 1 × 1012m−2 d? = 230nm TD? = 1.08 d? = 15nm TNP? = 0.137

3.2.1 Treating nanoparticle avidity as a design variable

Let x = [d, α]T . The range of α is assumed to be between 1010 and 1012m−2 complying with typical

ranges of mr, m`, and K0
A [6, 17]. Hence, the feasible design space is lb = [10nm, 1010m−2]T and ub =

[1000nm, 1012m−2]T . Results for minimizing the tumor diameter and maximizing the tumor nanoparticle

accumulation are shown in Table 4.

Table 4: Solutions of Problems (1) and (2) with x = [d, α]T .

Objective Function Optimizer Optimum

Minimize Tumor Diameter (normalized) [d? = 334nm,α? = 1010m−2] TD? = 0.505
Maximize Tumor Nanoparticle Fraction [d? = 288nm,α? = 1010m−2] TNP? = 0.137

Optimizing both nanoparticle diameter and avidity provides a better tumor reduction. Figure 2f displays

the tumor at the beginning and end of the treatment, showing that the tumor reduces to 50.5% of its

diameter at the start of treatment. Note that the optimal value of α lies at its lower bound (1010m−2) for

both problems. The corresponding optimal diameter is increased to maintain an adequate contact area with

the endothelium.

3.2.2 Relaxing the α–boundary constraint

The lower bound of α is an active bound; i.e., if it changes, the optimal value of α changes. To examine

the proposed nanoparticle design practice of reducing the value of α and selecting a proper diameter, we

reduce the lower bound of α to 109m−2 and check if α? remains a boundary optimum. Figure 3 plots MADS

progression toward the optimal solution of the relaxed problem. The solution confirms the existence of α?

at the active bound. The variable d? remains an interior optimum having a value of 980 nm, increased to

compensate for low ligand density.
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Figure 3: The blackbox evaluation points showing that the design space has been sampled adequately with convergence to the
optimal values of d and α that minimize TD.
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3.3 Robustness of the optimal design

The solution for Problems (1) and (2) may change if the tumor morphology changes. Although numerical

optimization can form a powerful tool that supports precision medicine dealing with patient-specific situa-

tions, designs that are aimed at treating a wide range of patients need to be insensitive to changes in tumor

parameters. A rigorous method to attain robust designs is to optimize under uncertainty [34], which will be

addressed in future work. Alternatively, we perform a sensitivity analysis with respect to model parameters

that characterize the tumor microenvironment. We identify β and γ as candidates for altering the optimal de-

sign. The parameter β ∝ χµ/(kBTmr) combines Boltzmann thermal energy, blood viscosity, ligand-receptor

binding force, and receptor density. The parameter γ is inversely proportional to the receptor density. More

details about these parameters can be found in [6, 17].

Let Zd, Zα, Zβ , Zγ be categorical variables that measure d, α, β, and γ respectively. Each categorical

variable has a value that belongs to the set {1, 2, 3} referring to {Low, Medium, High}. For example, the set

Zd = {1, 2, 3} refers to d = {10, 500, 1000}nm. Similarly, Zα = {1, 2, 3} means α = {1e10, 1e11, 1e12}m−2.

Considering 3 levels for four variables, there exist 81 permutations of the vector [Zd, Zα, Zβ , Zγ ]T .

The parameters β and γ are expected to have a direct impact on nanoparticle accumulation because they

model nanoparticle-to-endothelium interactions. Therefore, we investigate the change in TNP with respect

to the input vector using the interaction plot of Figure 4. The interaction plot is a matrix plot, where the

diagonal of the plot displays the categorical variables. The interaction of the parameter highlighted at the

row-diagonal (i,i) with the parameter at the column-diagonal (j,j) is displayed at the off-diagonal position (i,j).

For instance, the subplot (1,2) plots the interaction of d and α. The horizontal axis is Zα, the vertical axis

is the output TNP, and the different lines are the different values of Zd (indicated on the legend to the right

of the corresponding row). The contribution of β and γ is illustrated in the subplots (1,3), (1,4), (2,3), (2,4),

(3,1), (3,2), (3,4), (4,1), (4,2), and (4,3). In all of these plots, the graphs are either horizontal or coincide.

Therefore, nanoparticle accumulation highly depends on the nanoparticle design and less on tumor biological

conditions such as receptor density and blood properties.

Figure 4: Interaction plot of d, α, β, and γ with the output TNP.
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3.4 Effect of drug efficacy

The efficacy of the drug encapsulated in the nanoparticles has an important role in tumor regression [18].

Strong drugs cause fast shrinkage but are associated with high systemic toxicity. On the other hand, weak

drugs may evince slower tumor regression but have higher median toxic dose, lowering the associated adverse

events. The computational model accounts for the drug efficacy through the proliferative term λp = [σ(1−
λ̄effectC̄D1D>Tdrug

) − A], which quantifies the interplay between cell mitosis, promoted by the availability

of nutrients and oxygen σ, and cell apoptosis, which occurs if the drug concentration D exceeds a specific

threshold Tdrug in the tissue [18, 1]. The drug strength is measured by λ̄effect having a unit of effect per

drug concentration. The parameter CD is a rescaling factor and A is the natural apoptosis rate.

In Section 3.2.1, a hypothetical drug of moderate efficacy was used. The parameter λ̄effect was normalized

to 1 for the drug considered. Stronger drugs are characterized by λ̄effect > 1, while weaker drugs have a value

of λ̄effect between 0 and 1. Although drug efficacy does not affect nanoparticle accumulation, it has an im-

pact on the amount of drug needed to induce cell apoptosis, which is expected to change the minimizers of TD.

It was shown in Section 3.1 that there is a difference between the optimal diameter d?TD that minimizes

TD and d?TNP that maximizes TNP. Figure 5a plots both optimal diameters for the case of α = 1 × 1010m−2.

If nanoparticles are smaller than d?TD = 334nm, less drug is released to the tissue and thus TD is higher. If

nanoparticles are larger than d?TD = 334nm, they aggregate toward the tumor margin, reducing the tumor

diameter exposed to the drug. If nanoparticles are smaller than d?TNP = 288nm, their probability to adhere

to the tumor site is lower due to the small contact area between the nanoparticle and tumor vessel wall. If

nanoparticles are larger than d?TNP = 288nm, they are exposed to higher dissociative hemodynamic loadings

that return them to the bloodstream. Between the two optimal solutions d?TNP = 288nm and d?TNP = 334nm,

there exists a region where the treatment shows the most favorable outcome. In this desired region, the

nanoparticle design can be selected depending on the weight given to each treatment attribute - lower toxicity

versus faster treatment.

3.4.1 Parametric study with respect to drug efficacy

Figure 5 implies that the maximal therapeutic potential is not necessarily tied to the maximal nanoparticle

accumulation. In fact, depending on drug efficacy, a smaller number of large nanoparticles can cause better

tumor reduction than smaller nanoparticles. This defines the shaded zone of Figure 5a. The case of a weaker

drug (λ̄effect = 0.5) is then considered to investigate the change in the d?TD. The shaded zone becomes wider

since d?TD is increased to 384nm to provide higher drug volume needed in the tissue (Figure 5b).

In addition, a stronger drug is studied by setting λ̄effect to 2. Figure 5c shows that the width of the

shaded region decreases. If λ̄effect increases further to 5, the minimizer of TD becomes less than the maximizer

of TNP. The reason is that a large drug load per nanoparticle is not needed to cause apoptosis at high values of

λ̄effect. Therefore, the optimal solution shifts to small nanoparticles because they distribute more uniformly.

Notably, in all the considered cases, a small sacrifice in TNP leads to an increase in TD. Therefore, from

a computational point of view, nanoparticle designs should be driven by minimizing TD. However, this

conclusion may not be generalized; it requires extensive experimental support and should be evaluated for

specific tumors. Furthermore, the reason TNP is less sensitive to the nanoparticle design could be due to an

implicitly specified model parameter. Finding the drug efficacy that produces unified optimizers for both

objective functions provides an indication of the drug strength that removes a foreseen tradeoff between

treatment speed and toxicity.
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Figure 5: Effect of drug efficacy on the optimal nanoparticle design. Optimal nanoparticle diameters and local variations at
α = 1e10m−2 and (a) λ̄effect = 1, (b) λ̄effect = 0.5, (c) λ̄effect = 2, and (d) λ̄effect = 5.

3.4.2 Conjugating d?TD and d?TNP

In order to find a single nanoparticle diameter that optimizes both objective functions, we define the opti-

mization problem

min
λ̄effect∈R

(
d(λ̄effect)− argmax(TNP)

)2

subject to 0.2 ≤ λ̄effect ≤ 10

where d = argmin(TD|λ̄effect
)

argmax(TNP) = 288nm.

(3)
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Problem 3 tries to find the drug efficacy at which the minimizer of TD coincides with the maximizer of TNP

(288 nm). Solving Problem (3) requires two loops. The inner loop computes d?TD given a drug efficacy λ̄effect
that is specified by the outer loop. The outer loop iterates to minimize the difference between d?TD and 288

nm with respect to λ̄effect. In each outer loop iteration, the inner loop has to complete a full optimization

process to find the minimizer of TD. The nested nature of Problem (3) requires extensive computational

time, which could exceed a month if the computational model used as a blackbox for analysis is used.

Alternatively, a surrogate model is created by fitting the points that were evaluated earlier. Figure 6a shows

the kriging metamodel constructed using the DACE (Design and Analysis of Computer Experiments) [35].

Exponential correlation functions and second-order polynomial regression models are employed to generate

the kriging metamodel.

Figure 6: Optimization of drug efficacy. (a) Surrogate of the true model synthesized using kriging method of interpolation. (b)
Progress of MADS in solving the inner and outer loops of problem (3).

The solution process of Problem (3) is illustrated in Figure 6b. Each inner loop has a fixed value of

λ̄effect on the vertical axis. Given λ̄effect, MADS visits the surrogate model and finds d that is closest to 288

nm, marked by the vertical line in the plot. The inner loop iterates horizontally to converge to the optimal

solutions, shown in crosses. Then λ̄effect changes in the outer loop and the same procedure repeats until the

optimal solution λ̄?effect is obtained. The minimal difference between d?TD and d?TNP is 6 nm. It is attained at

the optimal drug efficacy λ̄?effect = 4.7, where the minimizer of tumor diameter is 282 nm, which corresponds

to 27% of the tumor diameter at the start of treatment.

4 Discussion

This study applies optimization to the design of drug-carrying nanoparticles targeting tumor vascular-

endothelium. Empirical methods to obtain optimal designs are typically based on trial and error schemes.

Instead, an optimization approach systematically converges to the optimal design using a significantly lower

number of trial points. The reduction in computational time is necessary since optimal solutions are sub-

ject to change due to variations in tumor morphology, patient status, and cancer type [36]. Our previous

study [22] was a first attempt to engage rigorous numerical optimization with the design of nanoparticles. We

based our analysis on a model that simulates the distribution of nanoparticles and drug release to the tissue

without considering the tumor response. In this study, we combined the optimization technique of [22] with a

computational model of tumor nanotherapy [1] that models tumor evolution and includes complex biological
processes such as angiogenesis and tissue necrosis [14, 15, 16, 17]. This enables more reliable nanoparticle

designs that are optimal for the whole duration of the treatment.
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First, the nanoparticle diameter was optimized. Previous studies have predicted that the optimal design

moderately lies between lower, more uniform nanoparticle distribution, and higher less uniform distribu-

tion [17, 1, 37]. Experimental studies have examined a finite set of diameters to approximate the ideal size

using in vitro and in vivo studies as reviewed in Section 1 and in [38, 39]. Computationally, various diame-

ters were investigated to correlate nanoparticle size and pharmacokinetics [29]. In [17], three diameters were

studied ({100, 600, 1000} nm). The respective tumor accumulation was {12.2%, 2%, 0.8%}. In comparison,

the optimal diameter of 147 nm obtained in this study yielded accumulation of 13.7%.

The set of design variables has been expanded to include nanoparticle avidity because it has an impact on

nanoparticle distribution [40]. Multidimensional search schemes give rigorous optimization a computational

advantage over brute force methods that change one variable at a time. Optimizing nanoparticle diameter

and avidity in an all-in-one problem shows a 1.6-fold decrease in tumor diameter and the same percent of

nanoparticle accumulation as compared to optimizing the nanoparticle diameter alone. The resulting optimal

diameters that maximize tumor targeting and minimize tumor diameter are 288 nm and 344 nm respectively.

These diameters lie in the range that benefit from the EPR effect [7].

The values of the optimal solution have a significant physical meaning. Previous studies have discussed

that one way to prolong nanoparticle circulation is size reduction [41, 42, 43]. The results suggest that

decreasing the nanoparticle avidity is a substitute approach in order to leverage the therapeutic potential of

larger nanoparticles (of higher drug load). To further investigate, we reduced the lower bound of the nanopar-

ticle avidity. The results confirm the existence of optimal nanoparticle avidity at the lower bound, whereas

the optimal nanoparticle diameter increased to compensate for the decrease in the ligand-receptor pairing

per unit area. This conclusion is specific for vasculature-bound nanoparticles where the drug is released at

the endothelial layer. For the case where nanoparticles internalize to the tissue, smaller nanoparticles show

higher cellular uptake rate, as reported in [44, 45, 46].

In addition, small nanoparticles incur manufacturability limitations in terms of drug load since the effi-

ciency of encapsulating free drugs depends on the nanoparticle size [47, 48, 49, 50, 51, 52, 53, 54, 9]. For

instance, we refer to the preparation of doxorubicin-loaded albumin nanoparticles in [47], as doxorubicin is

one of the most widely used antineoplastic agents [55]. The minimum nanoparticle size produced in [47] is

128 nm and was associated with 58% entrapment efficiency. However, based on our recommendation of using

lower ligand density and moderate diameter of 334 nm, the entrapment efficiency could reach up to 78%.

Hence, avoiding the unnecessary decrease in nanoparticle size potentially removes a fundamental constraint

that hinders the development of efficiently drug-loaded nanocarriers.

The robustness of the optimal design with respect to key tumor properties was then examined by studying
the interaction among different parameters (Figure 4). The results show that nanoparticle accumulation

predominantly depends on the nanoparticle design rather than on tumor vessels properties such as receptor

density, blood viscosity, and temperature.

The results indicate that maximizing nanoparticle accumulation is not optimal with respect to the tumor

diameter reduction. Larger nanoparticles are needed to yield better tumor regression due to the associated

high drug load. This was confirmed by running a study that uses a drug of lower efficacy. Results showed that

the minimizer of tumor diameter is larger. Therefore, the optimal design is not unique; however, a range of

optimal values can be recommended. This range is bounded by the maximizer of nanoparticle accumulation

and minimizers of tumor diameter, where a tradeoff between the two objective functions exist. Depending

on the patient status and clinical evaluation, an optimal solution can be selected to satisfy the weight given

for each treatment attribution (fast tumor size reduction versus low systemic toxicity). In contrast, when the

drug efficacy is high, less drug load per nanoparticle is required, and the width of the tradeoff range decreases.

We increased the drug efficacy until the minimizer of tumor diameter is smaller than the maximizer of tumor

accumulation. If the drug efficacy is high, smaller nanoparticles are expected to yield better tumor shrinkage

because they distribute more evenly. These results are consistent with [17, 1].

The results motivated another study to find the drug efficacy at which minimizing tumor diameter is tied to

maximizing nanoparticle accumulation. If this drug efficacy exists, nanoparticles can be designed to eliminate

anticipated tradeoffs between the desired treatment attributes. Therefore, we formulated an optimization
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problem to find the drug efficacy that minimizes the difference between the two optimal designs. The

complexity of the optimization problem leads us to synthesize a surrogate model using kriging metamodeling.

The solution of the optimization problem indicates that a drug efficacy that is 4.6 times higher than the

original value yields a minimal difference between the two optimal diameter values.

The analyses presented here are based on several assumptions. First, some biological parameters, such

as hematocrit and drug diffusivity, were held constant. In reality, these parameters may vary by cancer type

and tissue morphology and have an impact on the nanoparticle pharmacokinetics [36, 56]. Future studies

will use probability density functions to capture these variations and produce more robust designs that could

be used for a wider range of tumors. In addition, tumor size at the beginning of the treatment may affect

the optimal solution. Therefore, future work will study the impact of tumor size on the response. Finally,

shape has an effect on nanoparticle distribution and therapeutic potential [22, 29]. This study shows that

the integration of optimization in the design process makes it possible to investigate the efficiency of different

nanoparticle shapes, exploring new design trends that may lower the treatment toxicity while eradicating the

tumor at a faster rate.

5 Conclusion

In this study, the design of drug-carrying nanoparticles is optimized to maximize tumor regression and

minimize the treatment toxicity. Tumor regression is quantified as the percentage change of tumor diameter

to that at the beginning of the treatment. The treatment toxicity is measured as the fraction of the injected

nanoparticles that accumulate in the tumor. The optimal nanoparticle designs obtained provide a basis

for further experimental and computational investigations. The study sheds light on design practices that

increase nanoparticle circulation time while maintaining large drug encapsulation efficiency. This work lays a

foundation to quantitatively evaluate preclinical nanoparticle-based drug delivery trials and support decisions

in precision medicine where optimal solutions are required on a patient-specific basis.
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