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• Peuvent télécharger et imprimer une copie de toute publication

du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une ac-
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Abstract: Clustering is an automated and powerful technique for data analysis. It aims to divide a given
set of data points into clusters which are homogeneous and/or well separated. The biggest challenge of data
clustering is indeed to find a clustering criterion to express good separation of data into homogeneous groups
so that they bring useful information to the user. To overcome this issue, it is suggested that the user provides
a priori information about the data set. Clustering under this assumption is often called semi-supervised
clustering. This work explores semi-supervised clustering through the k-medoids model. Results obtained
by a Variable Neighborhood Search (VNS) heuristic show that the k-medoids model presents classification
accuracy compared to that of the typical k-means approach. Furthermore, the model demonstrates high
flexibility and performance by combining kernel projections with clustering constraints.

Keywords: k-medoids, semi-supervised clustering, variable neighborhood search
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1 Introduction

In unsupervised machine learning, no information is known in advance about the input data. In this learning

category, the objective is usually to provide the best description of the input data by looking at the sim-

ilarities/dissimilarities between its elements. Clustering is one of the main unsupervised machine learning

techniques. It addresses the following general problem: given a set of data objects O = {o1, . . . , on}, find

subsets, namely clusters, which are homogeneous and/or well separated [1]. Homogeneity means that objects

in the same cluster must be similar and separation means that objects in different clusters must differ one

from another. The dissimilarity (or similarity) dij between a pair of objects (oi, oj) is usually computed as

a function of the objects’ attributes, such that d values (usually) satisfy: (i) dij = dji ≥ 0, and (ii) dii = 0.

Note that dissimilarities do not need to satisfy triangle inequalities, i.e., to be distances.

In spite of its concise definition, the clustering problem can have significant variations, depending on the

specific model used and the type of data to be clustered. The clustering criterion used plays a key role in the

clustering obtained. For example, the homogeneity of a particular cluster can be expressed by its diameter

defined as the maximum dissimilarity between two objects within the same cluster, while the separation of a

cluster can be expressed by the split or the minimum dissimilarity between an object inside the cluster and

another outside.

When considering dissimilarity measures, the definitions above yield two families of clustering criteria:

those to be maximized for separation and those to be minimized for homogeneity. In general, these criteria

are expressed in the form of thresholds, min-sum or max-sum for a set of clusters. Thus, for instance,

the diameter minimization problem corresponds to minimizing for a set of clusters the maximum diameter

found among them, while in the split maximization, one seeks to maximize the minimum split found in the

clustering partition. The clustering criterion used is also determinant to the computational complexity of

the associated clustering problem. For example, split maximization is polynomially solvable in time O(n2),

while diameter minimization is NP-hard already in the plane for more than two clusters [2].

In order to overcome this difficulty and improve the result of the data clustering, it has been suggested that

the domain expert could provide, whenever possible, auxiliary information regarding the data distribution,

thus leading to better clustering solutions more in accordance to his knowledge, beliefs, and expectations.

The clustering process driven by this side-information is called Semi-Supervised Clustering (SSC). SSC has

become an important tool in data mining due to the continuous increase in the volume of generated data [3].

The most common types of side-information are pairwise constraints such as must-link and cannot-link [4].

A must-link constraint between two objects implies that they must be assigned to the same cluster, whereas

a cannot-link constraint that they must be allocated in different clusters. In this paper, we make an in-depth

analysis of the use of the k-medoids model for the SSC problem. We also propose a new Variable Neighborhood

Search (VNS) [5] algorithm that uses a location-allocation heuristic and takes into consideration pairwise

constraints.

The paper is organized as follows. The next section presents the related works to this research. Section 3

describes the k-medoids model for the SSC problem. Section 4 describes the two-stage local descent algorithm

proposed, and in Section 5 a VNS algorithm is presented for optimizing the described model. Computational

experiments that demonstrate the effectiveness of our methodology in a set of benchmark data sets are

reported in Section 6. Finally, the conclusions are presented in Section 7.

2 Related works

Algorithms that make use of constraints as must-link and cannot-link in clustering became widely studied

and developed after the COP-Kmeans algorithm of Wagstaff and Cardie’s work [6]. The algorithm is based

on modifying the unsupervised original k-means algorithm by adding a routine to prevent an object from

changing cluster if any of the must-link or cannot-link constraints is violated.

The model optimized by COP-Kmeans consider that objects oi ∈ O correspond to points pi of a s-
dimensional Euclidean space, for i = 1, . . . , n. The objective is to find k clusters such that the sum of
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squared Euclidean distances from each point to the centroid of the cluster to which it belongs is minimized

while respecting a set of pairwise constraints. The setML is formed by the pairs of points (pi, pj) such that

pi and pj must be clustered together, whereas the set CL contains the pair of points (pi, pj) such that pi and

pj must be assigned to different clusters.

The semi-supervised minimum sum-of-squared clustering (SSMSSC) model is mathematically expressed by:

min
x,y

n∑
i=1

k∑
j=1

xij‖pi − yj‖2 (1)

subject to

k∑
j=1

xij = 1, ∀i = 1, ..., n (2)

xij − xwj = 0, ∀(pi, pw) ∈ML, ∀j = 1, ..., k (3)

xij + xwj ≤ 1, ∀(pi, pw) ∈ CL, ∀j = 1, ..., k (4)

xij ∈ {0, 1}, ∀i = 1, ..., n; ∀j = 1, ..., k. (5)

The binary decision variables xij express the assignment of point pi to the cluster j whose centroid is located

at yj ∈ Rs. Constraints (2) guarantee that each data point is assigned to exactly one cluster. Constraints (3)

refer to the must-link constraints, and constraints (4) to the cannot-link ones.

The simplicity and pioneering of COP-Kmeans have made it a basic algorithm for many later works.

Some examples are: semi-supervised clustering using combinatorial Markov random fields [7]; adaptive kernel

method [8]; clustering by probabilistic constraints [9]; and density-based clustering [10].

A relevant work involving clustering under pairwise constraints was conducted by Xia [11]. The global

optimization method proposed in that work is an adaptation of the Tuy’s cutting planes method [12]. The

algorithm is proved to obtain optimal solutions in exponential time in the worst case, and hence, it cannot

be used for practical purpose for larger data mining tasks. Xia [11] reported a series of experiments where

the algorithm is halted before convergence. The obtained clustering results were superior other algorithms

based on COP-Kmeans.

Restricting the solution space through the explict use of pairwise constraints is not the only possible

approach for SSC. Many works have been published to propose mechanisms using distance metric learning

to explore these side-information. Among them, a well-known algorithm is the Semi-Supervised-Kernel-

kmeans [13] that enhances the similarity matrix obtained from the application of a kernel function by adding

a term that brings closer together must-link objects while driving away cannot-link objects. The algorithm

defines a similarity matrix S = K+W+σI, where K is a kernel matrix, W is the matrix responsible to include

the pairwise constraints into the distance metric, and σ is the term that multiplies an identity matrix I to

ensure that S is semi-definite positive. The kernel-k-means algorithm [14] is then executed over S in an

unsupervised manner (see [13] for details).

3 Proposed model

Another classical representative-based clustering model is the k-medoids whose objective is to partition the

points into exactly k clusters so that the sum of distances between each point and the central object (i.e.,

the medoid) of their respective cluster is minimized.

The input of the k-medoids model is a distance matrix, D, with each entry dij providing the dissimilarity

between points pi and pj . It can be mathematically formulated in its semi-supervised version as:

min

n∑
i=1

n∑
j=1

xijdij (6)

subject to
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n∑
j=1

xij = 1, ∀i = 1, ..., n (7)

xij − xwj = 0 ∀(pi, pw) ∈ML, ∀j = 1, ..., n (8)

xij + xwj ≤ 1 ∀(pi, pw) ∈ CL, ∀j = 1, ..., n (9)

xij ≤ yj ∀i = 1, . . . , n, ∀j = 1, ..., n (10)
n∑

j=1

yj = k (11)

xij ∈ {0, 1} ∀i = 1, . . . , n, ∀j = 1, . . . , n, (12)

yj ∈ {0, 1} ∀j = 1, . . . , n, (13)

where yj is equal to 1 if pj is selected as the medoid of cluster j, and 0 otherwise. Constraints (10) assure that

points can only be assigned to selected medoids, and constraint (11) defines that k medoids must be selected.

The resulting model (6)–(13) is named thereafter the Semi-Supervised K-Medoids Problem (SSKMP).

The possibility of defining the matrix D allows the objective function of the model to be flexible to use

different measures to express the dissimilarities between points and medoids. The k-medoids model can be

used to cluster metric data, as well more generic data with notions of similarity/dissimilarity. For this reason,

one of the main features of k-medoids is its vast list of applications [15].

When comparing the k -means model with the k -medoids model, Steinley [16] listed three relevant advan-

tages in using the later for clustering:

1. Although both models work with a center-based approach, the k -means model defines the central

element as the centroid of the cluster, while in the k-medoids this element is taken directly from the

data set. This feature allows, for example, to identify which is the most representative element of each

cluster.

2. The k -medoids, in its formal definition, usually consider the Euclidean distance to measure the dissimi-

larity between points and medoids, instead of the quadratic one considered in k -means. As consequence,

the k -medoids is generally more robust to outliers and noise present in the data [17].

3. While k -means only uses quadratic distance and may need to constantly recompute the distances

between points and centroids every time centroids are updated, the k-medoids run over any distance

matrix, even those for which there exist triangle inequality violations and which are not symmetric.

4 Local descent algorithm for SSKMP

Several heuristics methods have already been proposed to solve the original k-medoids problem. A very

popular one is the interchange heuristic introduced in [18]. This local descent method searches, in each

iteration, for the best pair of medoids (one to be inserted in the current solution, and another to be removed)

that leads to the best-improving solution if swapped. If such pair exists, the swap is performed and the

procedure is repeated. Otherwise, the algorithm stops and the best solution found during this descent

path is returned. An efficient implementation of this procedure, called fast-interchange, was proposed by

Whitaker [19]. However, this method was not widely used (possibly due to an error in the article) until

Hansen and Mladenović [20] corrected it and successfully applied it as a subroutine of a VNS heuristic.

After, Resende and Werneck [21] proposed an even more efficient implementation by replacing one of the

data structures present in the implementation of Whitaker [19] by two new data structures. Although the

implementation suggested in [21] has the same worst-case complexity, O(n2), it is significantly faster and, to

the best of the authors’ knowledge, is the best implementation for the heuristic interchange already published.

In this paper, the method proposed in [21] is used as local descent procedure for our algorithm in or-

der to refine a given SSKMP solution, but with a slight modification to ensure that pairwise constraints

are respected.



4 G–2018–23 Les Cahiers du GERAD

4.1 Handling must-link constraints

The following strategy is proposed to respect must-link constraints:

If a set of points is connected by must-link constraints, they can all be merged into a single point, which is

enough to represent them all.

This assumption relies on the fact that all these points need to be together in the final partition, and

aggregating them is just an efficient shortcut for assigning them to the same cluster repeatedly times.

Figure 1 illustrates this process on a set of must-link constraints given byML = {(p1, p2), (p4, p6), (p2, p6)}.
It is possible to replace the set ML by an equivalent set ML′ = {(p1, p2), (p1, p4), (p1, p6)}, with p1 as

the root point for all other linked points p2, p4 and p6 (Figure 1b). This aggregation creates a so-called

super-point and is showed in Figure 1c where all points involved in that must-link constraint are all repre-

sented by the super-point p1. Note that the super-point could have been aggregated over p2, p4 or p6 instead

of p1 without prejudice.

≡

≡

≡

p1 p2

p6p4

p3

p5

p7

(a)

≡
≡
≡

p1 p2

p6p4

p3

p5

p7

(b)

p1

p3

p5

p7

(c)

Figure 1: Illustration of a super-point aggregation.

However, since the points involved in must-link constraints can be aggregated and viewed as a single point,

then it is also necessary to update the dissimilarity dij of a super-point pi, and all medoids j = 1, . . . , n, as

the sum of dissimilarities of all points that compose it. Let H(pi) = {ph ∈ P | (pi, ph) ∈ ML} be the set of

points that are part of the super-point pi. The cost dij = dji, for each j = 1, . . . , n is then calculated as the

sum of dissimilarities considering all aggregated points, i.e.,

dij =
∑

h:ph∈H(pi)

dhj j = 1, . . . , n (14)

For the example in Figure 1, d13 is updated as: d13 = d13 + d23 + d43 + d63.

The super-point aggregation is a quick step that can be entirely performed during the preprocessing stage

of the algorithm. It also helps to reduce the dimension of the original data set once the points are merged.

Consequently, the more must-link constraints are provided by the expert, the best is the performance of our

algorithmic approach.

4.2 Handling cannot-link constraints

Once all must-link constraints are respected, the local descent algorithm only concerns violated cannot-link

constraints. A solution is said to be infeasible if there exists any pair (pi, pw) ∈ CL such that pi and pw are

assigned to the same cluster. In order to avoid that, the algorithm is divided into two stages:

Stage 1. In this first stage, the cannot-link constraints are temporarily neglected and the local descent

algorithm proceeds to improve the current best solution.

Stage 2. For each new improved solution found in stage 1, there is a chance of this solution be infeasible, so

the algorithm invokes a routine able to restore its feasibility (with respect to the cannot-link constraints).

In summary, the approach of our local descent algorithm is to allow an efficient search to be executed in

the direction of the best possible solution (regardless of the cannot-link constraints), whereas the solutions
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obtained during the descent search path are turned into feasible solutions. Thus, the algorithm relies upon

the possibility of restoring the feasibility of solutions generated in the first stage of the algorithm. The key

point of our strategy is to guide the search exclusively by the gradient of the objective function, disregarding

the cannot-link constraints.

Let s be a solution for the problem with its k selected medoids, i.e., s = {j|yj = 1}. Let us denote

X(i) = {j|xij = 1} the cluster of point pi. We also define the set E(i) = {h|(pi, ph) ∈ CL} as the set of points

that cannot be clustered together with pi, and B(i) = {j ∈ s|∃h ∈ E(i), X(h) = j} as the set of clusters in s

that are blocked to pi since it contains at least one point from E(i).

The feasibility routine is presented in Algorithm 1. It is called whenever a new infeasible solution s is

obtained by the algorithm. Let φ1(i) ∈ s be the closest medoid in s from point pi. Remark that after stage 1,

since cannot-link constraints are not considered, every point pi, for i = 1, . . . , n, is assigned to its closest

medoid, i.e., X(i) = φ1(i).

Algorithm 1 Restore feasibility function

1: R← ∅
2: for i = 1, ..., n do
3: if E(i) 6= ∅ then
4: R← R ∪ {i}
5: end if
6: end for
7: repeat
8: shuffle(R)
9: for all i ∈ R do

10: if X(i) ∈ B(i) or X(i) 6= φ1(i) then
11: Assign pi to the closest medoid j ∈ s such that j 6∈ B(i)
12: end if
13: end for
14: until no assignment is made

The restore function works as follows: first, between lines 1-6, a new set R is built to contain all points

pi that are involved in cannot-link constraints (i.e., E(i) 6= ∅). The loop of lines 7-14 proceeds by removing

the cannot-link violations. The order in which the points are examined determines the solution obtained or

even if the method is able to restore feasibility. Therefore, set R is shuffled at the beginning of that loop at

line 8. Then, the algorithm iterates in the loop of lines 9-13 searching for assignments that can make the

solution feasible (condition X(i) ∈ B(i)) or that can improve its cost (condition X(i) 6= φ1(i)). The rationale

behind the second condition is that pi might have been allocated to a farther cluster in a previous iteration

of the restoration routine because its closest medoid was not available for assignment due to a cannot-link

constraint. Note that algorithm 1 needs to keep that B updated. This is performed every time after a point

pi is assigned from a medoid p` to medoid pj , blocking this medoid for each point in h ∈ E(i), and maybe

removing ` from their sets B(h), depending on the presence of any other point in E(h) assigned to medoid p`.

Algorithm 1 is assured to finish although a feasible solution is not guaranteed. Indeed, the decision problem

of whether a clustering problem is feasible given a set CL of cannot-link constraints is NP-complete [22]. In

that case, the obtained solution is simply discarded.

5 Variable Neighborhood Search for SSKMP

Variable Neighborhood Search (VNS) metaheuristic [23] has been successfully applied to many clustering

problems (e.g. [24, 25, 26, 27]). The neighborhood structure adopted in our VNS algorithm is based on

swapping selected medoids of a solution s by others non-selected medoids outside s. In this sense, vmax

neighborhoods are defined, where the v-th neighborhood of s, Nv(s), contains all solutions obtained after

replacing v medoids j ∈ s with others v not-selected medoids l 6∈ s.

The Algorithm 2 presents the complete framework of our VNS algorithm. It starts by preprocessing the

must-link constraints via the super-point concept (lines 1). Following that, the algorithm constructs an initial

feasible solution (line 2) obtained in a series of three steps: (i) an initial solution sb is built by randomly
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selecting k initial medoids and assigning each point to its closest medoid; (ii) the restore feasibility function

is applied for sb; (iii) if sb is still infeasible, the algorithm proceeds and replace sb by the first feasible solution

found during the VNS. We assume that the problem is always feasible, i.e., the sets ML and CL allows to

obtain a feasible solution for the SSC under consideration. The algorithm considers that infeasible solutions

have infinity cost.

Next, the algorithm starts the VNS block (loop 3–15) that chooses a random neighbor solution (line 6) and

applies the two-stage local descent method described in Section 4 to possibly improve it (line 10). However,

notice that after a random solution sr is chosen in the neighborhood Nv(s) of our VNS algorithm, an allocation

step must follow to re-assign the points that were allocated to the replaced medoids (removed medoids of s) to

their new closest medoid. However, this process does not take into consideration the cannot-link constraints,

and then, sr might be infeasible. To overcome this situation, we also invoke the restore function for sr before

proceeding to the local search procedure (line 8). If the best feasible solution found in the descent path has

a better cost than sb, then it is stored in sb (line 12). The algorithm repeats this process until a defined

stopping criterion is met.

Algorithm 2 VNS for SSKMP

1: Apply the super-point concept, merging points interconnected by must-link constraints into super-points;
2: Find an initial feasible solution sb (if possible);
3: repeat
4: v ← 1;
5: repeat
6: Choose a random neighbor solution sr ∈ Nv(s);
7: if sr is infeasible then
8: Call the restore feasibility function for sr.
9: end if

10: Apply the local descent method from sr, obtaining a local minimum sf
11: if cost of sb > cost of sf then
12: sb ← sf ; v ← 1;
13: end if
14: v ← v + 1;
15: until v = vmax

16: until a stopping criterion is met

6 Experiments

This work explores the results under three different perspectives. First, model SSKMP is analyzed with

respect to the clustering classification when compared with the popular used SSC model, i.e. SSMSSC. Next,

the VNS performance is tested using a set of benchmark data sets for SSC problem. Third, the flexibility of

SSKMP is explored in combination with distance metric learning.

Computational experiments were performed on an Intel i7-6700 CPU with a 3.4GHz clock and 16 Giga-

bytes of RAM memory. The algorithms were implemented in C++ and compiled by gcc 6.3.

6.1 Model accuracy

First of all, it is important to keep in mind that it is impossible to determine whether a model is better

than another with respect to all possible data sets (see Kleinberg’s impossibility theorem [28]). The SSMSSC

and SSKMP are comparable models given that (i) both are representative-based; and (ii) the data sets used

in the experiments are considered as points in the Euclidean space. It was decided to compare the models

regarding accuracy using the Adjusted Rand Index (ARI) [29], which can measure how close the clustering

result is to the ground-truth classification obtained in the UCI repository [30].

We first compare the models using the ARI results reported by Xia [11]. As done in her work, we ran

the VNS algorithm 100 times and reported the average ARI value. We also defined the stop criterion as

the average CPU time used by Xia’s algorithm. In all experiments we used the vmax parameter equal to 10.

Table 1 presents this the of these two models for 12 benchmark data sets. For each of them, column n
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indicates the number of points and k the number of clusters. In the following, we present results for two

configurations of ML and CL used in [11]. The first two columns refer to the number of must-link and

cannot-link constraints, and the last two refer to the ARI index values obtained by each model with respect

to the ground-truth partition.

Table 1: Datasets configurations and ARI results for SSMSSC and SSKMP.

Configuration 1 Configuration 2

Instance n k |ML| |CL| ssmssc sskmp |ML| |CL| ssmssc sskmp

Soybean 47 4 4 24 0.55 0.60 8 4 0.62 0.62
Protein 116 6 18 12 0.31 0.25 26 18 0.32 0.25
Iris 150 3 12 12 0.74 0.75 16 8 0.75 0.76
Wine 178 3 44 26 0.44 0.45 72 44 0.45 0.45
Ionosphere 351 2 52 36 0.16 0.16 122 64 0.14 0.15
Control 600 6 60 30 0.54 0.50 90 60 0.53 0.51
Balance 625 3 156 94 0.32 0.24 218 126 0.43 0.25
Yeast 1484 10 296 178 0.16 0.16 520 296 0.17 0.17
Optical 3823 10 496 306 0.70 0.68 689 420 0.71 0.69
Statlog 4435 6 444 222 0.53 0.53 666 444 0.54 0.53
Page 5473 5 548 274 0.01 0.03 1024 820 0.01 0.03
Magic 19020 2 1902 952 0.05 0.18 2854 1902 0.04 0.16

We note from Table 1 that both models present quite similar results and comparable clustering perfor-

mances. For the 24 tests cases, each model had nine times each the best ARI, and for six data sets, they

had the same ARI value. Moreover, even when the ARI indices were not equal, the difference in values was

marginal.

6.2 VNS performance

This section is dedicated to evaluating the VNS performance for optimizing the SSKMP model. In order

to obtain the optimal solution for the tested data sets, we used the solver CPLEX 12.6. This restricted

our sample in this experiment because CPLEX was not able to solve data sets Optical, Statlog, Page and

Magic in a reasonable amount of time (less than 50 hours).

Table 2 shows the results of our computational experiments. For each configuration, we executed the

algorithm 10 times using 300 seconds as time limit. Columns fopt and topt provide optimal solution values and

the time needed by CPLEX to obtain it, respectively. The column vns reports the gap between the optimal

solution and the best solution found by the VNS from the 10 distinct executions. In the sequel, columns vns

and tvns report the average values for the same 10 execution of the algorithm. The column restore presents

the average percentage of time required by the restore feasibility function during the execution.

Table 2: Performance results for VNS and CPLEX.

Instance Configuration fopt topt vns vns tvns restore

Soybean
1 1.138047e+02 0.12 0% 0% 0.00 11%
2 1.156629e+02 0.16 0% 0% 0.00 10%

Protein
1 1.269331e+03 2.46 0% 0% 0.01 10%
2 1.262633e+03 0.93 0% 0% 0.00 15%

Iris
1 9.835843e+01 8.85 0% 0% 0.01 7%
2 9.962796e+01 7.94 0% 0% 0.00 6%

Wine
1 1.749303e+04 10.07 0% 0% 0.01 7%
2 1.907746e+04 17.16 0% 0% 7.08 7%

Ionosphere
1 8.172423e+02 61.44 0% 0% 5.13 9%
2 8.384550e+02 53.58 0% 0.02% 65.04 9%

Control
1 2.693438e+04 135.20 0% 0% 0.13 5%
2 2.693937e+04 124.34 0% 0% 0.12 5%

Balance
1 1.466425e+03 881.94 0% 0.002% 110.42 4%
2 1.471803e+03 816.61 0% 0% 91.51 4%

Yeast
1 2.523202e+02 166622.71 0% 0% 97.78 3%
2 2.605097e+02 42557.74 0% 0.004% 124.44 3%
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Firstly, we justify the importance of having a heuristic approach to the problem since the time to optimally

solve it increases exponentially as the number of points scales (topt). In the other hand, for all the 16 test

cases, the VNS was able to find the optimal solutions using much less time. For the test where CPLEX took

the longest time to solve, 46h for Yeast configuration 1, the VNS only needed, on average, 98 seconds to

obtain a solution with the same cost. Furthermore, only in 3 scenarios, the VNS was not able to obtain the

best solution in all 10 executions, but still, the gaps are tiny.

From the results reported in column restore, we verify that the restore feasibility function does not

require much computational time (7% on average) for the instances used in [11]. Besides, the amount of

time is reduced for larger data sets, which is expected as the local descent procedure starts to demand more

computational resources to perform the search.

6.3 Model flexibility

One of the main advantages of using SSKMP is the ability to work with a general dissimilarity matrix D as

input. This feature not only allows the model to work with many different metric systems but also provides a

great flexibility to define a clustering criterion. For example, it is possible to use the distance metric learning

technique without a single modification with our the algorithm. Take for instance the Semi-Supervised-

Kernel-Kmeans (SS-Kernel-k-means) algorithm [13], which defines the similarity matrix S = K + W + σI,

aggregating the kernel matrix K and constraints matrix W (metric learning). Then, we can easily transform

s into a dissimilarity matrix D (e.g. subtract each entry by the maximum element in s) and use it as input

for SSKMP. Furthermore, having the distance metric modification in the input does not preclude the use of

pairwise constraints in combination, which has already been proven to be a good approach [31].

Consider the synthetic data set Two Circles showed in Figure 2, which presents 200 points in the

Euclidean plane, with 100 points in each class. This data set has an inner circle and a surrounding outer circle.

Figure 2: Two Circles synthetic data set.

The Figure 3 presents the ARI results for our proposed VNS and the SS-Kernel-k-means algorithm using

the two circles instance. Both algorithms were executed 100 times starting from a random initial solution,

and the average ARI was reported. As suggested in [13], we used an exponential kernel (exp(‖xy‖2/2σ) for

SS-Kernel-k-means in order to linearly separate the two classes in the mapped space. We also included the

algorithm vns+ which combines the distance metric learning and explicit pairwise constraints into the model

optimized by our proposed VNS. The time limit used for both VNS algorithms was the average time needed

by SS-Kernel-k-means to finish one execution.

We note from Figure 3 that the VNS algorithms based on model SSKMP outperformed the typical

kernel approach, both reaching the maximum ARI value. We highlight that the VNS algorithm improved
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Figure 3: ARI performance for Two Circles data set.

its accuracy performance by adding the distance metric learning mechanism, reaching the maximum ARI

value with 20% less constraints than the VNS algorithm that uses only the pairwise constraints. We also

observed that the SS-Kernel-k-means algorithm was not able to improve ARI as the number of pairwise

constraints increased. We believe that the kernel-based algorithm is more sensitive to initialization besides

not being able to escape from local optima. In contrast, the VNS was proved robust, making powerful use of

a priori information.

7 Conclusion

This paper proposed a VNS heuristic for assessing the performance of the k-medoids model for semi-supervised

clustering. Experiments showed that the new model had similar classification performance with respect to

the typically used model based on k-means. The VNS algorithm was validated in a series of comparative

experiments against CPLEX, presenting solutions very close to the optimal ones (never exceeding 0.02% in

average) using much less CPU time. Moreover, the flexibility of the k-medoids model was tested regarding

the addition of a dissimilarity matrix generated by a kernel function with distance metric learning. The

VNS that combined the kernel trick with the explicit use of pairwise constraints presented the best accuracy

performance among the algorithms compared.
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