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3000, chemin de la Côte-Sainte-Catherine
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Abstract: Clustering is the subject of active research in several fields such as operations research, statistics,
pattern recognition, and machine learning. The range of applications is very wide: scheduling, vehicle routing,
pattern recognition, etc. Depending on the specific needs of the community, the methods used to solve these
problems vary from heuristics of rather primal nature (improving of clustering iteratively by relocation moves
for instance) to exact methods of a rather dual nature where we generally solve the continuous relaxation
by releasing the integrality constraints and restoring it by implicit enumeration (branch and cut or branch
and cut and price). In this paper, we propose the integral simplex, an exact primal method that could be
suitable for both major classes. More interestingly, it could be distributedly solved better than the dual
approach. Consequently, this work aims to propose a distributed version of the integral simplex, called
DISUD, using some decompositions and multiple agents. Each agent dynamically splits the overall set
partitioning (clustering) problem into sub-problems and solve them in parallel on a single machine. The
new algorithm DISUD improves at each iteration the current clustering until (near) optimality is reached. It
works much better on real set partitioning instances from the airline industry than DCPLEX, the distributed
version of the state of the art commercial solver CPLEX.

Keywords: Set partitioning problems, integral simplex using decomposition, multi-agents systems, dis-
tributed processing techniques
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1 Introduction

Clustering is the subject of active research in several fields such as operations research, statistics, pattern

recognition, and machine learning. Set partitioning problem (SPP) is a combinatorial optimization problem

that models well many interesting real-life clustering problems. The range of applications is very wide:

scheduling, vehicle routing, pattern recognition, etc.

Depending on the specific needs of the community, the methods used to solve these problems vary from

heuristics of rather primal nature (improving of clustering iteratively, by relocation moves for example) to

exact methods of a rather dual nature as classified by Letchford and Lodi 2002 (solving the continuous

relaxation by releasing the integrality constraints and restoring it by implicit enumeration (branch and cut

or branch and cut and price) when the clustering is too much constrained, like in aircrew scheduling. For

instance, in the latter there are too many safety and collective agreement rules we have to respect to cluster

flights (objects), i.e., flights scheduled for a pilot. In this paper, we propose the integral simplex, an exact

primal method that could be suitable for both major classes. More interestingly, it could be distributedly

solved better than the dual approach.

Despite our focus on the vehicle and crew scheduling applications (including but not limited to truck

deliveries (see Balinski and Quandt 1964), vehicle scheduling (see Ribeiro and Soumis 1991), aircrew and bus

driver scheduling (see Desaulniers et al. 1994, Chu et al. 1997, Hoffman and Padberg 1993)), the concepts

and methods outlined in this paper are theoretically usable for the other application contexts.

SPP can be defined using the following crew scheduling applications terminology: a set partitioning

constraint is associated with a task (for example, a flight leg or a bus trip to be accomplished by a pilot or a

bus driver). Let T = {1, 2, ...,m} be the set of tasks and J = {1, 2, ..., n} the set of feasible schedules. With

each schedule, we associate a variable xj , a cost cj and a column Aj = (atj)t∈T where atj takes value 1 if Aj

covers task t and 0 otherwise. The matrix A = [A1, A2, ..., An] is a binary matrix. Then, the set partitioning

problem formulation is:

Minimize
∑
j∈J

cjxj (1)

(SPP ) subject to ∑
j∈J

atjxj = 1,∀t ∈ T (2)

xj ∈ {0, 1},∀j ∈ J (3)

The objective function (1) seeks to minimize the total cost. The set partitioning constraints (2) ensure

that each task is covered exactly once. Constraints set (3) imposes integrality on the xj variables. The linear

relaxation (LP) is obtained by replacing (3) by xj ≥ 0,∀j ∈ J . An optimal solution of SPP consists of

selecting a subset of schedules such as each task is done by one and only one schedule and the sum of the

costs of the subset schedules is minimized.

The remainder of this paper is organized as follows. The literature review is presented in Section 2 and

an overview of the contributions in Section 3. Section 4 presents briefly some useful preliminaries on the

decomposition basics and the main parts of Zoom. Section 5 describes the new algorithm DISUD and provides

a detailed algorithmic and theoretical analysis of its components. In Section 6, we discuss computational

results and the effectiveness of our algorithm. Finally, we end this paper with some concluding remarks and

suggestions for future research in Section 7.
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2 Literature review

SPP is NP-hard (see Garey and Johnson 1979). Given the wide use of SPP, many heuristic and exact

algorithms have been developed to solve it. We focus on exact algorithms, using possibly heuristic stopping

criterion that guarantees in practice a certain quality of the solution (optimality or near optimality). The

most known method is the famous branch and cut (Hoffman and Padberg 1993, Desaulniers et al. 1997).

However, this method becomes inefficient and takes huge time to reach an optimal solution for large instances

due to degeneracy and the “explosion” of the branching tree.

SPP degeneracy complicates too much the solution of large SPPs. To deal with degeneracy in LP, El

Hallaoui et al. 2011 presented the improved primal simplex (IPS) based on a decomposition processus. They

decompose the problem into a non-degenerate easy to solve reduced problem and a complementary problem

that finds descent directions to escape local optima of the reduced problem. Recently, Zaghrouti et al. 2014

developed the integral simplex using decomposition (ISUD), which is based on IPS, to solve SPP (with

integrality constraints). Their results show that ISUD deals more efficiently with degeneracy and is able to

solve large problems that are up to 570000 variables and 1600 constraints. Since then, other research works

have been done by Rosat et al. 2016, 2017a and Zaghrouti et al. 2013 in order to improve ISUD performance.

Rosat et al. 2017a studied the impact of adding cuts to ISUD and finds that this technique is costly in time

computing for large instances. In addition, Rosat et al. 2016 compared different normalisation constraints of

the cone of directions used by ISUD. As for Zaghrouti et al. 2013, they developed the Zoom algorithm based on

ISUD. It explores a neighborhood of the current integer solution when it is not possible to find an improving

“integer” direction, i.e., leading to an improving integer solution, using ISUD, see Section 4.2 for more details.

This neighborhood is constructed using the “fractional” direction returned by the complementary problem.

Nowadays, there is an increased interest to use parallel and a fortiori distributed algorithms especially

with the advent of parallel computers in the world of scientific computing. The aim is to improve the solution

time and to increase the size of the treated problems. Bürger et al. 2012 introduced an interesting distributed

algorithm to solve degenerate linear problems. Their idea is to split the columns over a certain number of

machines (agents). Each one solves the resulting reduced problem. The agents exchange their optimal bases

and continue solving until the bases are all the same.

Except distributed Branch & Bound and Branch & Cut, distributed algorithms dedicated to primal integer

programing and especially to SPP are to the best of our knowledge inexistant. Indeed, many authors have

worked to develop distributed versions of Branch & Bound and Branch & Cut (see Eckstein 1993, Laursen

1993, Quinn 1990, Fischetti et al. 2018). They discuss issues such as architecture and communication. They

apply distributed computing techniques to Branch & Bound and Branch & Cut mainly by distributing the

computation of the branching tree of subproblems over multiple nodes (machines). Those research works

have led to many applications. We refer the reader to an early survey by Gendron and Crainic 1994 and to

the more recent one by Ralphs et al. 2017. In the latter, we report the main and classical issues that still

persist: disproportionate amount of time spent in the shallowed nodes (root node particularly), unbalanced

search tree, dynamic construction of the tree, dynamic generation of useful information (cuts, bounds), and

consequently the need to some synchronization to avoid redundant work, which leads generally to a worse

performance and scalability. CPLEX implements such a distributed mechanism using the Supervisor-Worker

scheme, a kind of Master-Worker scheme where the master stores no data concerning the search tree. Its role

only is to coordinate the load balancing.

The trend to develop distributed algorithms and the interest aroused by ISUD motivates us to look for

a distributed version of it. The idea is to invest parallelizing a primal approach instead of a dual approach

(the branch and bound for instance). This resolves the classical issues raised above. Foutlane et al. 2017

developed the integral simplex using double decomposition algorithm (ISU2D) which we generalize and

improve ISU2D in this paper. ISU2D is a parallel variant of the ISUD. ISU2D splits the original problem into

small subproblems and solves them to get an improved solution at each iteration. The authors showed the

existence of an optimal decomposition which leads to an optimal solution. The authors proposed an iterative

procedure for finding such decomposition and showed the potential of such parallel methods.
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3 Contributions overview

In this paper, we use multi-agent system approach (MAS) to introduce a general framework for a distributed

version of ISU2D called DISUD. We consider a network of worker agents, rather than a single agent such

as in ISU2D (see Foutlane et al. 2017), that split SPP into a set of small subproblems solved in parallel,

each of which containing a niche of potential improving columns. We summarize below the most important

contributions of the paper:

• DISUD develops a procedure that can be seen as a parallel adaptation of Zoom to quickly improve the

worker solution. Instead of zooming around one direction like in Zaghrouti et al. 2013, the procedure

does a multizoom by zooming around a multitude of orthogonal directions.

• We present new theoretical results. We show that the proposed decomposition is, contrary to ISU2D,

less sensitive to dual values; it depends only on the costs of the current solution to improve. We also

show that increasing the number of processors beyond a certain limit (the diameter of the polytope) is

useless.

• We compare two versions: one competitive (a kind of racing implementation) and another cooperative

that exploits the information gathered during the solution process. At each iteration, the two ver-

sions use dynamic decompositions simultaneously (in parallel) to guide the search to improved integer

solutions.

• Tests on real crew pairing instances from the airline industry, with up to 1740 flights (per week) and more

than one million of variables, show the effectiveness of DISUD compared to DCPLEX, the distributed

version of CPLEX, which is the state of the art commercial solver. We succeed to compute better

quality solutions (often optimal or near-optimal) in much less computational time for most instances.

4 Preliminaries

In this section, we provide the basic notions necessary to understand DISUD. We present the decomposition

principles and the main parts of the Zoom algorithm. A parallel version of the latter is used by the agents

of DISUD to solve their image of SPP. Zoom proved to be efficient in practice.

4.1 Decomposition basics

Given an integer solution x̄ to SPP, let Pint be the index set of its positive components, i.e., Pint = supp(x̄) =

{j ∈ J : x̄j = 1}, P an index set of some linearly independent columns containing at least Pint, and

p = card(P ). SPP could be decomposed into a reduced problem RP and a complementary problem using

the following definition of compatibility (El Hallaoui et al. 2011):

Definition 1 A subset S of J is said to be compatible with P , or simply compatible, if there exist two vectors

v ∈ R|S|+ and λ ∈ Rp such that
∑

j∈S vjAj =
∑

l∈P λlAl. The combination of columns, possibly a singleton,∑
j∈S vjAj is also said to be compatible. S is said to be minimal if any strict subset of it is incompatible.

Let C and I be the index sets of the compatible and incompatible columns respectively. Thus, J is

partitioned into C and I, i.e., J = C ∪ I, C ∩ I = ∅. RP is defined as a restriction of SPP to compatible

columns only:

Minimize cC · xC (4)

(RP ) subject to ACxC = e (5)

xC ∈ {0, 1}|C| (6)

As p ≤ m, there could be some redundant constraints that we should remove from RP. When P = Pint, it
is interesting to see that a pivot on any compatible column with a negative reduced cost leads to an improved

integer solution. Let x∗C be an optimal solution to RP . Observe that x̄ = (x∗C , 0) is a solution to SPP.
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To improve x̄, we use a complementary problem CP to find a set of incompatible columns to replace a

subset of the current solution columns. More precisely, we look for a (convex) combination of incompatible

columns that is compatible and has a negative reduced cost. CP can be formulated as:

Minimize
∑
j∈I

cjvj −
∑
l∈P

clλl (7)

(CP ) s.t.
∑
j∈I

Ajvj −
∑
l∈P

Alλl = 0 (8)

e · vI = 1 (9)

vj ≥ 0 , j ∈ I (10)

We can easily show that d = (v,−λ, 0) defines a descent direction. Zaghrouti et al. (2013) show that if

CP is infeasible or zCP ≥ 0, i.e., the objective value of CP is nonnegative, then x̄ is an optimal solution

to SPP. Otherwise, CP guarantees to find a descent direction leading to an improved integer solution. Let

S+ = {j ∈ I : vj > 0} and S− = {l ∈ P, λl > 0} be the sets of entering and leaving variables respectively.

If the columns Aj , j ∈ S+ are pairwise row-disjoint, i.e., they do not cover the same constraints, and

S− ⊂ Pint, we obtain a descent direction leading to an improved integer solution. In this case, S+ is

shown to be minimal by El Hallaoui et al. (2011), i.e., nondecomposable using the terminology of Balas and

Padberg (1975), meaning that pivoting on variables indexed by S+ leads to an adjacent extreme point with

improved cost.

Let AP =

(
A1

P

A2
P

)
be a submatrix of A composed of columns indexed by P where A1

P is without loss of

generality composed of the first —P— linearly independent rows. A2
P is of course composed of dependent

rows. Similarly, let AI =

(
A1

I

A2
I

)
= (aij)1≤i≤m

j∈I
be a submatrix of A composed of incompatible columns

indexed by I with A1
I a |P |×|I| matrix. The variables λ can be eliminated by using the fact that the columns

of AP are linearly independent. We thus obtain an equivalent model involving only incompatible variables.

In fact, constraint (8) could be written as:(
A1

I

A2
I

)
v =

(
A1

P

A2
P

)
λ

Observe that A1
P is invertible, so λ = (A1

P )−1A1
Iv and consequently could be replaced. This results in the

Equation (4.1).

(CP ) zCP
P = min

v

(
c>I − c>P

(
A1

P

)−1
A1

I

)
v (11)

s.t.
(
A2

P

(
A1

P

)−1
A1

I −A2
I

)
v = 0 (12)

e · v = 1 (13)

v ≥ 0. (14)

The incompatibility degree of a column Aj towards a given integer solution is a measure that represents

a distance of the column from the solution. An example of this measure could be given by ‖MAj‖1 where

M = (A2
P (A1

P )−1,−I|P |). I|P | is the |P | × |P | identity matrix. This measure is equal to 0 for compatible

columns and positive for incompatible ones. The constraint can be rewritten simply as: MAIv = 0; AI is

the submatrix of A containing only columns indexed by I .

When columns Aj , j ∈ S+ are not pairwise row-disjoint, the direction d is said to be fractional. Instead

of branching in CP that is a little bit complicate due to the structure of CP, Zaghrouti et al. (2013) proposed

to zoom around this “fractional” direction. We discuss this in the next subsection.
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4.2 Zoom description

Zoom iterates between RP (compatible columns) and CP (incompatible columns) until it reaches an optimal

solution. The main steps of Zoom are provided below.

Step 1: Find a good heuristic initial solution x0 and set x̄ = x0, P = Pint, d = 0.

Step 2: Find a better integer solution around d:

• Increase P : set P = P ∪ {j : dj > 0}.
• Construct and solve RP.

• Update x̄ and P : if x̄ is improved, set P = Pint.

Step 3: Get a descent direction d:

• Solve CP to get a descent direction d.

• If no descent direction can be found or |zCP | is small enough then stop: the current solution is optimal

or near optimal.

• Otherwise, go to Step 2.

We mention here that no branching is done in CP. Actually, if the direction is fractional we construct RP

around this direction as explained above and solve it by a MIP solver. Zaghrouti et al. (2013) reported that

this RP has good properties: small gap and density, good initial solution (that is the current integer solution)

to start from, easy to solve, big chances to get an improved integer solution. We report in Zaghrouti et al.

(2013) that in more than 80% of the cases, the directions found were integer. That means that no MIP was

solved in Step 2 in these cases. We simply set x̄ = x̄ + |S+|d because when the direction is integer we can

show that positive entries of d are all equal: vj = λl = 1
|S+| . The CP favors integrality by its nature. We

refer the reader to Zaghrouti et al. (2014, 2013) for more details.

5 DISUD algorithm

As mentioned earlier, DISUD is a multi-agent algorithm where the master agent ensures, among others,

the communication between other network agents called worker agents and some control stuff. Worker

agents realize multiple decompositions of the problem and solve them in parallel. We implemented DISUD

in a such a way that each worker does not have to wait for other agents to end their iteration to start a

new iteration. Consequently, DISUD reduces overhead due to communication synchronization. Rather, it

exploits the available time to improve the current solution. DISUD stops when the master agent receives a

satisfactory solution.

In this section, we start by presenting the worker and master agents in detail in Sections 5.1–5.2 respec-

tively. Finally, we give a theoretical analysis of DISUD in Section 5.3. We note that throughout this paper

we use superscript [i] to denote quantities belonging to the ith agent.

5.1 Worker agents

Worker agents realize multiple decompositions to increase the chance to get an improved solution. Each

worker agent solves SPP using a specific decomposition either with DVD or IVD mechanisms as described

briefly in Sections 5.1.1 and 5.1.2 respectively. More details are in Foutlane et al. 2017. A worker agent reacts

to the messages received from the master as indicated in Algorithm 1 below. We then give an illustration

using the MAS paradigm in Section 5.1.3.
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Algorithm 1 Worker agent algorithm

Do

Wait for a message from the master. In case of:

msgSOL: Set x̄[i] = xb

msgMODE-DVD: Call DVD algorihm (Algorithm 2);

msgMODE-IVD: Call IVD algorihm (Algorithm 3);

msgMODE-IDLE: Wait;

msgSTOP: Stop (do memory cleaning);

While (true)

5.1.1 DVD mode

The idea of DVD is to split the original complementary problem into small “orthogonal” complementary

subproblems (CSPs) that can be efficiently solved in parallel. In such subproblems, we look for replacing

some of the variables from supp(x̄[i]) by some more interesting ones. So, during the DVD mode, the worker

agent partitions P
[i]
int = supp(x̄[i]) into q clusters where the columns indexed by cluster k cover a set of tasks

Tk, i.e., T = ∪1≤k≤qTk. Let Ik ⊂ I be the subset of incompatible columns that cover only tasks in Tk. We

have I [i] = ∪1≤k≤qIk. The agent i constructs hence an RP and q complementary subproblems (CSP
[i]
k )1≤k≤q

formulated as follows:

min
∑
j∈Jk

c̄jvj

CSP
[i]
k MAIkvk = 0 (15)∑

j∈Ik

vj = 1 (16)

vj ∈ {0, 1} ∀j ∈ Ik (17)

To do so, each agent defines a weighted graph G(V,E) where each column Av, v ∈ supp(x̄[i]) is represented

by a vertex v ∈ V . Let (v, v′) ∈ V 2, Ivv′ = {l ∈ I : Av · Al 6= 0 and Av′ · Al 6= 0} and Tvv′ is the set of all

tasks covered by either Av or Av′ . We define E as the set {(v, v′) : Ivv′ 6= ∅}. It is obvious that if E = ∅
then the constraint matrix A is a bloc diagonal matrix and SPP is composed of independent set partitioning

problems that can be solved in parallel. This is generally not the case in practice.

Based on this, the weight of the edge (v, v′) ∈ E measures the “likelihood” that some of the variables

indexed by Ivv′ could improve the objective value if entered into the basis. We partition the graph into q

disjoint subgraphs using a min-cut algorithm (see Kernighan and Lin 1972). When the edge (v, v′) is not

cut, Av and Av′ are grouped into a cluster and ∃k; 1 ≤ k ≤ q where Tvv′ ⊆ Tk. Thus, the variables indexed

by v and v′ could be part of a descent direction (as leaving variables). Obviously, when the edge (v, v′) is cut,

it is not possible in the current iteration of DVD to improve the objective value with the variables indexed

by Ivv′ .

We proved in Foutlane et al. 2017 the existence of an optimal decomposition. But, as this latter is not

known a priori, the worker agents implement different weighting methods simultaneously and consequently

manage different weighted graphs G(V,E) to increase the chance to find one rapidly. The efficiency of

this depends heavily on the edge weights. Consequently, each agent of the network implements a different

weighting method we[i] to calculate edge weights. We suggest computing we[i] as a function of the reduced

cost, the incompatibility, the number of covered tasks (non zeros elements), and other relevant attributes

of columns Aj ∈ Ivv′ . In the following, we list four agents we used in this proof of concept. Two of them

implement the two weighting methods that we studied in ISU2D. Of course, the list of agents is not exhaustive

and other agents could be added easily using this framework.
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Agent 1 . The first weighting method we[1] stipulates that a descent direction is more likely to exist in

regions where there are more columns with negative reduced costs columns. We therefore cut the edges with

the smallest number of negative reduced costs. Based on this, we[1] associates with each edge (v, v′) the

number of negative reduced cost columns that Ivv′ contains.

we[1] : (v, v′) 7→ wvv′ = |{j ∈ Ivv′ : c̄j ≤ 0}|

Agent 2 . The second weighting method is inspired by the simplex algorithm. It increases the chances of

getting a large step (improvement in the objective value) provided that a descent direction exists. We assume

that one of the entering variables has the smallest negative reduced cost. Therefore, we[2] associates with

the edge (v, v′) the absolute value of the smallest negative reduced cost column indexed by Ivv′ .

we[2] : (v, v′) 7→ wvv′ = −min(0,min{c̄j : j ∈ Ivv′}).

Agent 3. The third weighting method we[3] derives from we[2]. We compute we[3] using the reduced cost

and the the number nj of tasks covered by Aj . We stipulate that a good entering variable should have the

smallest average negative reduced cost. Thus, when two columns have the same reduced cost c̄j , we favor

the one that covers fewer tasks.

we[3] : (v, v′) 7→ wvv′ = −min(0,min{ c̄j
nj

: j ∈ Ivv′}).

Agent 4. Given the importance of the degree of incompatibility in ISUD, we suggest to compute the fourth

weighting method we[4] using the reduced cost and the incompatibility degree kj = ‖MAj‖1 of a column

Aj . Indeed, the incompatibility degree can be seen as the distance from column Aj to the vector subspace

generated by the columns of the current integer solution. It can be interpreted as the number of changes to

the current solution. We compute we[4] then as:

we[4] : (v, v′) 7→ wvv′ = −min(0,min{ c̄j
kj

: j ∈ Ivv′}).

Observe that we thus favor solutions that are primally not too far from the current one because we suppose

that the current one is good.

Hence, building the subproblems reduces to defining the partition τ = (Tk)1≤k≤q. DVD procedure can

be interpreted as a parallel adaptation of Zoom to quickly improve the worker agent solution. Instead

of zooming around one direction, DVD does a multizoom by zooming around a multitude of orthogonal

directions. Algorithm 2 outlines the DVD procedure.

Algorithm 2 DVD pseudocode for agent i

Build τ [i] and consequently CSP
[i]
k , k ∈ {1 . . . q} using we[i].

Solve in parallel the CSP
[i]
k , k ∈ {1 . . . q}.

For k = 1 to q

IF dk is integer (dk is the direction returned by CSP
[i]
k ) THEN

Set x̄[i] = x̄[i] + |S+
k |d

k.

ELSE

Set P [i] = P [i] ∪ {j : dkj > 0}
ENDIF

End for.

If some dk is fractional, construct RP according to P [i] and solve it by a MIP solver (multizoom).

Send the resulting x[i] to the master agent.

As it can been seen, DISUD deals with many partitions rather than considering just one partition as it is

the case in ISU2D. As a consequence, it is obvious that DISUD is a generalization of ISU2D.
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5.1.2 IVD mode algorithm

The IVD idea is to explore near-optimal “LP” neighborhoods incrementally. A worker agent starts by a

neighborhood containing potential columns with good reduced costs (computed using the LP duals returned

by the master agent) and increments the number of columns as needed. It solves in this neighborhood using

Zoom starting with the best solution returned by its own DVD procedure in the competitive case and with

the one returned by the master agent in the cooperative mode. Algorithm 3 provides the pseudocode where q′

is a parameter tuned by experimentation.

Algorithm 3 IVD pseudocode for agent i

Price the columns using µ (i.e., compute their reduced costs).

Sort the variables in an increasing order of their reduced costs and reindex them.

For k = 1 to q′

For all j, if z̄lb + c̄j > zub, J = J \ {j}, i.e., xj = 0.

Build SPP
[i]
k by considering the first k

|J|
q′ variables.

Solve SPP
[i]
k with Zoom, set x̄[i] to the obtained solution, and update zub.

Send x̄[i] to the master agent.

End for.

5.1.3 Illustration

We use the same terminology introduced by Notarstefano and Bullo 2011 to illustrate the mechanics of a

worker agent. Like any distributed algorithm, we have:

1. Set of states W : At a time t, a worker agent is either in DVD or IVD mode improving a solution x̄ or

in an IDLE mode waiting for a message from the master. Thus, the set of the worker agent states W

is the set of couples (mode, x̄). In addition, we have the END state indicating that the worker agent

is done.

2. Messaging function: The set of messages A, called Alphabet, can be subdivided into two subsets. The

first one concerns the solution transmission: the worker agent communicates its solution x̄[i] to the

master agent and, when worker agents cooperate, the master sends in its turn the best primal solution

x̄b. The master also sends the dual solution µ to the worker agents when switching to IVD mode.

In order to avoid communication overhead, the sending of a primal solution is accomplished by the

transmission of its support only. The second subset contains other messages controlling the state of the

worker agent: msgMODE-DVD and msgMODE-IVD to specify which type of decomposition to use,

msgMODE-IDLE to stop temporarily a worker agent, msgSTOP to end DISUD.

3. State transition: Upon the reception of a message from the master, a worker agent updates its state

as it is illustrated in Figure 1. The latter retraces the state transitions of the agent depending on its

current state which would be one of three possible states: IDLE, DVD, or IVD.

DVD, x̄[i]

DVD, x̄′[i]

IV D, x̄[i]

IDLE, x̄[i] END

IV D, x̄[i] IV D, x̄′[i]

END

IDLE, x̄[i]

DVD, x̄b END

IV D, x̄b

msgMODE-DVD

msgMODE-IVD

msgMODE-IDLE

msgSTOP

msgSTOP

msgMODE-DVD

msgSTOP

msgMODE-IVD

Figure 1: State transition of a worker agent
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An illustration of a working agent states transition from the begining of DISUD to the end is given in

Figure 2.

DVDstart

IV D

IDLE END

Figure 2: Worker agent basic working

5.2 Master agent

Globally, the master agent calculates a lower bound, controls the execution of DISUD and ends it when a

termination criterion is satisfied. We developed two variants of DISUD: the cooperative variant where worker

agents cooperate and the competitive variant where worker agents work independently. Pseudocode of coop-

erative and competitive variants are provided in Sections 5.2.1 and 5.2.2 respectively. The IN-PARALLEL

and END-PARALLEL terms are used to mention that the multiple statements in between are executed in

parallel.

For both variants: the master starts with an initial primal solution x0 of value z0, sets the upper bound

zub = z0, sends supp(x0) to all agents, begins to calculate in parallel a lower bound zlb and waits for the

solutions obtained by the worker agents. When the master receives a solution x̄[i] from the ith agent that

improves the DISUD upper bound zub, DISUD updates zub and xb, the best solution encountered, accordingly.

Moreover, if its quality is satisfactory, then DISUD stops the solution process. In the other case, the master

reacts according to which variant is activated. The master initializes a counter for each agent nbrItr[i] and

increments it after each received solution from the worker agent i. The master agent uses this counter to tell

the worker to stay in DVD mode or to move to IVD mode when it reaches a predefined value IterMax.

5.2.1 DISUD with cooperative agents

In the cooperative variant, the master intervenes frequently during the progress of the algorithm. This is

shown clearly in Algorithm 4. We discuss below the most important issues.

During the DVD mode, the communication between the master and the worker agent is bilateral: the

worker agent sends its newly found solution to the master and waits for the solution xb from which it starts

and the OK to stay in DVD mode or any other decision from the master.

The communication is rather unilateral between the master and a worker agent in the IVD mode: the

worker agent sends its solution to the master and does not wait for a feedback from the master; the latter

just decides to continue or to stop the solution process depending on the quality of the solution it holds. The

worker agent does not need xb. Simply, it improves its z
[i]
ub until reaching its best solution or get interrupted

by the master. To start from different solutions, the master adjusts continously with the maximum number

of iterations allowed in DVD mode. When an agent transits to IVD mode, it increment this counter to let

other worker agents continue improving xb in DVD mode.

Finally, if a worker agent does not improve its own solution, the master makes it idle, i.e. waiting for an

improved xb to start from. If all agents are idle, the master let all of them to switch to IVD using different

initial solutions.
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Algorithm 4 Master cooperative pseudocode

Set zub = z0, xb = x0 and for each agent i, set nbrItr[i] = 0, mode[i] = DVD

IN-PARALLEL

Calculate zlb, set µ to the obtained dual solution

Send msgSOL, xb, msgMODE-DVD to all worker agents

Listen to worker agents

On the reception of x̄[i] from some agent i, DO (in sequential)

Set nbrItr[i] = nbrItr[i] + 1

If ctx̄[i]−zlb
zlb

≤ ε, Send msgSTOP to all worker agents; Stop DISUD

IF mode[i] = DVD THEN

IF ctx̄[i] < zub THEN

Set zub = ctx̄[i], z
[i]
ub = ctx̄[i], xb = x[i]

Send msgSOL, xb, msgMODE-DVD to agent i and idle agents

and set their mode to DVD

END IF

IF zub <= ctx̄[i] < z
[i]
ub THEN

Set z
[i]
ub = ctx̄[i]

IF nbrItr[i] = IterMax OR zub−zlb
zlb

≤ εdvd THEN

Send msgSOL, xb, msgMODE-IVD to i

Set mode[i] = IV D

Send µ to agent i

Increase IterMax by ∆IterMax if nbrItr[i] = IterMax

ELSE send msgSOL, xb, msgMODE-DVD to agent i

END IF

END IF

IF ctx̄[i] >= z
[i]
ub THEN

Put the agent i in the idle queue and set mode[i] = IDLE

Send msgMODE-IDLE to agent i

END IF

IF all agents are idle THEN

Send them msgSOL, xb, msgMODE-IVD, µ

Change their mode to IVD

END IF

END IF

END DO

IN-PARALLEL

5.2.2 DISUD with competitive agents

Concerning the competitive variant, if the received solution improves the ith agent’s upper bound z
[i]
ub only,

then the master agent lets the ith agent make another DVD decomposition, of course, if its iteration number

does not exceed a predefined value IterMax and the DVD gap threshold εdvd is not reached yet. Otherwise,

it sends to the ith agent the message msgMODE-IVD in order to switch to IVD mode. In this case, it sends

also the dual values obtained by solving to optimality the linear relaxation. Algorithm 5 presents the master

competitive procedure. Note that the instructions comprised between DO and END DO are executed in

sequential.
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Algorithm 5 Master competitive pseudocode

Set zub = z0, xb = x0 and for each agent i, set nbrItr[i] = 0, mode[i] = DVD

IN-PARALLEL

Calculate LP-lower bound for SPP, , set µ to the obtained dual solution

Send msgSOL, xb, msgMODE-DVD to all worker agents

Listen to worker agents

On the reception of x̄[i] from some agent i, DO (in sequential)

Set nbrItr[i] = nbrItr[i] + 1

IF ctx̄[i] < zub THEN

Set zub = ctx̄[i] and xb = x[i]

IF zub−zlb
zlb

≤ ε THEN; Send msgSTOP to all worker agents; Stop DISUD.

END IF.

IF mode[i] = DVD THEN

IF ctx̄[i] = z
[i]
ub OR nbrItr[i] ≥ IterMax OR zub−zlb

zlb
≤ εdvd THEN

Send msgMODE-IVD to agent i and change its mode[i] to IVD

Send LP dual values µ to agent i

ELSE

Send msgMODE-DVD to agent i

Set z
[i]
ub = ctx̄[i]

END IF

END IF

END DO

END IN-PARALLEL

5.3 Theoretical analysis

We discuss below that working with the partial or the standard reduced costs should give similar results.

Let d be an integer descent direction, S+ = {j : dj > 0}, and P− = {l : λl > 0}.

Proposition 1 Let ¯̄cj the reduced cost of variable j, computed with a dual solution α corresponding to the

current integer solution. We have
∑

j∈S+ ¯̄cj =
∑

j∈S+ c̄j, ∀α.

To prove this, we need the following lemma that can easily be derived from Proposition 9 of Zaghrouti

et al. 2014.

Lemma 1 We have: vj = λl =
1

|S+|
,∀(j, l) ∈ S+ × P−.

Proof. (of proposition 1 )

Let α be a corresponding dual solution and B the corresponding basis. We have:
∑

j∈S+ Aj =
∑

l∈P− Al.

So,
∑

j∈S+ cTBB
−1Aj =

∑
l∈P− c

T
BB
−1Al. Meaning that

∑
j∈S+(cj − ¯̄cj) =

∑
l∈P− cl and consequently∑

j∈S+( ¯̄cj) =
∑

j∈S+ cj−
∑

l∈P− cl. On the other hand, from Lemma 1, (7), and (11), we obtain
∑

j∈S+ c̄j =∑
j∈S+ cj −

∑
l∈P− cl. This concludes the proof.

The next corollary shows a weak “equivalence” between the partial and the standard reduced costs. We

think that we do not need a stronger equivalence because theoretically, they behave the same in the worst case.

Corollary 1 There exist necessarily j, k ∈ S+ such that c̄j < 0 and ¯̄ck < 0.

We can show that there exists a linear transformation such that ∀j ∈ S+, ¯̄ck < 0. The next proposition

indicates that increasing the number of needed processors (for solving subproblems) beyond a certain limit,

that is the diameter of the polytope, is particularly “useless” in DVD mode.
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Proposition 2 Let qopt be the number of CSPs that permit to get an optimal solution x∗ in one DVD iteration

where each CSP reveals exactly one descent direction. We have qopt = dist(x∗, x̄) ≤ d where d is the diameter

of conv(SPP ).

Proof. We can show that supp(x∗) \ supp(x̄) = (∪1≤k≤k′S+
k′) where S+

1 , S+
2 , ... , S+

k′ are minimal disjoint

compatible subsets (solutions to the CSP), i.e., their corresponding task subsets T 1, T 2, ..., T k′ are disjoint.

By definition, the diameter of a polyhedron is the maximum distance between each two of its vertices; note

that the distance between two vertices is the minimum number of edges needed to reach the second one,

starting from the first vertex. To move on an edge from a vertex to an adjacent one, recall that we need to

pivot on a certain S+
i , a minimal compatible subset of entering columns. Consequently, qopt ≤ k′.

Remark 1 We have two interesting facts:

• There exist an infinity of optimal weighting methods we∗ such that the weighted graph G(V,E) is a

disconnected graph and the resulted complementary subproblems should provide directions leading to an

optimal solution x∗.

• Let x1, x2 be two integer solutions and x3 and x4 their respective adjacent extreme points (also integer

solutions). We may have c · x3 < c · x4 even though c · x1 >> c · x2.

The next proposition shows the existence of an optimal weighting method which leads to an optimal decom-

position.

Proposition 3 DISUD is a monotonic exact algorithm that converges in a finite time.

Proof. DISUD is a multi-agent algorithm where every agent converges in a finite time since:

• During DVD phase, the partitions are different and the number of these different partitions is finite.

• During IVD phase, the number of iterations is finite because the number of column subsets is finite.

6 Computational results

In this section, we present results of DISUD and discuss the effectiveness of our multi-agent algorithm. We

show that DISUD results are interesting compared to DCPLEX.

6.1 Aircrew instances

In aircrew scheduling, a pairing is a sequence of flights that start and end at the same airport. The crew

pairing problem CPP consists of finding a set of pairings that covers all the scheduled flights at minimal cost

over the planning horizon. Moreover, each flight has to be covered by a single pairing and therefore, CPP is

modeled as a SPP .

We tested DISUD on SPP derived from real-life CPP instances. The original datasets can be found

in Kasirzadeh et al. 2017 and concern aircraft fleets D94, D95, 757, 319, and 320. We used GENCOL, a

commercial software, to generate columns (a set of pairings) using different values for the dominance and

incompatibility parameters. We extracted different tests at different phases of the process to build the set of

our tests. Therefore, we obtained five groups of instances where each group contains six different instances.

Furthermore, considering that DISUD needs an initial solution to start from, we choose a solution from those

proposed by GENCOL. Table 1 presents the main characteristics of the instances. It reports for the set of

tests the dataset name, the number of tasks m, the minimum number nmin and maximum nmax of columns

before preprocessing. Then it prsents informations of the CPLEX reduced problem obtained after precossing.

Indeed, it presents the minimum number mmin and maximum mmax of tasks and the minimum number nmin

and maximum nmax of columns.
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Table 1: main characteristics of instances

Serie
Before preprocessing After preprocessing

Tasks Variables Tasks Variables

m nmin nmax mmin mmax nmin nmax

D94 712 58144 110035 453 453 42433 80307
D95 2123 818686 1479515 1340 1344 503046 864673
757 2175 891269 1308428 1422 1423 396889 593987
319 2189 631300 831530 1418 1419 407249 513466
320 2931 689254 1313438 1924 1925 419280 674862

6.2 Testing methodology

We implemented the two variants competitive (DISUDcomp) and cooperative (DISUDcoop) using C++ and

the MPI (Message Passing Interface) library. This latter enables communication between the master and

worker agents. The master run on a Linux PC with Quad-Core processor of 3.30 GHz and the worker agents

run on Linux PCs with 8 processors of 3.4 GHz each as shown on Figure 3.

Master

Worker1 Worker2 Worker3 Worker4

Figure 3: DISUD network architecture

The CPLEX version used here is IBM CPLEX 12.6.1. For each test, algorithms were run within a

time limit of one hour except of D94 derived tests which were run during 4 min. DISUD parameters are:

εdvd = 0.02 , q =4 , IterMax=10 and q’=2. The threshold of 2% comes from industrial observation: a solution

with a gap of 1% is considered excellent, and one within 2% is acceptable as reported by Rosat et al. 2017b.

First, we compare DISUD variants. Then we compare these variants to DCPLEX. The latter (see IBM

Knowledge Center) is a distributed version of the well known branch and bound algorithm. It is dedicated
to solve a MIP in an environment of distributed memory across multiple machines. It is based on a single

master associated with multiple workers. DCPLEX presolves the problem on the master and sends the

reduced model to each of the workers. Each of the workers then starts to solve the reduced model using

its own parameter setting. This phase is known as ramp up. Then, the master selects the worker which

performed the best and distributes its search tree over all workers: They work on the same search tree, with

the master coordinating the search. We use the following ratios to compare DISUD to DCPLEX:

• The time efficiency ratio Ta(b) between two algorithms a and b is defined as Ta(b) = 100 ∗ t(a)
t(b) where

t(a) and t(b) are the computational times of a and b.

• The gap between the found solution value z(a) returned by an algorithm a and the lower bound value

zlb is defined as Gap(a) = 100 ∗ z(a)−zlb
zlb

.

6.3 Cooperative vs Competitive results

In this part, we show DISUDcoop and DISUDcomp results and discuss their performances on our set of tests.

Figure 4 shows the evolution of the objective value over time for DISUDcoop on instance D95 1. It presents

clearly the contribution of all agents during the process solution. Indeed, it shows the strong point of DISUD:

at any moment DISUD solution is the best solution realized by its agents. In addition, we can observe a rapid

objective value decrease at the beginning of the solution process while the objective value decrease becomes
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slow at the end. In other words, the DVD phase ( at the begining of the process) yields a large decrease

than the IVD phase ( at the end). This is explained by the fact that during DVD phase, DISUD combines

orthogonal descent directions. This behavior is typical and representative of the other instances.

Figure 4: DISUDcomp Evolution over time on the D95 1 instance

Figure 5 shows the evolution of DISUDcoop and DISUDcomp on the test 320 5. We connect the points

to improve its readability. We note that the two curves present the same pace. DISUDcoop is better in the

middle of the process solution. This is due to the fact that DISUDcoop embeded the spirit of the branch and

bound depth first search strategy. DISUDcoop uses all its agents to explore its best solution xb ( solution

with the lowest cost) neighborhood.

Figure 5: DISUD variants Evolution over time on 320-5 test

The set of tables 2–6 show results for each variant of DISUD. They report test name, number of columns,

the gap value of the initial solution, gap values for DVD and IVD phases respectively, the number of times

that the best agent invokes a mixed integer program during the SPP resolution and the time devoted to

solving these MIP programs, the time to obtain the best solution tobj , for DISUDcoop the average time,

tidle, that an agent is in idle state and the agent identity Agb that reaches the best solution. Also, we have

included average lines in bold to compare the average behavior of the two variants.
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We observe that both DISUD variants solve all tests to near optimality within almost half an hour. Their

solutions quality is less than 1% in all cases. Thus, the results show that the two variants of DISUD were

approximately equal in terms of solution quality. Even if the found solutions are excellent, we can see that

DISUDcomp beats DISUDcoop in 37% of the tests in terms of solution quality.

DISUDcomp and DISUDcoop solved 33% and 64% of tests to less than 2 % during DVD respectively.

Furthermore, DISUDcoop solved 83% of the 320 and 319 tests to less than 2 % during DVD. These results

show that DISUDcoop is better than DISUDcomp as it is a variant that enables to increase the size of treated

problems. Indeed, with large problems, DISUD coop has the potential to use only the DVD decomposition

to get industrially acceptable solutions. In addition, the average idle time of an agent is small compared to

computing time (less than 1%).

Let us compare DISUD variants computing time as all their solutions are excellent from industrial point

of vue. As expected, DISUDcomp is faster than DISUDcoop. The competitive variant beats the cooperative

one in 60% of cases. DISUDcoop is slower than DISUDcomp because it forces worker agents to stay more in

DVD phase instead of letting them switch to IVD phase. We would like to point out that the increase of

the average DISUDcoop computation time differs according to the dataset: it is 0%, 20.9%, 6.7%, 46.9% and

-2.1% for D94, D95, 757, 319 and 320 tests respectively.

Concerning Zoom algorithm, we note that MIP influences the performances of DISUD variants: higher

the value of MIP time, the lower is the time performance of DISUD. We note that the number of times that a

mixed integer program was invoked is small and is approximatively similar for the two variants: they differ in

average by one call. Meanwhile, the time reserved to solving these programs differ according to the dataset.

Indeed, for DISUDcomp the ratio is 1.1%, 35.7%, 8%, 14.2% and 6.8% of the solution process time in average

for D94, D95, 757, 319, and 320 instances respectively. For DISUDcoop the ratio is 2.1%, 39.9%, 7%, 23.3%

and 6.3% of the process solution time in average for D94, D95, 757, 319, and 320 instances respectively.

Despite the large proportion of time it could consume, this step has proven to be useful during the resolution:

Mip is invoked for all large instances.

In general, DISUD variants perform well when they start with a good initial solution (low initial gap).

They reproduce a known fact of primal algorithms which is sensitivity to the initial solution. Their DVD

gap decreases with low initial solution gap value.

Finally, it is obvious that all agents contribute to the DISUD process solution as it is shown by the Agb
column. Based on this, we deduce that considering many agents simultaneously is a better approach. But

the agents contributions differ: the first and the second agents are the best for 83% of DISUDcomp tests and

66% of DISUDcoop tests.

From the aforementioned results, we conclude that DISUD variants yield better results. DISUDcoop

constitutes a good variant of DISUD that shows a good potentiel to treat larger SPP since its DVD results

and the difficulties that may arise when managing the IVD phase. More, DISUDcoop allows to manage

multiple agents simultaneously in order to take advantage of their actions.

Table 2: DISUD results using D94 instances

DISUDcomp DISUDcoop

Name n gap gap (%) Mip tobj Agb gap (%) Mip tobj tidle Agb

D94 Ini DVD IVD nb t (s) DVD IVD nb t (s) (s)

D94 1 90637 10.05 4.02 0.15 1 1 23 1 3.84 0.08 0 0 33 2 1
D94 2 110035 5.23 1.55 0.47 0 0 19 2 1.07 0.62 0 0 17 0 4

D94 3 66072 4.50 1.35 0.13 0 0 12 2 0.77 0.17 1 1 10 0 4
D94 4 66952 5.24 1.27 0.40 0 0 7 1 1.27 0.50 0 0 7 0 1

D94 5 70216 10.08 3.15 0.13 0 0 22 2 1.74 0.43 0 0 17 0 1
D94 6 58144 3.00 0.91 0.15 0 0 8 2 0.91 0.14 1 1 9 0 4

Average 2.04 0.24 0.17 0.17 15.17 1.60 0.32 0.33 0.33 15.50 0.33
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Table 3: DISUD results using D95 instances

DISUDcomp DISUDcoop

Name n gap gap (%) Mip tobj Agb gap (%) Mip tobj tidle Agb

D95 Ini DVD IVD nb t (s) DVD IVD nb t (s) (s)

D95 1 1060464 24.1 5.85 0.149 7 229 815 1 5.19 0.148 10 92 949 16 2
D95 2 1478737 11.7 3.30 0.166 10 1281 2347 2 3.48 0.157 7 106 1239 51 2
D95 3 898518 24.6 4.07 0.143 7 262 1038 4 3.14 0.150 12 2296 2976 9 1
D95 4 1216846 11.7 3.08 0.140 8 440 1264 4 2.77 0.144 7 43 843 0 1
D95 5 817904 20.3 4.55 0.149 6 44 519 2 3.77 0.148 7 280 986 6 2
D95 6 1144156 9.7 3.14 0.146 7 281 1112 1 3.06 0.169 6 612 1587 0 4

Average 4.00 0.15 7.50 422.83 1182.50 3.57 0.15 8.17 571.50 1430 13.67

Table 4: DISUD results using 757 instances

DISUDcomp DISUDcoop

Name n gap gap (%) Mip tobj Agb gap (%) Mip tobj tidle Agb

757 Ini DVD IVD nb t (s) DVD IVD nb t (s) (s)

757 1 924415 2331.7 2.47 0.008 6 90 868 1 1.87 0.009 4 86 859 0 3
757 2 1271490 2332.3 3.08 0.009 6 67 1105 3 1.88 0.009 4 47 1002 0 1
757 3 1001424 2331.7 1.89 0.008 5 67 900 1 2.22 0.008 6 61 942 6 1
757 4 1307682 2331.8 2.29 0.007 6 75 880 1 1.41 0.005 4 71 993 0 1
757 5 890523 4656.6 2.94 0.009 4 41 786 1 2.44 0.005 8 76 954 0 1
757 6 1139047 2331.8 1.94 0.007 5 79 686 1 1.74 0.006 5 36 825 0 1

Average 2.44 0.01 5.33 69.83 870.83 1.93 0.01 5.17 62.83 929.17 1.00

Table 5: DISUD results using 319 instances

DISUDcomp DISUDcoop

Name n gap gap (%) Mip tobj Agb gap (%) Mip tobj tidle Agb

319 Ini DVD IVD nb t (s) DVD IVD nb t (s) (s)

319 1 830774 13.2 2.54 0.106 10 65 671 1 1.97 0.118 11 198 1123 0 2
319 2 786436 2681.9 2.03 0.100 8 101 636 4 1.83 0.099 8 223 819 0 4
319 3 668387 13.3 3.11 0.101 7 93 568 1 2.76 0.099 6 431 1115 8 2
319 4 654470 2682.2 2.16 0.096 7 135 691 2 1.92 0.095 5 100 698 0 4
319 5 630544 13.5 2.80 0.096 7 55 521 1 1.84 0.099 7 155 894 0 3
319 6 638308 8.8 1.84 0.097 7 63 511 1 1.51 0.097 12 124 636 5 2

Average 2.41 0.10 7.67 85.33 599.67 1.97 0.10 8.17 205.17 880.83 2.17

Table 6: DISUD results using 320 instances

DISUDcomp DISUDcoop

Name n gap gap (%) Mip tobj Agb gap (%) Mip tobj tidle Agb

320 Ini DVD IVD nb t (s) DVD IVD nb t (s) (s)

320 1 1077443 11.1 2.94 0.026 5 67 2253 2 1.89 0.026 9 106 1847 0 3
320 2 1312452 3564.8 2.06 0.024 11 87 1919 1 1.92 0.016 8 67 1803 0 1
320 3 862177 12.9 2.55 0.018 10 88 1185 1 2.03 0.020 9 80 1718 0 2
320 4 848669 5.2 1.89 0.015 10 127 1439 2 1.80 0.012 13 202 1541 0 4
320 5 688268 12.5 2.71 0.016 15 234 1668 2 2.37 0.016 10 68 1290 14 2
320 6 791992 3564.5 2.38 0.025 10 75 1466 3 1.85 0.019 16 92 1519 0 1

Average 2.42 0.02 10.17 113.00 1655.00 1.98 0.02 10.83 102.50 1619.67 2.33
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6.4 Influence of the parameters

In this section, we study the influence of the principal parameters, i.e., of the complementary subproblems

number q and the maximum number of iterations during DVD phase. We also give insight into the influence

of the initial solution. We present results of the influence of these parameters on the 320 1 test. This choice

is directed by the fact that 320 derived instances are sufficiently difficult and DISUD is designed to solve

large SPP.

Table 7 gives results for the influence of initial solution throughout its gap value. In general DISUD

variants perform well for good initial solutions. Lower the gap of initial solution, the lower is the time of the

solution process and the DVD gap. Hence we deduce that DISUD performance increases as initial solution

gap decreases.

Table 7: DISUD results using different initial points for 320 1

MISUDcomp MISUDcoop

Name gap gap Mip tobj gap Mip tobj tidle

320 Ini DVD IVD nb t (s) DVD IVD nb t (s) (s)

320 1 1791.9 3.10 0.021 11 154 2347 1.91 0.010 10 225 2014 0
320 1 11.1 2.94 0.025 5 67 2253 1.64 0.011 9 359 2065 0
320 1 8.8 2.10 0.021 10 176 2072 1.91 0.010 8 311 2230 0
320 1 6.5 2.22 0.022 11 110 1783 1.76 0.010 5 184 1860 0
320 1 4.8 1.79 0.019 14 104 1536 1.60 0.009 7 201 1738 0

Table 8 gives results for the influence of the number of iterations, IterMax, during the DVD phase. This

parameter controls the duration of the DVD phase. Higher the IterMax value, the higher is the DVD time.

We deduce that the DISUD performance increses with the IterMax value. Indeed in general, DVD gap, IVD

gap and computing time decrease with the IterMax value. This is explained by the fact that it is likely to

get good DVD solution quality as the number of iterations during DVD phase increases.

Table 8: DISUD results using different iterMax for 320 1

MISUDcomp MISUDcoop

IterMax gap0
gapf Mip tobj Agb gapf Mip tobj tidle Agb

DVD IVD nb t (s) DVD IVD nb t (s) (s)

4 11.1 3.20 0.024 9 66 1147 3 1.75 0.008 6 74 1930 0 3
6 2.96 0.017 10 89 1418 3 1.86 0.009 7 204 1601 5 2
8 2.94 0.020 12 73 1315 2 1.76 0.009 10 143 1543 0 1
10 2.94 0.022 14 77 1266 1 1.88 0.001 11 362 2261 0 3
12 2.94 0.030 9 57 1273 3 1.64 0.007 6 65 1075 0 1

Figure 6 shows the influence of the number of complementary subproblems ,q, on the evolution of DISUD

during DVD phase. We choose the values of q so that they are a power of 2 (q =1, 2,4, 8,16). We deduce

that we got good performance for both q =4 or 8. This explained by the fact that for lower q (1 and 2) we

still solve large complementary subproblems than those obtained with q=4 or 8. For high values (q=16) we

got poor performance as it becomes difficult to find descent direction as more variables are ousted by the

DVD decomposition process. In addition, there are more processes (16) than processors (8) which leads to

the overload phenomen as we used computers with 8 processors.

Therefore, we used the values q =4 , iterMax=10 for the global results given in Sections 6.3 and 6.5
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Figure 6: influence of the complementary subproblems number q during DVD phase

6.5 DISUD vs DCPLEX results

The goal in this part is to compare the performances of DISUDcoop, DISUDcomp and DCPLEX using our set

of tests. Figure 7 shows the gap value evolution over time for DISUD variants and DCPLEX on the D95 4

test. The figure clearly show that the DISUD variants outperform DCPLEX. The DISUD curves decrease

more sharply than the DCPLEX one. DISUDcoop is the fastest, yielding improvement of 280% over DCPLEX

on this instance. In addition, the number of solutions found through the process resolution by DISUD is

great compared to DCPLEX.

Figure 7: DISUD and DCPLEX Evolution over time on D95 4 instance

The set of tables 9–12 shows DCPLEX results and performance comparison with DISUD variants. They

report For DCPLEX, the time to obtain the best solution tobj , the gap value and the number of solution

found throughout the solution process. Then for each DISUD variant the time needed to outperform the

last DCPLEX objective value: tDISUD
cplex , the number of solution found during the resolution and improvement

realized.

For D94 derived tests, we observe that DCPLEX was able to get good quality solution in less time than

did DISUD.

For D95, 757,319 and 320 derived tests, we observe that DCPLEX was unable to improve the initial

solution for 40% of instances within a time limit of an hour whereas bothDISUD variants solve 87% instances
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to near optimality ( less than 1%) within half an hour and all instances within Three quarters of an hour.

Furtehrmore DCPLEX was unable to improve any test of the 757 serie and 50% of the 319 derived tests.

We note also that DISUD algorithm find large number of different integer solutions than DCPLEX

throughout the solution process: the ratio is between 5 and 19 times. We mention that this property is

appreciable when solving the optimization problems because it permits to get an overview of the resolution

process and to stop it once a satisfactory solution is found.

We conclude that based on our tests, DISUD outperforms DCPLEX in terms of the solution quality and

the resolution time for large instances. On the other hand, DCPLEX is more efficient on small instances.

Table 9: DCPLEX and DISUD comparison on D94 instances

Instance DCPLEX DISUDcomp DISUDcoop

Name gap0 tobj gapf nSol gapf tDISUD
cplex nSol Imp gapf tDISUD

cplex nSol Imp

(%) (s) (%) (%) (%) (s) (%) (s) (%)

D94 1 10.05 7 0.08 7 0.15 - 20 - 0.08 - 15 -
D94 2 5.23 13 0.10 2 0.47 - 11 - 0.62 - 12 -
D94 3 4.50 5 0.05 4 0.13 - 11 - 0.17 - 4 -
D94 4 5.24 7 0.09 9 0.40 - 9 - 0.50 - 5 -
D94 5 10.08 8 0.07 12 0.13 - 17 - 0.43 - 9 -
D94 6 3.00 5 0.06 5 0.15 - 14 - 0.14 - 8 -

Table 10: DCPLEX and DISUD comparison on D95 instances

Instance DCPLEX DISUDcomp DISUDcoop

Name gap0 tobj gapf nSol gapf tDISUD
cplex nSol Imp gapf tDISUD

cplex nSol Imp

(%) (s) (%) (%) (%) (s) (%) (s) (%)

D95 1 24.1 2600 0.20 6 0.149 623 34 417.34 0.148 686 40 379.01
D95 2 11.7 2890 0.27 5 0.166 1024 33 282.33 0.157 793 35 364.44
D95 3 24.6 2500 0.27 5 0.143 478 42 523.01 0.150 719 52 347.71
D95 4 11.7 2000 0.22 3 0.140 704 44 284.09 0.144 711 32 281.29
D95 5 20.3 1856 0.22 7 0.149 331 30 560.73 0.148 673 41 275.78
D95 6 9.7 3234 0.41 10 0.146 896 52 360.94 0.169 905 36 357.35

Table 11: DCPLEX and DISUD comparison on 319 instances

Instance DCPLEX DISUDcomp DISUDcoop

Name gap0 tobj gapf nSol gapf tDISUD
cplex nSol Imp gapf tDISUD

cplex nSol Imp

(%) (s) (%) (%) (%) (s) (%) (s) (%)

319 1 13.2 3019 0.17 6 0.106 550 35 548.91 0.118 678 55 445.28
319 2 2681.9 3247 0.20 5 0.100 421 22 771.26 0.099 544 57 596.88
319 3 13.3 3600 - - 0.101 - 30 - 0.099 - 58 -
319 4 2682.2 3600 - - 0.096 - 35 - 0.095 - 38 -
319 5 13.5 2030 0.25 4 0.096 312 48 650.64 0.099 437 51 464.53
319 6 8.8 3600 - - 0.097 - 38 - 0.097 - 48 -

Table 12: DCPLEX and DISUD comparison on 320 instances

Instance DCPLEX DISUDcomp DISUDcoop

Name gap0 tobj gapf nSol gapf tDISUD
cplex nSol Imp gapf tDISUD

cplex nSol Imp

(%) (s) (%) (%) (%) (s) (%) (s) (%)

320 1 11.1 3600 - - 0.026 - 43 - 0.026 - 67 -
320 2 3564.8 3243 1.534 5 0.024 1010 68 321 0.016 915 55 354
320 3 12.9 1887 0.025 6 0.018 1018 37 185.36 0.020 1408 66 134.02
320 4 5.2 2387 0.018 6 0.015 1305 54 182.91 0.012 1271 44 187.80
320 5 12.5 2323 0.016 6 0.016 1668 57 139.27 0.016 1290 54 180.07
320 6 3564 2053 0.036 10 0.025 1402 24 146.43 0.019 1170 71 175.47
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7 Conclusion

We proposed a distributed version of ISUD. It is a multi-agent based algorithm dedicated to find descent

directions leading to improved integer solutions. We presented and implemented two DISUD variants and

discussed their performance. They differ in the strategy used to manage network agents. We showed that

our algorithm yields better results than the distributed version of CPLEX on a set of instances derived of

industrial aircrew scheduling. Our tests set contains large-scale instances with up to almost 2,000 flights

and 1,300,000 pairings. They are given as set-partitioning problems associated with initial solutions. We

demonstrated that the cooperative strategy gives good results and shows good potentiel. DISUD was able

to find near optimal solutions for all large instances in less time than that required by DCPLEX. DISUD

realized a time efficiency ratio between 150% and 770%. More, DCPLEX is unable to produce solutions as

good as those that DISUD produce within the same time limit.

Future research on network agents management strategies should be done to further improve the DISUD

performance. In addition, other agents could be added also to the network. In addition, combining DISUD

with heuristics that produce good initial solutions should significantly lead to obtain good DISUD perfor-

mances.
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