
Les Cahiers du GERAD ISSN: 0711–2440

Traveling salesman problem with
time windows in postal services

A. Bretin, G. Desaulniers,
L.-M. Rousseau

G–2018–30

April 2018

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis à des revues avec comité de révision. Lorsqu’un
document est accepté et publié, le pdf original est retiré si c’est
nécessaire et un lien vers l’article publié est ajouté.

Citation suggérée: A. Bretin, G. Desaulniers, L.-M. Rousseau (Avril
2018). Traveling salesman problem with time windows in postal
services, document de travail, Les Cahiers du GERAD G-2018-30,
GERAD, HEC Montréal, Canada.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2018-30) afin de mettre à jour
vos données de référence, s’il a été publié dans une revue scientifique.

The series Les Cahiers du GERAD consists of working papers carried
out by our members. Most of these pre-prints have been submitted to
peer-reviewed journals. When accepted and published, if necessary, the
original pdf is removed and a link to the published article is added.

Suggested citation: A. Bretin, G. Desaulniers, L.-M. Rousseau (April
2018). Traveling salesman problem with time windows in postal
services, Working paper, Les Cahiers du GERAD G-2018-30, GERAD,
HEC Montréal, Canada.

Before citing this technical report, please visit our website (https://
www.gerad.ca/en/papers/G-2018-30) to update your reference data,
if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce au
soutien de HEC Montréal, Polytechnique Montréal, Université McGill,
Université du Québec à Montréal, ainsi que du Fonds de recherche du
Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2018
– Bibliothèque et Archives Canada, 2018

The publication of these research reports is made possible thanks to the
support of HEC Montréal, Polytechnique Montréal, McGill University,
Université du Québec à Montréal, as well as the Fonds de recherche du
Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2018
– Library and Archives Canada, 2018

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2018-30
https://www.gerad.ca/en/papers/G-2018-30
https://www.gerad.ca/en/papers/G-2018-30

Traveling salesman problem with time windows in postal
services

Alexis Bretin a, b, c

Guy Desaulniers a, b

Louis-Martin Rousseau b, c

a GERAD HEC Montréal, Montréal (Québec), Canada,
H3T 2A7

b Department of Mathematics and Industrial Engi-
neering, Polytechnique Montréal, Montréal (Québec),
Canada, H3C 3A7

c CIRRELT, Montréal (Québec), Canada, H3T 1J4

alexis.bretin@polymtl.ca

guy.desaulniers@gerad.ca

louis-martin.rousseau@cirrelt.net

April 2018
Les Cahiers du GERAD
G–2018–30
Copyright c© 2018 GERAD, Bretin, Desaulniers, Rousseau

Les textes publiés dans la série des rapports de recherche Les Cahiers du
GERAD n’engagent que la responsabilité de leurs auteurs. Les auteurs
conservent leur droit d’auteur et leurs droits moraux sur leurs publica-
tions et les utilisateurs s’engagent à reconnâıtre et respecter les exigences
légales associées à ces droits. Ainsi, les utilisateurs:
• Peuvent télécharger et imprimer une copie de toute publication

du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une ac-
tivité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publication.
Si vous pensez que ce document enfreint le droit d’auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
l’accès au travail et enquêterons sur votre demande.

The authors are exclusively responsible for the content of their research
papers published in the series Les Cahiers du GERAD. Copyright and
moral rights for the publications are retained by the authors and the users
must commit themselves to recognize and abide the legal requirements
associated with these rights. Thus, users:
• May download and print one copy of any publication from the

public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.

ii G–2018–30 Les Cahiers du GERAD

Abstract: This paper focuses on the traveling salesman problem with time windows (TSPTW) that arises
in postal services and parcel deliveries and has features differing from the classical TSPTW. First, route
duration is a significant concern, as human costs largely exceed vehicle costs, emphasizing the importance
of reducing waiting time. Second, if commercial customers usually have a time window, private customers
do not, making the NP-hard TSPTW even harder to solve. To address these issues, we present two multi-
objective approaches based on a constraint programming formulation of the problem which allows to balance
the optimization of both human and material resources. We also introduce a cluster/solve/sequence approach
to reduce the size of the large real-world instances, which relies on a mathematical programming formulation
to sequence the customer visits in the final step. This decomposition technique allows to produce high-quality
solutions for industrial problems in about a minute of computation time.

Keywords: Traveling Salesman Problem with Time Windows, postal services, route duration, bi-objective,
low time-window density, clustering heuristic

Acknowledgments: We are thankful to the personnel of GIRO Inc., in particular, Charles Fleurent and
Patrick Saint-Louis, who provided to us the problem definition and the real-life datasets. We gratefully
acknowledge the financial support of GIRO Inc. and the Natural Sciences and Engineering Research Council
of Canada under the grant RDCPJ 4634633-14.

Les Cahiers du GERAD G–2018–30 1

1 Introduction

In postal services, letters and parcels are not handled in the same way. Although each delivery employee is

assigned to a predefined territory, the routes are not managed identically. For letters which are increasingly

being replaced by email, the employee must still visit both sides of every street in the assigned area. For parcel

deliveries, only a few residents and businesses must be visited. We consider the parcel-delivery problem with

time windows (TWs). The TWs are designed to synchronize deliveries and recipients. This can be formulated

as a vehicle routing problem with TWs (VRPTW). For large-scale instances involving 10 to 20 territories

and up to almost 500 deliveries in a territory, it can be solved via a greedy cluster-first route-second (CFRS)

procedure. The clustering phase determines well-designed territories according to the specific characteristics

of the instance, and the routing phase designs the routes. The two phases are carried out alternatively in

the following greedy fashion. First, a cluster containing a number of service points is proposed. Second, a

route is determined for this cluster. If it is too long or too short compared to a usual employee working shift,

the set of points proposed for this territory is adjusted and a new route is computed. This process repeats

until obtaining a satisfactory route for this territory. When this is accomplished, the algorithm moves on to

the next territory. The overall objective is to find a good solution in a limited time, generally at most one

minute per territory. Our goal is to show that exact methods can be useful even with severe computational

time restrictions. We focus on the routing phase, which is a time-constrained variant of a traveling salesman

problem (TSP), called the TSP with TWs (TSPTW). It involves visiting every service point once and only

once with a single vehicle while minimizing the cost of the route. In the traditional TSPTW, each customer

must be visited within a restricted part of the horizon, called a TW.

The TSPTW has been extensively studied. Savelsbergh [14] showed that finding a feasible solution to

this problem is NP-hard. From a 1981 branch-and-bound algorithm using a state-space-relaxation approach

to compute the lower bounds [6], to dynamically generated time-expanded networks in 2017 [13], many

approaches have been developed. To the best of our knowledge, the most efficient algorithm for the TSPTW

when the objective function is to minimize the distance traveled is that of Baldacci et al. [5]. They combine

column generation to compute lower bounds with dynamic programming to find feasible solutions based on

the last bound found, given a certain tolerance.

Most studies minimize the distance traveled or the closely related travel time (TT). In postal services,

focusing on TT may be costly. The best solution may have considerable waiting time, and drivers must be

paid when they are waiting, i.e., when they arrive at a service point before the TW opens. With this in mind,

we instead minimize the route duration (RD). It may be assimilated to the makespan, which in scheduling

problems is the amount of time necessary to complete all the tasks. It could also be seen as the sum of the

TT and the waiting time or as the completion time of the final task. However, when there are TWs, starting

the route at time 0 may not be necessary or optimal.

Two other considerations led us to focus on RD. First, the average wage for a Canada Post delivery driver

is around $20/hour [2]. For a vehicle such as a Ford Transit, the fuel consumption is around 12 L/100km [1]. If

the average speed is between 30 and 50 km/h the approximate cost of one hour of driving is 40∗12/100∗1.2 =

$5.76 where 1.2 is the average price of a liter of gasoline in Canada [3]. This may be increased to $8 to take

into account the depreciation of the vehicle and the fact that the fuel consumption is generally slightly higher

than the manufacturer’s nominal value. Therefore, it is profitable to extend the TT by 2 min to save 1 min

of RD, and the idle time is reduced by 3 min. The ratio may vary, but the analysis suggests that one unit

of RD is more valuable than one unit of TT. Reducing RD may also reduce idle time, and so improve driver

satisfaction. In summary, the TT is the vehicle cost whereas the RD is the human cost of the route.

Second, in a CFRS approach to the VRPTW, minimizing the RD may make it possible to visit more

clients on a route, thus reducing the number of territories. Routes that are more compact allow a better

knowledge of the neighbourhood, enabling the drivers to make better decisions in the event of unexpected

congestion or construction.

Reducing the RD may also be relevant in other applications. In armoured-truck routing, the less time a

vehicle spends on the road, the safer the operation, and in fresh-food delivery, the less time the goods spend

in the vehicle, the better their condition on arrival.

2 G–2018–30 Les Cahiers du GERAD

According to López-Ibáñez et al. [11], who minimize the completion time of the route, this variant of the

problem can generally be solved more quickly. Savelsbergh [15] addressed the problem of unwanted idle time

by introducing the concept of forward slack time in the context of an arc swap algorithm.

TWs are particularly useful for companies, where there are dedicated employees to receive and process

deliveries. However, because of the rise in online shopping, a growing number of individual customers receive

parcel deliveries. Some delivery companies assign TWs to only the largest customers (e.g., stores or industries)

and not to individuals. This gives rise to instances in which less than 10% (perhaps just 2% or 3%) of the

service points have TWs. This makes the problem harder because less preprocessing can be done to reduce

the solution space.

The contribution of this paper is to identify proper solution approaches to large-scale, multi-objective

TSPs with low TW density that arise in the postal services. To our knowledge, we are the first to handle the

combined TT and RD objective functions, which we address with mathematical programming and constraint

programming models. Furthermore we devise an efficient clustering approach to enable the solution of large

instances within a tight computational budget. Finally, we evaluate our methods on instances from the

literature as well as real industrial instances provided by our research partner.

After introducing a basic CP model for the TSPTW in Section 2, we will explain in Section 3 how to solve

this problem while balancing the TT and RD minimization, using two multiobjective approaches. Section 4

presents a clustering-disaggregation algorithm for instances with a low TW density. Section 5 gives results

for benchmark instances, and Section 6 reports results for real-world instances.

2 Problem formulation

Consider a directed graph G = (V,A) where V contains the nodes, including p and q respectively representing

the depot at the beginning and the end of the tour, and A contains the arcs. The TSPTW consists of finding

a single tour that visits each node i ∈ V exactly once while minimizing the routing cost. The visit at node i

must be within the TW [Ri, Di] where Ri is the release time and Di the deadline of node i. A service

duration si may be associated with each i ∈ V . A TW defines the period in which the service to this node

must occur. For node i, si > 0 indicates that the service could end after Di but must begin before. Early

arrival at node i is allowed, but the driver must wait until Ri. Because of the TWs, A does not contain all

the couples (i, j) ∈ V 2 but only a subset; see Section 3.1. Traveling along arc (i, j) ∈ A takes tij time units.

We first present a CP formulation and then explain the use of bi-objective programming to minimize TT

and RD.

2.1 Constraint programming model

CP is known to be efficient for machine scheduling problems. Since the TSPTW is equivalent to a one-

machine scheduling problem with sequence-dependent setup times and TW constraints, a simple but reliable

CP formulation is available. We introduce the variable Pl,∀l ∈ {1, . . . , |V |}, which models the lth service

point visited, and TPl , the time of the visit to this node.

min z = Tq − Tp (1)

subject to:

AllDifferent(P) (2)

TPl + sPl + tPlPl+1
≤ TPl+1

∀l ∈ {1, . . . , |V | − 1} (3)

P1 = p (4)

P|V | = q (5)

Pl ∈ V, ∀l ∈ {1, . . . , |V |} (6)

TPl ∈ [RPl , DPl], ∀l ∈ {1, . . . , |V |}. (7)

Les Cahiers du GERAD G–2018–30 3

The goal of minimizing the RD corresponds to min z = TP|V | − TP1 , but since we constrain the route to

begin and end at the depot via constraints (4) and (5), we may write the objective function as shown in (1).

Constraint (2) indicates that the service points visited for l ∈ {1, . . . , |V |} must be different. Combined with

constraints (6), this ensures that every service point is visited exactly once. Constraints (3) ensure that

there is sufficient time between two consecutive service point visits. Constraints (7) ensure that the TWs are

respected.

As mentioned in Section 1, we distinguish our notion of RD from the makespan or the completion time,

as used in machine scheduling. We define the RD to be the difference between the departure time from and

the return time to the depot.

The model can be adapted for the TT problem by replacing (1) by

min z =

|V |−1∑
l=1

tPlPl+1
. (8)

2.2 Multiobjective model: Weighted objective function

For postal services, where the TSPTW is solved many times in a CFRS procedure, we wish to process as

many customers as possible within the duration of the driver’s shift. However, preliminary results have

shown a significant reduction in the quality of the TT when it does not appear in the objective function. It

sometimes causes a slight increase in the cost of the final solution. Here we are referring to the cost in dollars,

calculated via the parameters γTT and γRD corresponding to the cost of one unit of time when respectively

the vehicle is running or the driver is working. The reduction in the RD does not always compensate for the

substantial increase in the TT. This led us to explore how to make the solution more profitable while trying

to get the RD as low as possible.

There are many algorithms for multiobjective optimization problems; see [8]. A simple approach is to

use a weighted objective function (WOF) that combines the various objectives into a single function. The

challenge is to appropriately weight each objective. We decided to use the costs γTT and γRD as the weights.

The CP model remains the same except that the objective function becomes

min γTT
|V |−1∑
l=1

tPlPl+1
+ γRD(Tq − Tp). (9)

The main drawbacks of this model are the sensitivity to the costs γTT and γRD and the lack of control of

the RD objective function.

3 Solution approach

In this section, we describe the approach that we propose to solve the bi-objective TSPTW. First, we briefly

discuss a preprocessing phase that can be conducted to reduce the solution space. Next, we introduce the

CP-Optimizer implementation that we apply to solve the CP model with the objective of either minimizing

the RD or the TT. This algorithm is used in the three-step approach that is described afterwards.

3.1 Preprocessing

The presence of TWs enables some preprocessing. Taking into account the spatiotemporal structure of the

instance may reduce the solution space, and thus the combinatorial nature of the problem. TWs may be

tightened and node precedence lists built [4]. For each node i ∈ V , the precedence list V +(i) = {j ∈
V \{i}, j ≺ i} gathers all the nodes j that have to be visited before i. Some arcs may be deleted based on

the TWs and the precedence relationships [7].

4 G–2018–30 Les Cahiers du GERAD

3.2 CP-Optimizer implementation

CP-Optimizer, the Cplex solver dedicated to CP, contains many useful tools for scheduling problems. To use

them, we have to rethink the model introduced in Section 2.1. The visits are associated with tasks that are

modelled by a set of interval variables H. A visit to service point i is represented by the variable Hi. These

variables have an associated length, which is equivalent to the service duration si, and earliest and latest

start times, modelling the TWs. To solve the problem, we use a sequence interval variable π = Sequence(H)

that represents the full sequence performed by the driver. By definition, it generates a circuit in V through

all the service points. The CP-Optimizer implementation has many similarities with the model introduced

in Section 2.1, with Hi.Begin = Ti being the time when delivery starts at node i.

With these variables and the notation introduced in Section 2, the CP model for minimizing RD may be

implemented as follows:

min z = Hq.Begin−Hp.Begin (10)

subject to:

π = Sequence(H) (11)

NoOverlap(π, tm) (12)

π.F irst = Hp (13)

π.Last = Hq (14)

Hi.Begin ∈ [Ri, Di], ∀i ∈ V. (15)

The objective function (10) minimizes the RD. Constraint (11) defines π as a sequence of the complete

set of tasks, H. In constraint (12) tm is the transition matrix, which is identical to the distance/time

matrix described in Section 2 by tij . This constraint controls the passage time to every point, helped by

the function NoOverlap. The latter prevents overlapping tasks, i.e., a visit to node j cannot begin until the

previous visit to i has finished and time has been allowed to travel from i to j. It is similar to the disjunctive

constraints (3) but is computationally more effective. All the visit times are restricted to the associated TWs

via constraints (15), which are implemented directly when we define the interval variables.

The objective function (10) can again be modified for TT minimization:

min z =
∑

i∈V \{q}

tixi (16)

where xi = Hi.Next represents the successor of node i in the sequence π.

3.3 Three-step approach

Controlling the RD is essential in postal services, since the problem cannot be reduced to a single TSPTW.

In a CFRS approach to VRPTW, the first step generally aims to reduce the number of vehicles. To achieve

this, the territories must include as many clients as possible while respecting the maximum duration of the

driver schedules. TSPTWs are used for this, and from a global point of view, some more costly routes with

a shorter RD may be preferred. On the other hand, we cannot focus only on the RD. When some TWs are

restrictive, there may be idle time in the optimal RD solution. There are potentially multiple solutions with

the same RD value within a given tolerance. Our goal is to find those with a shorter TT.

This is why we do not use a weighted sum of the two objective functions. We instead solve a multiobjective

optimization problem with an ε-constraint. For a discussion of ε-constraint methods, see [12]. The main idea

is to limit one or several objective functions by adding a new constraint to the model.

The proposed approach has three steps and is called the three-step approach (TSA):

Step 1: Minimize RD (let Z∗RD be the best RD value found);

Step 2: Minimize TT subject to ZRD ≤ Z∗RD + ε (ε ∈ N is a tolerance);

Step 3: Minimize RD subject to the sequence computed in the previous step.

Les Cahiers du GERAD G–2018–30 5

As seen in [11], solving the TSPTW-makespan (considered as the completion time of the final task) is

generally not as hard as minimizing TT. In the TSA, the CP model (10)–(15) used for Step 1 can be solved

efficiently. For Step 2, we add the constraint

Hq.Begin−Hp.Begin ≤ Z∗RD + ε (17)

to model (16), (11)–(15). Choosing a tight tolerance ε helps us to control the RD. Depending on the value

of Z∗RD + ε, the TW for the return to the depot may be tightened to [Rq,min{Dp + Z∗RD + ε,Dq}]. If

Dp+Z∗RD+ ε < Dq, then the procedure presented in Section 3.1 may be applied again and the solution space

reduced once more. Step 3 ensures that the arrival times associated with the sequence found in Step 2 do

not generate avoidable idle time. This is done by solving again model (10)–(15) but with a fixed sequence.

For Step 2, we also tried a MIP model based on the time bucket formulation (TBF) [7] presented in the

Appendix. It is competitive when the instances are small and/or have tight TWs but is outperformed by

CP as the instances grow in size. Since postal-services instances are generally large, we do not explore TBF

further for this algorithm but it will become useful in the disaggregation phase of the clustering approach

described next.

4 Clustering approach

Some delivery companies assign TWs only to the largest customers and not to individuals. When there are

fewer TWs, minimizing the RD also helps to reduce the TT: the idle time in the solution is sparse, so every

improvement in the RD is generally obtained by reducing the TT. When dealing with instances where the

TW density is critically low (below 5%) we will focus on RD minimization.

In this section, we develop a clustering approach for solving large-scale instances with sparse TWs. This

approach proceeds in three steps. First, it clusters some service points to reduce the size of the instance,

yielding a so-called clustered instance that approximates the original one. Second, it solves this clustered

instance. Finally, given the sequence of the service points in the computed tour, the clusters are disaggregated

to derive a solution to the original instance.

4.1 Clustering

Traditional models use the TWs to reduce the solution space; we instead cluster some service points. Starting

from the original network G, we create a clustered network, i.e., a network which contains fewer nodes and

arcs. Each node in the clustered network represents one or several nodes in V . The depot nodes p and q

and the customer nodes with TWs are never clustered with other nodes. The proposed clustering algorithm

is iterative. At each iteration, it clusters a pair of nodes without TWs (which may represent several original

nodes) to create a new node associated with the location of one of the nodes it represents. The distance

matrix is then updated after computing a Hamiltonian path passing through all the nodes represented by

the new node.

A pseudo-code of the clustering algorithm is given in Algorithm 1. The following notation is used. First,

we number the nodes in V from 0 to |V | − 1 and associate nodes p and q to numbers 0 and |V | − 1. Thus,

the customer nodes are numbered from 1 to |V | − 2. Let J = {1, . . . , |V | − 2} and J̃ ⊂ J be the nodes of

the customers with a TW. At each iteration i of the algorithm, the clustered instance is represented by the

following vectors and matrix.

Ni: Vector of dimension |V | − 2 of subsets of customer nodes. For all j ∈ J , Ni(j) is the (possibly empty)

subset of customers that are represented by customer j. This vector has the following properties:

Ni(j) = {j}, ∀j ∈ J \ J̃ ;
⋃
j∈J Ni(j) = J ; Ni(j1) ∩Ni(j2) = ∅, ∀(j1, j2) ∈ J2 such that j1 6= j2.

Si: Vector of dimension |V | − 2 of total service times. For all j ∈ J , Si(j) =
∑
v∈Ni(j) sv if Ni(j) 6= ∅.

Otherwise, the value of Si(j) is irrelevant.

ITTi: Vector of dimension |V | − 2 of the node internal traveling times. For all j ∈ J , ITTi(j) = 0 if

|Ni(j)| ≤ 1. Otherwise, ITTi(j) approximates the minimal travel time required to visit all customers

in Ni(j).

6 G–2018–30 Les Cahiers du GERAD

Mi: Matrix of dimension |V | − 2× |V | − 2 of the arc traveling times. For all (j1, j2) ∈ J2, Mi(j1, j2) =∞ if

j1 = j2, Ni(j1) = ∅ or Ni(j2) = ∅. Otherwise, Mi(j1, j2) approximates the traveling time from j1 to j2,

including the internal traveling time at j1.

Algorithm 1 Clustering

1: Initialize N0, S0, ITT0, and M0

2: (k1, l1)← argmin(k,l)∈J̃2 M0(k, l)

3: d1 ←M0(k1, l1)
4: i← 1
5: while di ≤ dmax do
6: Ci ← Ni−1(ki) ∪Ni−1(li)
7: Ni ← Ni−1, Si ← Si−1, ITTi ← ITTi−1, and Mi ←Mi−1

8: if di = 0 then
9: Ni(ki)← Ci and Ni(li)← ∅
10: Si(ki)← Si(ki) + Si(ll)
11: Mi(j, li) =Mi(li, j) =∞, ∀j ∈ J
12: else
13: p′i ← argminv∈V \Ci

∑
j∈Ci tvj and q′i ← argminv∈V \(Ci∪{p′i})

∑
j∈Ci tvj

14: if Dq′i
< Rp′i

then

15: (p′i, q
′
i)← (q′i, p

′
i)

16: Compute a shortest Hamiltonian path (p′i, v
1
i , . . . , v

|Ci|
i , q′i) between p

′
i and q

′
i and passing through all nodes v1i , . . . , v

|Ci|
i

in Ci
17: Ni(v

1
i)← Ci and Ni(j)← ∅, ∀j ∈ Ci \ {v1i }

18: Si(v
1
i)← Si(ki) + Si(ll)

19: ITTi(v
1
i)←

∑|Ci|−1
j=1 t

v
j
i v
j+1
i

and ITTi(j)← 0, ∀j ∈ Ci \ {v1i }

20: if ki 6= v1i then
21: Mi(j, ki) =Mi(ki, j) =∞, ∀j ∈ J
22: if li 6= v1i then
23: Mi(j, li) =Mi(li, j) =∞, ∀j ∈ J
24: for j ∈ V \ Ci such that Vi(j) 6= ∅ do
25: Mi(v

1
i , j)← ITTi(v

1
i) + t

v
|Ci|
i ,j

26: Mi(j, v
1
i)← ITTi(j) + tj,v1

i

27: i← i+ 1
28: (ki, li)← argmin(k,l)∈J̃2 Mi−1(k, l)

29: di ←Mi−1(ki, li)

The algorithm starts by initializing these vectors and matrix as follows. For all j ∈ J , N0(j) = j,

S0(j) = sj , and ITT0(j) = 0. For all (j1, j2) ∈ J2, M0(j1, j2) =∞ if j1 = j2. Otherwise, M0(j1, j2) = tj1j2 .

In Step 2, the algorithm finds in matrix M0 the minimal traveling time d1 and selects a pair of nodes (k1, l1)

yielding this time. It then sets the iteration counter i to 1 and check if di does not exceed a predetermined

maximum time dmax. If this is the case, iteration i will merge the selected nodes ki and li into a single node

that will contain the customer nodes in Ci. It starts by making copies of the vectors and matrix Ni−1, Si−1,

ITTi−1 and Mi−1. These copies will be updated to define the clustered instance at iteration i.

Two cases can occur. If di = 0 (test at Step 8), a case that may happen when several customers are

located in the same building, all customers represented by ki and li are arbitrarily assigned to ki and all

information related to li become obsolete. Note that, if di = 0, the traveling time between any pair of nodes

in Ci is equal to 0 because in all previous iterations i′, di′ was also equal to 0. If di > 0, the merging process is

more complex. Given that, in the current clustered instance, the customers in Ci will be visited consecutively,

we would like to approximate the minimal traveling time ITT required to visit the customers in Ci. To do

so, we first select two nodes p′i and q′i not in Ci that might immediately precede and succeed to the node

representing Ci in the solution. We choose these nodes as the two closest neighbours on average to all nodes

in Ci (Step 13). If they have TWs and are badly ordered, we switch them in Step 15. We then compute in

Step 16 a shortest Hamiltonian path that starts in p′i, ends in q′i and visits all nodes in Ci. ITT is then set

to the total traveling time between the first node v1i after p′i and the last node v
|Ci|
i before q′i in this path, i.e,

ITT =
∑|Ci|−1
j=1 tvji v

j+1
i

. Given that |Ci| is relatively small (less than 25 in our tests), these shortest paths can

be computed rapidly with a general-purpose MIP solver. The customers in Ci are then assigned to node v1i in

Step 17. Some entries of the traveling time matrix Mi are updated in Steps 20 to 26. Note that, in this last

Les Cahiers du GERAD G–2018–30 7

step, we could use tj′,v1i instead of tj,v1i where j′ is the next-to-last node in a shortest Hamiltonian path going

through all nodes in Ni(j). Given that j and j′ are typically very close to each other when j′ ∈ Ni(j), we

have decided to use tj,v1i as a proxy for tj′,v1i . The current iteration ends by increasing the iteration counter

and selecting in Step 28 the next pair of nodes to cluster.

Once the algorithm terminates, the clustered instance is obtained by creating one node for each non-empty

subset Ni−1(j), j ∈ J , using the corresponding service times in vector Si−1 and the corresponding traveling

times in matrix Mi−1. The vector ITTi−1 is not required as the internal traveling times are included in the

traveling times provided in matrix Mi−1.

Algorithm 1 stops when the traveling time di between the next pair of nodes (ki, li) to cluster exceeds a

predetermined threshold as clustering these two nodes seems riskier. Indeed, in preliminary tests, we observed

that being too aggressive in the clustering phase may have significant drawbacks as too many approximations

are introduced especially when updating the distance matrix. To avoid this, we also tested two other criterion.

The first is to stop clustering when the number of nodes in the clustered instance reached a prefixed minimum

number. The second is local and forbids clustering too many original nodes into a single one, i.e., a maximal

cardinality on each subset Ni(j), j ∈ J , is imposed.

4.2 Solution of the clustered instance

After the clustering, we solve the clustered instance using our CP-model (Section 2.1). Even if the clustered

instance is smaller than the original one, there are still some TWs, and the problem remains complex.

Nevertheless, a clustered instance with fewer than 100 nodes can be solved in a reasonable time.

4.3 Disaggregation

After solving the clustered instance to find a clustered solution denoted by Seq, we compute a solution to the

original instance, respecting the sequence of Seq to a certain extent. This solution is found by solving the

original problem augmented by the following precedence constraints.

Let us partition the nodes in Seq (except the depot nodes) in two subsets K and W . Subset K =

{K1, . . . ,KnK} contains the nK nodes without a TW, hereafter called the clustered nodes even if such a node

corresponds to a single original node. Subset W = {W1, . . . ,WnW } contains the nW nodes with a TW (they

all remained unclustered). Node Ki is the ith visited clustered node, but not necessarily the ith node of Seq if

some nodes of W are visited earlier. Let j− (resp. j+) be the index i of the closest clustered node Ki before

(resp. after) Wj in Seq. We assume that i = 0 if Wj is the first node visited in Seq and that i = nK + 1 if
Wj is the last one visited.

Let θ ≥ 1 be an integer flexibility parameter that indicates how many neighboring clustered nodes may be

merged. The precedence constraints are divided into two groups, depending on the types of nodes involved.

• For pairs of clustered nodes, the following constraints allow rearrangement of the original nodes, re-

specting Seq with flexibility θ:

a ≺ b, ∀i ∈ {1, . . . , nK − θ}, ∀a ∈ CKi , ∀b ∈ CKi+θ (18)

where, as in Section 3.1, a ≺ b means that a must be visited before b. When θ = 1, the nodes within

each clustered node can be rearranged but they must respect their order with respect to the nodes in

the preceding and succeeding clustered nodes.

• The nodes with TWs are now allowed to merge with their θ closest clustered neighbors:

b ≺ Wj , ∀Wj ∈W | j− − θ ≥ 1, ∀b ∈ CK(j−−θ)
(19)

a � Wj , ∀Wj ∈W | j+ + θ ≤ nW , ∀a ∈ CK(j++θ)
(20)

If θ = 1, every node Wj can be reordered with the nodes in its immediate predecessor and successor

clustered node to allow a better positioning of this time constrained node.

8 G–2018–30 Les Cahiers du GERAD

As an example, let Seq = {p− Â− B̂ −W1 − Ĉ −W2 − D̂ − q} be the solution of the clustered problem,

where K = {Â, B̂, Ĉ, D̂} is the clustered node set and W1 and W2 are nodes with TWs. Let θ = 1.

The precedence constraints are:

a ≺ b, ∀a ∈ CÂ, ∀b ∈ CB̂ (21)

b ≺ c, ∀b ∈ CB̂ , ∀c ∈ CĈ (22)

c ≺ d, ∀c ∈ CĈ , ∀d ∈ CD̂ (23)

for the clustered nodes, and

W1 � a, ∀a ∈ CÂ (24)

W1 ≺ d, ∀d ∈ CD̂ (25)

W2 � b, ∀b ∈ CB̂ (26)

for the nodes with TWs.

For more flexibility, θ can be increased. In our example, with θ = 2, (21)–(23) are replaced by

a ≺ c, ∀a ∈ CÂ, ∀c ∈ CĈ (27)

b ≺ d, ∀b ∈ CB̂ , ∀d ∈ CD̂ (28)

and (24)–(26) become

W2 � a, ∀a ∈ CÂ. (29)

Note that no precedence constraints are imposed between two nodes in W , giving the opportunity to

change their order of visit if this change respects the TWs and the precedence relationships between these

nodes and the neighbouring clustered nodes. Taking into account the precedence constraints, the problem

can be solved using one of the two methods described in Sections 4.3.1 and 4.3.2.

In our computational experiments, we also consider a case θ = 0 for which the precedence constraints

are not described as above. When θ = 0, the precedence constraints ensure that the order of the service

points in each clustered node is preserved. Moreover, the service points with TWs cannot be mixed with

their clustered neighbours.

4.3.1 Disaggregation phase: Pure CP

The value of the objective function found for the clustered instance is an upper bound for the original

problem. Because of the time limit, we may not find an optimal solution to the clustered problem. Moreover,

the internal path of each clustered node, visiting for instance the customers in Ci, has been proved optimal

for only one pair of closest neighbours (p′i, q
′
i); this sequence may or may not be respected in the optimal

solution. This upper bound can be used to tighten the TWs on the nodes p and q representing the depot at

the beginning and end of the tour.

In the pure CP case, the clustered solution is disaggregated by solving the original problem augmented

by the precedence constraints using CP.

4.3.2 Disaggregation phase: CP and TBF

Empirically, we have observed that after the first second of computation, few improvements are made to the

disaggregated solution. Since CP often struggles at proving the optimality of a solution, we use a MIP model,

namely, the TBF presented in the Appendix, to close the optimality gap. Given that the TBF is not well

designed to minimize RD, we propose a disaggregation procedure similar to the TSA of Section 3.3 in which

the TBF is used to minimize TT.

Les Cahiers du GERAD G–2018–30 9

Step Dis-1: Minimize RD via CP with a time limit of 1 s to obtain a good upper bound for Step Dis-2.

Step Dis-2: Minimize TT via the TBF after imposing an upper bound on the RD.

Step Dis-3: Minimize RD via CP subject to the sequence computed in the previous step.

As in Section 4.3.1, precedence constraints are added to the original formulation, based on the solution

found for the clustered instance and θ. Additionally, an artificial TW derived from the visiting times Ti of

the clustered nodes Ki ∈ K in the clustered solution is created for every service point that was not originally

time-constrained. For node a ∈ CKi , the artificial TW is [Ti−θ, Ti+1+θ] because a node in CKi should be

visited after the first node in CKi−θ and before the last one in CKi+θ . In this procedure, we want to use the

strength of TBF to help minimize the RD, since it is closely related to the TT, especially given the sparse

TW density.

5 Results on benchmarks

In this section, we consider instances from the literature. Most of the instances have dense TWs, but the

results show that the human cost (RD) is higher than the vehicle cost (TT), and focusing on TT may not

be appropriate. We tested two sets of well-known instances: the Gendreau et al. (Section 5.1) and Ascheuer

et al. (Section 5.2) benchmarks.

The results were obtained on an Intel(R) Xeon(R) X5675 at 3.07 GHz with a single thread. The code was

compiled in C++ and uses CP-Optimizer 12.7.1.0. Since the TSPTW may be solved many times, we imposed

tight time limits. For the TSA, we limited Step 1 and Step 2 to 60 s each but Step 1 typically required just

a few seconds. Parameter ε was set equal to 5 unless otherwise specified. When directly solving the WOF

model by CP, a time limit of 60 s was enforced and we used γTT = 8 and γRD = 20 except for the parameter

sensitivity analysis.

In the following, we compare the solutions obtained with two different approaches, for instance, with the

WOF model versus when minimizing TT only. The histograms show a) the savings in percentage, represented

by the dots in the figures, given a cost of γRD = $20/h for RD and γTT = $8/h for TT and b) the differences

in TT and RD between the solution computed by the first approach and the reference one. For example, in

Figure 1, the bars represent the variations in TT (blue) and RD (red) between the solutions obtained with

the WOF and when minimizing TT only.

5.1 Gendreau et al. instances

These instances, hereafter called the GHLS instances, extend the TWs of the Dumas et al. instances [9] and

are presented in Gendreau et al. [10]. They are referred to as nXXwYY where XX is the number of nodes,

and YY indicates the width of the TWs. There are five instances for each XX-YY combination, for a total of

105 instances. In most cases the RD solution is found and proved optimal within 1 s, although n80w160.002

requires 93 s.

5.1.1 WOF results

Compared to the TT solutions, the WOF solutions yield savings for an instance class ranging from -0.24%

to 6.76%, and an average global saving of 2.53%. Figure 1 shows that the increase in the TT is usually

compensated for by the reduction in the RD, and so the delivery companies could have shorter routes and

lower their routing costs. Figure 2 shows that when there are many TWs, even if they are relatively wide, it

is too costly to minimize only the RD. Indeed, in most cases, the WOF solutions exhibit a small increase in

RD but a large decrease in TT compared to the solutions obtained by minimizing only RD.

5.1.2 TSA results

Figure 3 compares the solutions of the TSA and of the WOF model. Neither method clearly outperforms

the other, but on average the solutions of the WOF model give slightly better costs (savings of 2.53% over
the solution obtained by minimizing TT only, compared to 2.35% for TSA).

10 G–2018–30 Les Cahiers du GERAD

Figure 1: Savings and average TT and RD variations per class, for WOF versus TT only (GHLS instances)

Figure 2: Savings and average TT and RD variations per class, for WOF versus RD only (GHLS instances)

Figure 3: Savings and average TT and RD variations per class, for WOF versus TSA (GHLS instances)

Les Cahiers du GERAD G–2018–30 11

5.1.3 Sensitivity analysis

Results for different parameter settings are presented in Table 1. For each setting, we report average results

computed over the solutions obtained over all GHLS instances. In this table, the first two columns specify

the tolerance ε used in Step 2 of the TSA and the ratio of γTT to γRD used in the WOF model. The next

four columns provide the average WOF value (zWOF) of the solutions when computed with γTT = 8 and

γRD = 20, the TT and RD of the computed solutions as well as the average computational time in seconds.

Then, columns Sav-TT and Sav-RD report the average savings in percentage with respect to the solutions

computed when minimizing TT only and RD only, respectively. These savings are calculated by considering

the value zWOF for all solutions. Finally, column TolV 5/10 indicates for how many instances (out of 105),

the computed solution would violate the tolerance ε if it was set to 5 or 10.

Table 1: Comparing TSA and WOF with different parameter settings (GHLS instances)

Method ε γTT /γRD zWOF TT RD Time (s) Sav-TT (%) Sav-RD (%) TolV5/10

WOF - 1/100 14,629.2 479.4 539.7 42.2 2.21 2.21 1/0
WOF - 1/20 14,605.2 475.9 539.9 46.8 2.37 2.37 3/0
WOF - 5/20 14,581.6 470.2 541.0 52.3 2.53 2.53 6/4
WOF - 8/20 14,582,8 469.1 541.5 56.5 2.53 2.52 12/6
WOF - 13/20 14,594.8 466.1 543.3 58.5 2.45 2.44 23/13
WOF - 20/20 14,598.0 463.5 544.5 59.0 2.42 2.42 31/18
TSA 5 - 14,609.2 473.4 541.1 53.9 2.35 2.34 0/0
TSA 10 - 14,625.6 470.2 543.2 57.8 2.24 2.24 39/0

Minimizing the WOF should provide the best zWOF value when γTT = 8 and γRD = 20. Here, the best

parameter setting is rather γTT = 5 and γRD = 20 by a slight margin over γTT = 8 and γRD = 20. This

is explained by the fact that not all computed solutions are optimal given that the solution process reached

the time limit for some instances. For the WOF model, we observe that the average computational time

increases with the ratio γTT /γRD that converges to one, indicating that it is difficult to obtain a perfect

tradeoff between TT and RD.

As expected, increasing ε from 5 to 10 in the TSA produces solutions with less TT but larger RD. It also

increases the average computational time given that the solution space is enlarged in Step 2.

Finally, note that even if a slight average RD increase of 0.4 is observed between the solutions computed

by the TSA with ε = 5 and those obtained by the WOF model with γTT = 8 and γRD = 20, the RD has a

greater variance in the latter solutions. Indeed, 12 of 105 solutions would have violated the tolerance ε = 5,

and 6 would have violated the limit ε = 10. Logically, the closer the ratio γTT /γRD is to 1, the more the

tolerances are violated, since there is little interest in saving RD rather than TT.

5.2 Ascheuer et al. instances

These 50 instances, hereafter the AFG instances, were presented in [4]. The number of nodes varies from

12 to 233. These instances are much harder to solve when minimizing RD instead of TT. Indeed, 9 of 50

instances could not be solved by CP to proven optimality within 5 min.

5.2.1 WOF results

Compared to the TT solutions, the WOF solutions give savings of -0.16% to 9.90%, for an overall saving

of 0.98%. In most cases, the price of the route is reduced (there is only one increase of more than 0.1%),

as Figure 4 shows. The comparative results with the RD minimization are similar to those for the first

benchmark and are presented in Figure 5.

5.2.2 TSA results

Figure 6 presents a comparison of the solutions obtained with the WOF model and the TSA. Neither method

clearly outperforms the other. In three instances WOF gives a saving of more than 1.5%, but TSA is slightly

better on average (by 1.03% overall).

12 G–2018–30 Les Cahiers du GERAD

Figure 4: Savings, and TT and RD variations per instance, for WOF versus TT only (AFG instances)

Figure 5: Savings, and TT and RD variations per instance, for WOF versus RD only (AFG instances)

Figure 6: Savings, and TT and RD variations per instance, for WOF versus TSA (AFG instances)

Les Cahiers du GERAD G–2018–30 13

6 Results for instances with sparse TWs

We have studied two instances, labelled a and b, provided by our industrial partner, Giro. They commercialize

the optimization software GeoRoute which is used by some of the largest postal organizations worldwide.

These instances have 475 (a) and 458 (b) nodes and just a few TWs (resp. 6 and 8), which is an extreme case

of flexibility. We also generated instances with 200 and 300 nodes, selected randomly from those available,

retaining all of the nodes with TWs. We refer to the instances as rd XXX Yg where XXX is the number

of nodes selected from the original instance Full g and Y is an identifier. For our tests, we used the same

computer as described above, still with a single thread. In addition to CP-Optimizer, the disaggregation

phase using TBF relied on the MIP solver Cplex, version 12.7.1.0.

Because there are few TWs, minimizing the RD also gives a good TT, as it is almost the only way to

reduce the tour duration (there is little idle time). The reverse is not true since a long waiting time will not

be penalized at all. Thus, for these instances (TW density below 5%) a multiobjective function is not really

necessary. Given the size of the test instances, we want to show in this section the efficiency of the clustering

approach described in Section 4.

In Figures 7 and 8, the lines represent the evolution of the RD of the best solution found with the direct

CP model (i.e., without clustering) introduced in Section 2, minimizing the RD. On average, this is better

than minimizing the TT or the WOF, or using the TSA for the same time without clustering. The points

(resp. crosses or circles) represent the RD value of the solution computed by the clustering approach (resp.

with the pure CP and CP-TBF disaggregation methods). We impose a time limit of 20 s for solving the

clustered instance and also of 20 s for the disaggregation phase. The additional time mainly comes from the

clustering step or the building of the different models. The number of nodes in the clustered instances varies

between 67 and 96 in these instances. For these results, we set θ = 1 in the CP-TBF disaggregation phase.

Figure 7: Minimizing RD for sparse-TW instances (tour duration
up to 10,000 time units)

Figure 8: Minimizing RD for sparse-TW instances (tour duration
above 10,000 time units)

On average, compared to the direct CP method, the clustering method gives a reduction in the RD of

1.11% (for pure CP) and 1.08% (for TBF-CP), in respectively 74 s and 84 s less than the 120 s allowed for

the CP method. In addition to the time savings for some instances, the TBF method ensures that there is

no better feasible disaggregation given the computed clusters and clustered sequence.

Table 2 shows the results of the four direct methods, all computed with CP models. RD is the most

efficient, but even if we pick the best method for each instance, the clustering approach still reduces the RD

by 0.84% on average, in less than half the time.

We conducted further tests with two different values of θ for which we do not report detailed results.

For θ = 0, which provides a rough way of disaggregating the clustered instance, the results are almost

equivalent to those of the other methods, and they are obtained in less time. For θ = 2, there is much more
flexibility in the disaggregation phase, but it is not possible to obtain good results quickly.

14 G–2018–30 Les Cahiers du GERAD

Table 2: RD percentage reduction compared to the direct methods (TT, RD, TSA, and WOF) and to the best of the four

Instance TT RD TSA WOF Best of 4

rd 200 1a 2.41% 1.05% 1.05% 2.15% 1.05%
rd 200 2a 0.01% 0.43% 1.79% 4.72% 0.01%
rd 200 3a 2.70% 3.89% 3.89% 3.89% 2.70%
rd 300 1a 1.65% 0.53% 1.54% -0.24% -0.24%
rd 300 2a 0.78% 0.30% 2.58% 2.73% 0.30%
rd 300 3a 0.36% 0.71% 0.71% 0.71% 0.36%
Full a 1.93% 2.13% 1.76% 2.06% 1.76%
rd 200 1b 1.69% 0.65% 0.65% 1.49% 0.65%
rd 200 2b 1.75% 1.55% 1.73% 1.66% 1.55%
rd 200 3b 1.12% 0.86% 0.89% 1.35% 0.86%
rd 300 1b 1.89% 0.75% 0.95% 1.29% 0.75%
rd 300 2b 0.79% 1.17% 1.17% 1.40% 0.79%
rd 300 3b 3.14% 1.48% 1.59% 1.80% 1.48%
Full b 0.05% 0.51% 0.38% 0.51% 0.05%

Avg. 1.40% 1.11% 1.41% 1.70% 0.84%

Conclusion

In this paper we highlighted the particularities of the well-known traveling salesman problem with time

windows that arise in the context of postal operations, namely, the importance of minimizing not only the

total travel time, or distance, but also the total route duration. To tackle this issue, we investigated different

solution mechanisms, such as weighted combination of objectives and a hierarchical three-step approach.

We also consider large-scale instances where very few customers have time windows. By clustering the

unconstrained customers, solving the reduced problem, and then sequencing the customers inside clustered

nodes, we were able to achieve better solutions than a direct approach and in shorter computational times.

As a future work, we will tackle the postal territory design problem, considering that this design is a

strategic decision which is taken approximately once per year perhaps, while optimizing the TSPTW occurs

at an operational, daily, decision level.

Appendix

The TBF [7] is a MIP model which gathers several variables of a time-indexed formulation into time buckets,

to reduce the combinatorial nature of the problem. Each bucket b = [b, b̄] represents a portion of the time

horizon. Let B be the set of all buckets used. With the directed graph G = (V,A) introduced in Section 2,

the TBF has three types of variables:

• xij = 1 if arc (i, j) ∈ A is used; 0 otherwise.

• zbi = 1 if node i is visited in bucket b; 0 otherwise.

• ybij = 1 if arc (i, j) ∈ A is used and node i is visited in bucket b; 0 otherwise.

We define three subsets:

• Bi ⊆ B is the subset of buckets allowed for node i.

• V +(i) ⊆ V \{p} (resp. V −(i) ⊆ V \{q}) is the subset of possible successors (resp. predecessors) of i. It

can be tightly defined, as presented in Section 3.1.

• Ik(i, b) is the subset of Bk representing the potential starting buckets of node k if arc (k, i) is used and

the visit to node i started in bucket b. We have

Ik(i, bl) = {b ∈ Bk : b̄l−1 < b+ tki ≤ b̄l}

where b0 = −∞ is assumed.

Les Cahiers du GERAD G–2018–30 15

Given this notation the time bucket relaxation (TBR) for the TSPTW is

min
∑

(i,j)∈A

tijxij (30)

subject to:∑
b∈Bi

zbi = 1, ∀i ∈ V (31)

∑
j∈V +(i)

ybij = zbi , ∀i ∈ V \{q}, ∀b ∈ Bi (32)

∑
k∈V −(i)

∑
β∈Ik(i,b)

yβki = zbi , ∀i ∈ V \{p}, ∀b ∈ Bi (33)

∑
b∈Bi

ybij = xij , ∀(i, j) ∈ A (34)

xij , y
b
ij , z

b
i ∈ {0, 1}, ∀i ∈ V, ∀(i, j) ∈ A, ∀b ∈ Bi. (35)

The objective function (30) minimizes the TT. Constraints (31) ensure that each service point is visited in

a single bucket. Constraints (32) and (33) link the variables y and z, while guaranteeing that a valid bucket

is used via the set Ik(i, b). Constraints (34) link x and y.

Model (30)–(35), as its name implies, is a relaxation of the TSPTW. The feasibility checks of the model

are made as if every time was at the beginning of a bucket, so as shown in Figure 9, subtour elimination

constraints (SECs) and infeasible path cuts (IPCs) should be added to obtain an exact formulation, the

so-called TBF.

Figure 9: Subtour and infeasible path examples

If the TT between two nodes is shorter than the width of a time bucket, subtours may occur. In dense

areas or when the bucket width is large, the subtours may contain more than two nodes. In Figure 9, the

infeasible path (1[b1,2], 2[b2,3], 3[b3,3]), using respectively the second, third, and third buckets of nodes 1, 2,

and 3, is allowed by the TBR since the feasibility depends on Ik(i, b), which selects buckets in Bk as long as

a “time index” of the buckets matches with one time index of b (∈ Bi).

For every subtour detected, let S ⊂ V \{p, q} be the associated nodes. The following SEC must be added:∑
(i,j)∈δ(S)

xij ≥ 1 (36)

where δ(S) is the subset of arcs (i, j) of A such that i ∈ S and j ∈ V \{S}.

16 G–2018–30 Les Cahiers du GERAD

For every infeasible path P (which would violate some TWs), we add the IPC:∑
(i,j)∈P

xij ≤ |P| − 1. (37)

The narrower the buckets, the more accurate the model and the fewer SECs and IPCs have to be added

while solving the MIP. However, increasing the number of variables increases the combinatorial nature of

the problem. With wider buckets, a node may not be assigned to the right bucket. However, if the solution

remains feasible, we can retain it, because only the sequence matters. For this reason, the TBF may greatly

reduce the TT.

We can try to capture the RD information of the sequence found, but it is not accurate, since we know

only in which bucket the route finishes. Intuitively, the objective function may be modified to min z where z

is defined by the following constraint, leading to an overestimation of the real RD objective function:

z ≥
∑
b∈Bq

b̄zbq −
∑
b∈Bp

bzbp. (38)

However, it is possible to be more accurate, especially when the waiting time is low, by replacing (38) by:

z ≥
∑
b∈Bq

bzbq −
∑
b∈Bp

b̄zbp (39)

z ≥
∑

(i,j)∈A

tijxij . (40)

In both cases, the buckets have to be carefully assigned, and this requires the addition of some constraints;

see [7]. Moreover, to obtain the exact RD, we must refine the buckets to increase the accuracy in terms of

the departure time from and the arrival time at the depot. These two values greatly affect the computational

time, and hence we do not use the TBF to minimize RD. When an upper bound on RD is imposed like in

Section 4.3.2, it is enforced through the addition of IPCs.

In the TBF, the bucket generation may be key to the performance. We generate the time buckets on a

fixed base L so b0 = [0, L− 1], b1 = [L, 2L− 1], and so on. If necessary, we replace the first and last bucket of

each service point i by more accurate ones that match the TW. If L = 10 and for some i, [Ri, Di] = [27, 44],

Bi is defined by {[27, 29], [30, 39], [40, 44]} instead of {[20, 29], [30, 39], [40, 49]}. This allows us to discard some

buckets in Ik(i, b) that could have been considered with the original buckets.

The TBR is solved using Cplex 12.7.1.0, and SECs and IPCs are added via callbacks during the process.

We use the lazycallback technology, i.e., we check for subtours and infeasible paths at every integer solution

and then add the corresponding constraints (36) and (37) to the model.

References

[1] ford.ca. http://www.ford.ca/commercial-trucks/transit-connect-cargo-van/2017/features/

capability/. Accessed: 2017-06-01.

[2] indeed.com. https://emplois.ca.indeed.com/cmp/Canada-Post/salaries. Accessed: 2017-06-01.

[3] Natural resources canada : Retail fuel prices by province. http://www2.nrcan.gc.ca/eneene/sources/pripri/
price_map_e.cfm. Accessed: 2017-11-13.

[4] Norbert Ascheuer, Matteo Fischetti, and Martin Grötschel. Solving the asymmetric travelling salesman problem
with time windows by branch-and-cut. Mathematical Programming, 90(3):475–506, May 2001.

[5] Roberto Baldacci, Aristide Mingozzi, and Roberto Roberti. New State-Space Relaxations for Solving the Trav-
eling Salesman Problem with Time Windows. INFORMS Journal on Computing, 24(3):356–371, 2012.

[6] Nicos Christofides, Aristide Mingozzi, and Paolo Toth. State-space relaxation procedures for the computation
of bounds to routing problems. Networks, 11(2):145–164, 1981.

http://www.ford.ca/commercial-trucks/transit-connect-cargo-van/2017/features/capability/
http://www.ford.ca/commercial-trucks/transit-connect-cargo-van/2017/features/capability/
https://emplois.ca.indeed.com/cmp/Canada-Post/salaries
http://www2.nrcan.gc.ca/eneene/sources/pripri/price_map_e.cfm
http://www2.nrcan.gc.ca/eneene/sources/pripri/price_map_e.cfm

Les Cahiers du GERAD G–2018–30 17

[7] Sanjeeb Dash, Oktay Günlük, Andrea Lodi, and Andrea Tramontani. A time bucket formulation for the traveling
salesman problem with time windows. INFORMS Journal on Computing, 24(1):132–147, 2012.

[8] Kalyanmoy Deb. Multi-objective optimization. In Edmund K. Burke and Graham Kendall, editors, Search
Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, pages 403–449.
Springer US, Boston, MA, 2014.

[9] Yvan Dumas, Jacques Desrosiers, Eric Gelinas, and Marius M. Solomon. An optimal algorithm for the traveling
salesman problem with time windows. Operations Research, 43(2):367–371, April 1995.

[10] Michel Gendreau, Alain Hertz, Gilbert Laporte, and Mihnea Stan. A generalized insertion heuristic for the
traveling salesman problem with time windows. Operations Research, 46(3):330–335, March 1998.

[11] Manuel López-Ibáñez, Christian Blum, Jeffrey W. Ohlmann, and Barrett W. Thomas. The travelling salesman
problem with time windows: Adapting algorithms from travel-time to makespan optimization. Applied Soft
Computing, 13(9):3806–3815, 2013.

[12] George Mavrotas. Effective implementation of the ε-constraint method in multi-objective mathematical pro-
gramming problems. Applied Mathematics and Computation, 213(2):455–465, July 2009.

[13] Boland Natashia, Hewitt Mike, Vu Duc Minh, and Savelsbergh Martin W.P. Solving the Traveling Sales-
man Problem with Time Windows Through Dynamically Generated Time-Expanded Networks, pages 254–262.
Springer International Publishing, Cham, 2017.

[14] Martin W. P. Savelsbergh. Local search in routing problems with time windows. Annals of Operations Research,
4(1):285–305, 1985.

[15] Martin W.P. Savelsbergh. The Vehicle Routing Problem with Time Windows : minimizing route duration.
ORSA Journal on Computing, 4(2):146–154, 1992.

	Introduction
	Problem formulation
	Constraint programming model
	Multiobjective model: Weighted objective function

	Solution approach
	Preprocessing
	CP-Optimizer implementation
	Three-step approach

	Clustering approach
	Clustering
	Solution of the clustered instance
	Disaggregation
	Disaggregation phase: Pure CP
	Disaggregation phase: CP and TBF

	Results on benchmarks
	Gendreau et al. instances
	WOF results
	TSA results
	Sensitivity analysis

	Ascheuer et al. instances
	WOF results
	TSA results

	Results for instances with sparse TWs

