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conservent leur droit d’auteur et leurs droits moraux sur leurs publica-
tions et les utilisateurs s’engagent à reconnâıtre et respecter les exigences
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Abstract: In emergency call centers (for police, firemen, ambulances, rescue teams) a single event can
sometimes trigger many incoming calls to the center in a short period of time. Several people may call to
report the same fire or the same accident, for example. Such a sudden burst of incoming traffic can have
a significant impact on the responsiveness of the call center for other events in the same period of time.
We examine data from the SOS Alarm center in Sweden, related to this type of situation. We also build a
stochastic model for the bursts. We show how to estimate the model parameters for each burst by maximum
likelihood, how to model the multivariate distribution of those parameters using copulas, and how to simulate
the burst process from this model. In our model, certain events trigger an arrival process of incoming calls
with a random time-varying rate over a finite period of time of random length. The time period can be short
and the arrival rate over that period can be quite large.

Acknowledgments: This research project has been funded by the Swedish emergency call center SOS Alarm
Sverige Ab, who also provided the data. The work of P. L’Ecuyer was also supported by a discovery grant
from NSERC-Canada, a Canada Research Chair, and an Inria International Chair.
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1 Introduction

Emergency call centers receive phone calls for various types of urgent situations such as medical emergencies,

fires, accidents, rescue, terrorist acts, etc. In North America (Canada, USA, and recently Mexico) calling

911 will connect you to an emergency dispatch office, also called a public-safety answering point, in which

operators can organize and dispatch the appropriate responses such as ambulances, firefighters, police, rescue

resources, etc. In Europe and many other countries, 112 is the corresponding calling number. Our analysis

in this paper is based on data from SOS-Alarm, which handles the 112 number in Sweden.

Managing an emergency call center involves deciding (among other things) what goals or constraints we

want to impose on the quality of service, how to route calls and assign priorities, how many operators (general

or specialized) to have in the center in each period (e.g, half-hour) of each day (this is called staffing), and

what would be the work schedule of each available operator, e.g., over a given week (this is scheduling). The

staffing and scheduling decisions must be made under various constraints on the work schedules of operators,

based on union agreements for example, on the number of operators that can be available, the tasks for

which they have been trained, etc. The staffing and scheduling problems are usually formulated as stochastic

optimization problems in which the objective is to minimize the operating costs, under constraints on the

quality of service which are defined as probabilities or mathematical expectations. For example, one can

impose the constraint that the average (expected) waiting time of calls must be less than s0 seconds, that

the fraction of calls answered within less than s1 seconds must be at least 95%, etc. These constraints are

often imposed separately within given time periods (e.g., each day, each hour, etc.) and sometimes separately

for different call types. For further details, see for example Akşin et al. (2007), Cez̧ik and L’Ecuyer (2008),

Avramidis et al. (2010), Koole (2013), Ta et al. (2016).. At the SOS Alarm Emergency call center, it is

requested that 99% of the calls are answered within 30 seconds and that the average waiting time is less that

8 seconds.

To solve such a problem, one needs a reasonably realistic model of how things happen in the call center.

Erlang formulas have been used for a long time for staffing call centers. These formulas are based on the

simplifying assumptions that all calls have the same exponential service-time (or duration) distribution, and

that calls arrive according to a Poisson process with a known constant arrival rate. But these assumptions

are unrealistic. In particular, in typical emergency call centers (and other call centers as well), the arrival

rate is time-dependent and is itself random (Avramidis et al. 2004; Channouf and L’Ecuyer 2012; Ibrahim

et al. 2012; Ibrahim et al. 2016; Oreshkin et al. 2016). The service times are also not exponential and their

distribution may depend on the server, on time, and on other factors (Avramidis and L’Ecuyer 2005; Brown

et al. 2005; Ibrahim et al. 2016). For realistic call center models, there is no reliable approximation formula

for the measures of performance or quality of service, and one must rely on simulation (Pichitlamken et al.

2003). Simulation-based stochastic optimization algorithms have been proposed and experimented for call

centers; see for example Atlason et al. (2004), Cez̧ik and L’Ecuyer (2008), Avramidis et al. (2009), Avramidis

et al. (2010), Chan et al. (2016), Ta et al. (2016).

In this paper, we focus on the modeling of one particular aspect of the arrival process in emergency call

centers: the presence of arrival bursts triggered by a single event. For example suppose that a large fire or

accident occurs in a city or along a highway. Within a few minutes, several people may call the 112 number

to report the same incident. In some cases, a single event may trigger over 40 calls in less than 2 minutes,

for instance. During a burst, the arrival rate of calls increases momentarily, possibly by a very large factor.

This can overload the call center capacity and, as a result, urgent calls for unrelated events could be lost or

may have to wait too long, potentially with serious consequences. It is important to understand how these

bursts occur and to develop realistic models of the arrival rate process within a burst. We do this based on

data from the SOS Alarm call centers in Sweden. One important difficulty in modeling a time-dependent

and stochastic arrival-rate process like this one is that the arrival rate itself cannot be observed, only the

arrival times can be observed. This complicates significantly the estimation of model parameters (Ibrahim

et al. 2012; Oreshkin et al. 2016). We explain how to handle this for our models.

The rest of the paper is organized as follows. In Section 2, we describe the data we have on the bursts, and

we provide some examples and summary information. In Section 3, we define a model we came up with, based



2 G–2018–29 Les Cahiers du GERAD

on the observed data, and we show how the bursts can be simulated once the model parameters have been

estimated. In our model, a burst has a random length, during which the arrival rate is an exponential function

with random initial value and whose exponent is also random and can be either negative (the rate decreases),

positive (the rate increases exponentially), or zero (the rate is constant). With this type of exponential rate

function, the arrivals can be simulated by inversion, via a change of variable that transforms a standard

Poisson process (with rate 1) to a Poisson process with the desired exponential rate. The starting point,

length, initial rate, and exponent, are random variables and our goal is to estimate their joint distribution

from a given parameterized class of distributions. In Section 4, we explain how these parameters can be

estimated by maximizing the log-likelihood of the data for our model. We illustrate this numerically in

Section 5. Our proposed model is not perfect. We mention possible improvements and extensions at the end

of the paper.
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Figure 1: Impact of a large burst on the cumulative arrival count process.

0 500 1,000 1,500
0

10

20

30

time in seconds

n
u

m
b

er
o
f

ca
ll

s
in

b
u

rs
t

cumulative arrivals of a burst

0 100 200 300 400
0

10

20

30

time in seconds

n
u

m
b

er
of

ca
ll

s
in

b
u

rs
t

cumulative arrivals of a burst

Figure 2: The cumulative arrivals for two bursts; one with a decreasing arrival rate (left) and one with an increasing arrival
rate (right).

2 The available data

Our study is based on detailed data from the Swedish 112 emergency call center, which is managed by a semi-

private company named SOS Alarm Sverige AB. The SOS Alarm call center works as a single virtual center

which serves all of Sweden, although the operators (or agents) are physically in several different locations.

The main one is an underground bunker in Stockholm. There are some locations with a small number of

operators, e.g., in Northern Sweden. Calls are handled preferably by operators at the closest location, but if

no operator is available at there, the call can be taken at another location.

The center handles about 60,000 calls per week (i.e., 6 calls per minute) on average. The available data

contains call-by-call information that includes (among other things) the arrival time of each call, its waiting

time, its area of origin, its duration, and, very importantly for us, the event number to which this call is

associated. With this information, we can identify all the calls related to the same event, i.e., the calls that

belong to a given burst. This last information is sometimes unavailable in emergency call centers; then it is

much more difficult to identify the bursts in the data and to estimate model parameters.
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For our data analysis in this paper, we consider only the calls related to “rescue” operations in a wide

sense. i.e, calls that request for some emergency response and action by the police, fire department, or an

ambulance, for example. This covers event types such as accidents, aggressions or attacks, fires, etc., that

are likely to produce significant bursts.

We used data collected from January 1 to June 30, 2016. There was approximately three million calls

overall during that period. Out of that, we extracted all the rescue events that generated at least 5 calls.

There was 984 such events. The average number of calls per burst was 6.7 and the average duration of

bursts was 591.6 seconds. Among those, we found 155 bursts of 15 calls or more, with an average burst size

of 23.7 calls.

Figure 1 illustrates the impact of a burst of about 10 minutes on the cumulative number of arrival as a

function of time. The burst causes the larger slope from about 3700 to 4300 seconds (a period of 10 minutes).

It has a visible impact on the arrival process. Figure 2 shows the cumulative rate for two bursts, one with a

decreasing arrival rate (on the left) and one with an increasing arrival rate (on the right).

3 Modeling and simulating a burst

3.1 The model

Based on what we have observed in the data, we designed the following model. When an event occurs that

triggers a burst of calls, we assume that the calls related to the event, and which constitute the burst, arrive

according to a non-homogeneous Poisson process with a certain arrival rate, after the time of the event. Note

that the time of the triggering event is not observed, only the arrival times of the calls are observed. For

this reason, we find it convenient to start our time clock when the first call of the burst arrives. This is time

t = T1 = 0 in our model of a burst. One alternative way of modeling could be to assume that the burst starts

at the time when the event occurs, say time T0, and try to estimate T0 for each burst. We do not take this

more complicated path here.

After the first call which arrives at time T0 = 0, additional calls related to the same event arrive at rate

λ(t) at time t, t ≥ 0, and the (random) rate function λ is assumed to have the form

λ(t) =

{
Ae−tB for 0 ≤ t ≤ C,
0 elsewhere,

(1)

where A > 0, B ∈ R, C > 0, and the vector (A,B,C) has some joint continuous distribution over Ω =

[0,∞) × R × [0,∞) ⊂ R3. The burst has intensity parameter A, exponential rate with exponent B, and

duration C. Its arrival rate λ(t) for t ∈ [0, C] is constant if B = 0, decreasing if B > 0, and increasing if

B < 0. Note that none of the parameters A, B, and C is observed in the data.

In a simulation model, once (A,B,C) are known, the arrival times of calls from the burst can be generated

using inversion and an appropriate transformation from a standard Poisson process, as we will explain. The

cumulative rate of the Poisson process from time 0 to time t is

a(t) =

∫ t

0

λ(s)ds =
A

B

(
1− e−tB

)
, 0 ≤ t ≤ C.

Its inverse can be found by writing a(t) = x and expressing t as a function of x, using the above expression.

This gives

t = a−1(x) = − log(1−Bx/A)

B
for B 6= 0.

For B = 0, these expressions for a(t) and a−1(x) are indeterminate, and using them for B near 0 will lead to

numerical instabilities, but we can compute a stable approximation around 0 by expanding the exponential

and the log in Taylor series and dividing each term by B. For a(t), using 1−e−ε = ε−ε2/2+ε3/6−· · · , we get

a(t) = At

(
1− tB

2
+

(tB)2

6
− . . .

)
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when B is close to 0. For a−1(x), using − log(1− ε) = ε+ ε2/2 + ε3/3 + · · · , so when B is very close to 0,

a−1(x) =
x

A

(
1 +

Bx

2A
+
B2x2

3A2
+ . . .

)
.

In each case, we can truncate the series to a finite number of terms to obtain an accurate approximation,

and the first term gives the exact value when B = 0.

3.2 Simulating the arrivals

It is known that if we simulate the arrival times X1, X2, X3, . . . of a standard Poisson process, with constant

rate equal to 1, and we set Tj = a−1(Xj) for j ≥ 1, then the Tj are the arrival times for a Poisson process

with cumulative rate function a. See for example Çinlar (1975), Chapter 4, Section 7. Generating the Xj is

easy: We put X0 = 0 and the interarrival times Xj − Xj−1 are independent exponential random variables

with mean 1, for j ≥ 1. This gives Algorithm 1 to generate the arrival times Tj and their number N . In

this algorithm, Expon(1) denotes an exponential random variable with mean 1. When |B| < εB , we use the

series to approximate a−1(Xj) instead of the direct formula. We add terms of this series until the last term

is smaller than εS . At the end, we return the arrival times that are smaller than C.

Algorithm 1 : Generating the arrivals of a burst with exponential rate

Require: A, B, C, εB , εS
T1 ← 0; X1 ← 0;
for j ← 2; Tj−1 < C; j++ do

Xj ← Xj−1 + Expon(1);
if |B| > εB then

Tj ← loge(1−Xj ∗B/A)/B;
else

W ← Xj/A;
Tj ←W ;
for k ← 2; W > εS ; k++ do

W ←W ∗B ∗Xj ∗ (k − 1)/(k ∗A);
Tj ← Tj +W ;

N ← j − 1;
return N and the arrival times T1, . . . , TN .

4 Parameter estimation by maximum likelihood

4.1 Parameter estimation for a single burst

We start by writing the loglikelihood function for a single burst, as a function of (A,B,C), given that the

arrival times for that burst are T1, . . . , TN , and N is the number of arrivals. Note that T1 = 0 does not

contribute to the likelihood. The loglikelihood of these observations is then as follows; see, e.g., Daley and

Vere-Jones (2003) for how to derive such a formula:

logL =

N∑
j=2

log λ(Tj)−
∫ C

0

λ(t)dt

=

N∑
j=2

(logA−BTi)−
∫ C

0

Ae−tBdt

= (N − 1) logA−B
N∑
j=2

Ti −AH (2)

where

H =


(
1− e−CB

)
/B if B 6= 0;

C − C2B/2 + C3B2/3!− C4B3/4! + · · · if B is near 0;

C if B = 0.
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Clearly, one must have C ≥ TN .

To estimate the parameters (A,B,C) for a single burst, for given N and T1, . . . , TN , we can maximize

this loglikelihood with respect to (A,B,C), under these constraints. We now look at how to do this by first

deriving a set of necessary optimality conditions that should be satisfied when logL is maximized. At the

optimum, for each of the parameters A,B,C, either the derivative of logL with respect to this parameter is

zero, or this parameter cannot move further in the direction of the positive derivative because it is blocked

by a constraint. The derivatives of logL with respect to the different parameters are:

∂ logL

∂A
= (N − 1)/A−H,

∂ logL

∂B
= −

N∑
j=2

Ti −A
∂H

∂B
= −

N∑
j=2

Ti +
A

B2

(
1− (1 + CB)eCB

)
,

∂ logL

∂C
= −Ae−CB ,

We are therefore looking for (A,B,C) for which each of these partial derivatives is zero or the parameter is

blocked by a constraint such as C ≥ TN . Let us examine these conditions more closely.

The partial derivative with respect to C is always negative, so C should be taken as small as possible,

which means C = TN . Zeroing the derivative with respect to A tells us that we must take A = (N − 1)/H.

Replacing A by (N − 1)/H in the partial derivative with respect to B yields

∂ logL

∂B
= −

N∑
j=2

Ti −
(N − 1)

H

∂H

∂B
= −

N∑
j=2

Ti − (N − 1)
∂ logH

∂B
= −

N∑
j=2

Ti − (N − 1)

(
Ce−CB

1− e−CB
− 1

B

)
.

To equal this to zero, we need to find B for which

1

B
− Ce−CB

1− e−CB
=

1

N − 1

N∑
j=2

Ti =: S.

Note that when B → 0, the left side converges to C/2. This can be verified by replacing e−CB by its Taylor

expansion around B = 0, then putting the two terms on the same denominator, simplifying, and taking the

limit. Therefore, if S = C/2, then B = 0 is the solution. If S < C/2, then the solution B is positive. This

makes sense, because S < C/2 means that the arrivals tend to occur earlier than C/2 on average, which

suggests that the arrival rate should be decreasing. If S > C/2, we have the opposite. Once we know the

sign of B, we can find it using a standard root-finding technique.

4.2 Meta-parameter estimation

Suppose now that the vector Y = (A,B,C) has density hθ(y) which depends on some unknown parameter

(vector) θ ∈ Θ. Our goal is to estimate θ from the available data. A standard strategy for this, at least

conceptually, is to maximize the loglikelihood of the data with respect to θ. See Munger et al. (2012) and

the references given there. This loglikelihood is the log of the expectation with respect to the density hθ of

the product of likelihoods of all the bursts:

logL(θ) = log

m∏
k=1

EθLk(Y ) =

m∑
k=1

log

∫
Ω

Lk(y)hθ(y)dy

where m is the number of bursts in the data and Lk(y) is the likelihood function for the kth burst as a

function of y, which is given by the exponential of the expression (2) in which (A,B,C) is replaced by y,

and N,T2, . . . , TN depend on k. Maximizing this integral with respect to θ is not easy. Even evaluating the

integral for a single θ is usually too hard to be done exactly. What can be done is to approximate the integral

by an average obtained by Monte Carlo. For any given θ and each k, we sample n independent realizations
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of Y , say yk,1(θ), . . . , yk,n(θ), from the density hθ. We can then replace the integral
∫

Ω
Lk(y)hθ(y)dy by the

average

1

n

n∑
i=1

Lk(yk,i(θ))

in the loglikelihood expression. This gives the overall loglikelihood estimator

log L̂n(θ) =

m∑
k=1

log

(
1

n

n∑
i=1

Lk(yk,i(θ))

)
. (3)

Conceptually, we can assume that the Monte Carlo samples are defined for all θ ∈ Θ, with common random

numbers across all values of θ. After “fixing” the common random numbers, the vector (yk,1(θ), . . . , yk,n(θ))

and the estimator log L̂n(θ) become deterministic functions of θ. The idea is then to maximize the determin-

istic function log L̂n(θ) with respect to θ. This function can be computed at any desired value of θ by reusing

the common random numbers. Under appropriate assumptions on hθ and on the sampling method, this is

usually a smooth function of θ, although it is typically not concave and it may have multiple local maxima,

so it is generally not easy to maximize. Note that (3) is a biased estimator of logL, because the expectation

of the log is not equal to the log of the expectation, but the bias vanishes when n→∞. This bias can also

be reduced by using the Delta method with one additional term in the Taylor expansion.

A key ingredient for applying this methodology is that one must first select a parameterized density

family {hθ, θ ∈ Θ} for Y . This is also not trivial, mostly because the three components of Y are usually

not independent and it is generally not easy to model this dependence. We will look at it in our numerical

examples in Section 5.

A simpler (perhaps more naive) approach to estimate the density hθ is to first estimate the vector

Y = (A,B,C) separately for each burst, by maximizing its own loglikelihood function as explained in Sec-

tion 4.1, then look at the distribution of the realizations of Y thus obtained, and fit some three-dimensional

density hθ to these data. This is what we will do in the next section.

5 Numerical examples

For each of the 984 bursts of size 5 or more collected in our data, we estimated the three parameters A,B,C

by MLE as explained earlier. We took only the bursts of size 5 or more because for the smaller bursts we

can hardly estimate the three parameters. Figure 3 shows the cumulative number of calls and the estimated

cumulative arrival rate with our model for two examples of bursts, one with approximately constant rate and

the other with decreasing rate. The rate model does not fit perfectly for those two bursts, but it provides a

reasonable approximation, better than just assuming a constant rate. In the left picture, there is a significant

delay between the first and second call. We have observed these types of gaps in other bursts as well, perhaps

in around 10% of them. In some cases this delay was pretty long relative to the length of the burst, so the

cumulative rate had a hockey stick shape. In a few (rare) cases we observed a significant gap in between two

intervals of high-frequency arrivals, and in one case there were gaps between four groups of arrivals. These

types of bursts have explanations (e.g., a fire first notices only from inside a building, and later on seen

from outside, etc.). We did not try to model these occasional delays in the bursts for now; we leave this for

future work.

Figure 4 shows scatter plots of the pairs (B,A), the pairs (B,C), and the pairs (A,C). We observe a

strong dependence in the first two pairs, but not much for the (A,C) pair. In the left plot, we also see that

there is no point (B,A) below the read line, i.e., with 0 ≤ A < 4B. We will model the dependence using

copulas. The usual way to do this is to fit a univariate distribution to each marginal, then transform the

three variables of each point to uniforms by applying the probability integral transformation (i.e., take the

cdf of the estimated marginal), and fit a three-dimensional copula to these uniform points. We did this and

it did not work well because the dependence behaves differently when B > 0 than when B < 0, and it was

hard to capture this difference by a standard copula.
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Figure 3: The cumulative arrivals (step function) and the estimated cumulative rate function (smooth function in red) for
two bursts.

-.06 -.04 -.02 0
0

.05

.10

B

A

-.06 -.04 -.02 0
0

1000

2000

3000

B

C

0 .005 .01
0

1000

2000

3000

A

C

Figure 4: Scatter plot of points (B,A) (left), (B,C) (middle), and (A,C) (right).

For this reason, we decided to separate the two cases, B > 0 and B < 0, and construct separate models

for the two. For each case, we have a marginal distribution for each variable, A, B, and C. This gives six

marginal distributions. We estimated each marginal distribution in two ways. The first approach was to

select and fit parameterized distributions and the second was to estimate each density by a kernel density

estimator (KDE) with a Gaussian kernel. The reason for using these two different methods is the following.

We found that the KDE provides a better fit than the parameterized distributions, so we used it to transform

the data to uniform to obtain an empirical copula. On the other hand, when generating triples (A,B,C)

using the copula, we need to apply the inverse (estimated) cdf to a uniform to generate each coordinate

of this vector, and the inverse cdf is much easier to compute for a parameterized distribution than for a

KDE. Therefore for that purpose, we used the parameterized versions of the marginals. We now describe the

process in more details.

Let F+
A , F+

B , F+
C denote the cdf’s of the marginal distributions of A,B,C obtained by KDE when B > 0,

and let F−
A , F−

B , F−
C be the marginal distributions from KDE when B < 0. Each of these KDEs was

constructed using a Gaussian kernel with a bandwidth selected by a heuristic formula of Silverman (1986).

After computing these cdf’s, we applied the probability integral transformation to transform each parameter

vector (A,B,C) in the data to a vector U = (UA, UB , UC) = (F+
A (A), F+

B (B), F+
C (C)) if B > 0, and similarly

using the other marginals if B < 0, For the case B < 0, we actually modeled the density and cdf of −B
instead of B. The resulting vector U has marginals that are (approximately) uniform over (0, 1), so its

distribution is (approximately) a copula. Scatter plots of the two-dimensional projections of the resulting

vectors U are shown in Figure 5. This figure reveals negative dependence for all pairs, except for (B,A)

when B > 0 for which the dependence is positive. Some corners are totally empty. For example, when B > 0

and UA is small, UB is never large and UC is never small.

It is hard to fit a three-dimensional copula model that matches all this dependance. What we did is

model the copulas for the pairs (UB , UA) and (UB , UC) for each sign of B, using two-dimensional Archimedean

copulas. To generate a triple (A,B,C), we first select the sign of B, which is positive with some probability p,

then we generate UB from the uniform distribution over (0, 1), then UA conditional on UB and also UC
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Figure 5: Scatter plot of pairs (UB , UA), (UB , UC), and (UA, UC) for B > 0 (above) and for B < 0 (below).

conditional on UB , each from the appropriate copula, and finally we apply the appropriate inverse cdf

to each uniform to obtain the final triple. For this last step, the inverse cdf’s of the marginals must be

easily computable, which is not the case for the KDE’s. For this reason, for this step we uses parametric

distributions for the marginals. The selected parametric distributions were lognormal for A, gamma for√
B, and Weibull for C, for the case B > 0. For the case B < 0, we took the generalized extreme value

(GEV) distribution for
√
A, gamma for

√
−B, and GEV for C. To obtain (A,B,C) from U, if B > 0 we put

(A,
√
B,C) = ((G+

A)−1(UA), (G+
B)−1(UB), (G+

C)−1(UC)) where G+
A, G+

B , G+
C denote the cdf’s of the estimated

parametric marginals, and similarly for the case where B < 0.

Figure 6: Scatter plot of the two-dimensional projections of a sample of 984 realizations of (A,B,C) simulated with our model.

After estimating all the parameters, we generated a sample of 984 realizations of (A,B,C) from our

model, using the method just described. Figure 6 shows scatter plots of the two-dimensional projections of

these points. These plots can be compared with the plots of the raw data in Figure 4. We find that the

model is reasonably representative.
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Conclusions

We developed a stochastic model for bursts of call arrivals in emergency call centers, based on data from the

SOS Alarm call center in Sweden. The probabilistic behavior of each burst is determined by a vector of three

parameters. We modeled the three-dimensional distribution of this vector using a copula construction and

found that this distribution matches very well the empirical distribution of the parameter vectors estimated

directly from the data. Further work that we intend to do includes trying to model the delays that sometimes

occur in the bursts, trying a KDE of the three-dimensional copula (instead of parametric two-dimensional

ones), and implementing the methodology described in Section 4.2. The latter would permit one to consider

all the bursts from the data, and not only those of size 5 or more (say) to estimate the model. On the other

hand, maximizing the likelihood is likely to be much more difficult.
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