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Abstract: This paper focuses on designing a state estimator for a discrete-time SEIR epidemic model of an
influenza-like illness. It is assumed that only sets of admissible values are known for the model’s disturbances,
uncertainties and parameters, except for the time-varying transmission rate from the “susceptible” to the
“exposed” stage, whose bounding values are unavailable. An interval observer is designed to estimate the
set of possible values of the state, and a sufficient condition guaranteeing the asymptotic stability of the
proposed estimator is formulated in terms of a linear matrix inequality. The performance of the proposed
approach is demonstrated by numerical simulations.

Keywords: Interval estimation, epidemic model, modelling dynamics, bounding methods, diseases
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1 Introduction

Seasonal influenza epidemics usually cause three to five million cases of severe illness and result in about
250,000 to 500,000 deaths worldwide every year, according to the World Health Organization [32]. Infectious
disease surveillance plays a major role in analyzing epidemics’ causes, dynamics and spread. Public Health
Services (PHS) rely on surveillance data collected by agencies such as the Centers for Disease Control and
Prevention in the United States to estimate these infectious diseases’ activity levels, prepare intervention
strategies and design policy recommendations.

Mathematical modelling of epidemics has become an essential part in the sentinel role played by public
health response planning and early outbreak detection systems [13, 6, 25, 16, 24]. Kermack and McKendrick
proposed the first modern mathematical epidemiology models in [26]: a Susceptible-Infectious-Recovered
(SIR) model was used to model the plague (London 1665-1666, Bombay 1906) and cholera (London 1865)
epidemics. The basic SIR model assumes that a fixed population, at any time, can be divided into three
compartments: susceptible people (those who are not infected but could become infected), infectious people
(those who have the disease and are able to infect others), and recovered people (those who were infected by
the disease and are now immune). It is assumed that the total number of people, N, is constant. Homogeneous
mixing is also assumed by these models. That is, each individual is equally likely to come in contact with
any other [6].

In the case of influenza, one needs to extend the standard SIR model and introduce a fourth compartment
corresponding to the disease’s latency period, when a person is infected but not yet able to infect others.
This extension is called the Susceptible-Exposed-Infected-Recovered (SEIR) model [18]. Several estimators
have been previously designed for SEIR models [23, 6, 1]. In the existing literature, strong assumptions on
the disturbances or uncertain parameters in these models can enable the design of estimators converging to
the true state values. However, the problem of observer design for SEIR models becomes very challenging
when one has to take into account the presence of disturbances or uncertain parameters whose values are only
known to belong to an interval or polytope. Such issues can be addressed by an interval estimation approach
[11, 4, 5, 12, 8]. Using input-output measurements, an observer has to estimate the set of admissible values
(interval) for the state at each instant of time [15]. A major advantage of interval estimation is that it allows
many types of uncertainties to be taken into account in the system [9].

This paper presents an interval estimator for a discrete-time SEIR epidemic model of an Influenza-Like
Tllness (ILI). We are interested in estimating the four compartment states, to support the prediction of
epidemic outbreaks. An interval observer design was proposed for the first time for an epidemic model in [3].
However, it applies to SIR rather than SEIR models, and so it does not consider the fourth compartment
of the population that corresponds to the incubation stage for diseases such as influenza. Furthermore, it
assumes continuous-time dynamics, whereas we focus on discrete-time epidemic models, which have gained
substantial importance during the last decade [22, 29]. We also assume that the PHS have only access to noisy
measurements, whereas [3] considered that perfect measurements were available. Importantly, [3] assumed
that the time-varying transmission rate 8(t) from the “susceptible” to the “exposed” stage is bounded by two
functions 3(t) and 3(t), available to the PHS in real-time. The time-varying observer proposed in [3] provided
accurate results in simulated models, but the transmission rate B(t) is a highly uncertain parameter that
cannot be estimated by biological considerations [2, 21] and its bounds are generally unknown in epidemiology
models [4]. Here, we assume that neither the value of 5(t) nor its bounding values are available, which makes
the estimation problem more complicated. Finally, [3] assumed that the recovery rate v; is constant, whereas
in our work it is time-varying and only its interval of admissible values is available. On the other hand, one
drawback of our observer is that it is not perfectly causal, namely, it produces state estimates with a delay
of two periods. The interval estimation approach described in this paper can be extended to higher/lower
order discrete-time epidemic models, when the model has more/less than 4 compartments, such as SEIR and
SIR models with several parallel infective stages [28].

In Section 2, we present the problem statement and some results from interval estimation theory. Section 3
describes the application of these results to design an interval observer for a discrete-time SEIR epidemic
model. Input-to-state stability of the proposed interval observer is also proven in order to guarantee that it
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has bounded solutions for any bounded input. Finally, numerical simulations demonstrating the performance
of the the observer are presented in Section 4.

Notation: The real numbers are denoted by R, the integers by Z, Ry = {r € R: 7 >0} and Z; =ZNR,.
For a vector-valued signal u : Z; — R", the Lo norm ||ul|r is defined as [|u|., = supe(o,4oq] [/, Where
|t || oo 1= Max;eq1,... ny |us,:|. We denote by L2, the set of such signals u with the property ||u|[z., < co. We
denote the £,-norm of a vector x € R* by |z, := (Zle |l2;|P)}/P, for p € [1,00]. The symbols I,,, A, xm and
A, denote the n x n identity matrix and the matrices with all elements equal to 1 and dimensions n x m
and p x 1, respectively. For two vectors x1,zo € R™ or matrices Ay, Ay € R™*", the relations z; < zo and
A; < Ay are understood element-wise. The notation P < 0 (P > 0) means that the matrix P € R™*" is
symmetric and negative (positive) definite. A matrix A € R™*" is called Schur stable if all its eigenvalues
have absolute value less than one. It is called nonnegative if all its elements are nonnegative, i.e., if A > 0.

2 Problem statement and preliminary results

Figure 1 illustrates the discrete-time SEIR epidemic model, a discretization of the classic influenza continuous-
time dynamics proposed in [18]

Str1 = (1 — pe) St — BeSely + pu,

Eiy1 = (1 — ay — puy) By + BiSely, (1)
Iivr = (1= v — )t + i By,

Riy1 = (1 — p) Ry + i1y,

where Sy, Fy, I, Ry are nonnegative state variables, o : Zy — [a,@] with @ > 0, v : Zy — [y,7] and
w: Zy — [u, @] are unknown signals taking values in known intervals (i.e., the parameters a, @, 7,7, ;Z reRy
are given).iThe parameter  : Z; — R is highly uncertain and time-varying. Note that we achieve non-
dimensionalization by setting the population size N = 1 in the model (1). It is assumed that all the four

compartments experience the same constant death rate, equal to the birth rate p;. Indeed,

Stv1 + B + L1 + R =
(L= pe)(Se + By + I + Ry) + py = (1 — pg) + pe = 1.

The parameters oy, 5; and 7 stand for the time-varying transition rates from one disease stage to the next,
while p; represents the time-varying natural birth and death rate. The disease transmissions that arise from
contacts between susceptible and infectious people is described by the first equation of (1). In the original
continuous-time SEIR model [18], the pathogen is transmitted by each infectious individual to 8 individuals
per unit time. However, a new disease case occurs only if the contact is made with a susceptible person,
with probability S;. Hence, at time ¢, people in the compartment S migrate to the “susceptible but not yet
infectious” compartment E at the rate §;I;. People in compartment E move to the infectious compartment
I at the rate ay per unit time, while infectious individuals migrate to the recovered compartment R at the
rate 4 per unit time.

H

Gy e Tt
Sy on I, Iy
Ht Ht Ht Ht

Figure 1: The non-dimensionalized (N = 1) classic time-varying Susceptible-Exposed-Infected-Recovered (SEIR) model.
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The measured output consists of noisy counts of ILI visits at emergency departments
yr = It + vy, (2)

where v € L is the measurement noise, with ||v||r_. <V for some known V > 0. The dynamics of system
(1)—(2) can be rewritten as follows

Tep1 = Ay + F ¢+ Hpe,
yr = Cxy + vy, (3)

where z; = [St Ey I Rt]T S Ri is the state vector and (; := [(;S:1; is an uncertain input. In contrast
to [17] and [30], the matrix A; is time-varying in this paper. Moreover, it should be pointed out that only
unknown inputs that have no impact on the output are considered in [30]. Since the uncertain input of (3) can
be rewritten as ¢; = B:St(y: — vt), we consider here unknown inputs that affect the output. The time-varying
matrix A; and constant matrices C, F' and H are defined as follows

c=[ 0 1 0],
F=[-1 1 0 0],
H=[1 0 0 0",
1— 0 0 0
A, = 0] 1—0475—,ut 0 0
L 0 Qi T— e —n 0
0 0 Yt 1*‘ut

For different ILIs, the values of the parameters oy, 5; and ; are different and vary with time for a patient.
No given confidence interval is assumed for 3;. The instant value of A; is also unavailable, but we have the
the bounds

A<A <A V>0,

for

11—z 0 0 0 ]
A= 0 l-a—-n 9 B 0 ’

0 « 1-7—-n 0
|0 0 7 1-q
_1_H 0 0 0 T

- 0 l—a—p 0 0

A= 0 o l—y—p 0
| 0 0 5 1—p

The goal of this paper is to design an interval observer, i.e., state signal bounds z, < z; < Z;, which can
contribute to design a decision rule for disease outbreak detection in an interval approach framework. Note
that at the disease-free equilibrium (when I; = 0), the system (1) is detectable, but not observable (we refer
the reader to [31] for the definition of detectability of nonlinear systems). An advantage of interval observers
is that they can be designed even if the system is only detectable. Next, we review some basic facts from the
theory of interval estimation.

2.1 Interval relations

Given a matrix A € R™*" let us define AT = max{0, A} applied elementwise, A~ = A* — A (the same for
vectors) and denote the matrix of absolute values of all elements by |A| = AT + A~

Lemma 1 [7] Let x € R™ be a vector with x < x < T for some z,T € R™. If A € R™*" is a matriz, then

Ate — A Z< Az < AT — A z. (4)
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2.2 Nonnegative discrete-time linear systems
A system

Tip1 = Az + Bwy, w:Zy — R, t € Zy,
yr = Czy + Duwy,
with z; € R",y € R” and nonnegative matrices A € R}*™ and B € R*™ is called cooperative or nonnega-

tive [19]. Its solution is elementwise nonnegative for all ¢ € Z, provided that zo > 0 [20]. Also, the output
solution y; of such a system is nonnegative if C' € RE*" and D € RE*4.

Lemma 2 [14] A matriz A € R™" is Schur stable if and only if there exists a diagonal matriz P with positive
diagonal elements such that ATPA — P < 0.

3 Interval observer design

In this section we design an interval observer for the SEIR model (1)—(2). We assume here that neither S;
nor its bounding values are available, which makes the estimation problem more complicated than in [3] but
more realistic [4, 2, 21]. First, we determine upper and lower bounds for the uncertain input ¢; . Next we
design an interval observer for the system (1)—(2). We prove the inclusion relation 0 < x; < zy <7, Vt > 0,
and the asymptotic stability of the error bounds. Finally, the boundedness of the interval observer’s solutions
is proven.

Using Equation (3), one can write

Yirz = Cxpio + viqa,
= CAt+1AtCUt + CAt+1FCt + CF<t+1
+CA 1 Hpy + CHpygy1 + viyo,

so that we have
CALFG = —CAi Ay — COF Gy — CHpg
—CA Hpty — Vg0 + Yiyo.
The tructure of the model (1)—(2) implies that CF =0, CA;11H =0 and CA; 11 F = a;11. Hence, we have
Qt+1G = Y2 — CArp1 Agry — vigo.

Suppose 0 < z; < x; < Ty, Vt > 0, for some x4, T; € R*. Notice that A; 1 A;— A 1A; >0, A1 Ag—Ar 1 A >

0 with A;414; = A? and A1 Ay = ZQ. Hence using the inequality (4) of Lemma 1, we get the following
relations for all ¢ > 0

(A Ty — (A*) "7 < APy < Ay Agry

and
2

At+1At$t S ZzIt S (ZQ)+ZE7t — (Z )7ﬁ

We then obtain the following relations B
G <G <G,
for all t > 0, where

“Nyppa — V = (CA) T + (CA”) ),

“Hyerz +V - (CA%) P2y + (CA%) ).
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An interval estimator’s equations for (3) takes the form

Xe41 = A+ F G- F G+Hp
+L(y: — Cx:¢) — L'V,
Xir1 = AG+FTG—-F G+ Hm (5)
+L(y: — Cxa) + LV,
z; = max{0,x:},
7 = max{0, Xz},

where z, € R* and 7; € R?* are respectively the lower and the upper interval estimates for the state zy,
= —x%
X, Xt € R* is the state of (5), L and L are some matrices, L* = |L|Apx1 and L™ = |L|A,x1.

Assumption 1 There exist matrices L € R**! L € R**! such that the matrices (A— LC) and (A— LC) are
nonnegative.

Assumption 2 The state z(t) is bounded (i.e., z € L) for z(0) € [2(0),Z(0)], and z(0),Z(0) € R* are given
constants.

We take matrices L and L satisfying Assumption 1 in order to enforce the positivity of the interval observer’s
error dynamics. Assumption 2 is common in the interval observer design literature and is satisfied here since
the state components belong to [0, 1].

Theorem 1 Let Assumptions 1 and 2 be satisfied. Then the estimates z, and T, given by (5) yield the
relations
0<z, <z, <7 Vt>0, (6)

provided that 0 < zy < xg < Tp.

Proof. Notice that z; > 0 for all ¢ > 0 and x; is also bounded since it represents population proportions.
We can rewrite the Equation (3) as follows

Ti41 = (A/ — LC)l‘t + (At — Al)l‘t + FCt + H/J,t + Lyt — L’Ut

for A’ equal to A or A and L’ equal to L or L. Hence, the interval observer’s errors e =Ty —Xt, €& = Xt — Tt
satisfy the equations

eir1 = (A—LC)e + ¢y,
1 = (A—LO)e + ¢y, (7)
where
¢ = (A—Am+FG—FTG+F ¢
—Lvy + L*V,
7 = (Z—At)xt+F+a—F7Q—F<t
—I—Z’Ut +Z*V

Under the introduced conditions, it can be inferred from Lemma 1 that ét > 0 and 51: >0, Vt > 0. Therefore
one deduces from Assumption 1 that e; > 0 and &; > 0 since eg > 0 and g5 > 0 (the system (7) is cooperative).
This implies that the order relation x, < x; <X, is satisfied for all £ > 0. Hence the inequality (6) is true by
construction of , T and due to the non-negativity of z. O
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To state the next theorem, we introduce the notation

Jin Ji2
J =
[le J22

Jn=a WFH(CAY) +a P (CAYY,
o =~ FH(OA)T —a T F(CAY)
Jo1 = —a 'FT(CA%)T — 571F7(0Z2)*,
Jas = a”'FH(CA%) ™ + Fra Y(CA™)*.

] , Where

and let n = ||J||2, the induced 2-norm of J.

Theorem 2 Let Assumptions 1 and 2 be satisfied. Suppose there erists a diagonal matriz P € R3*® with
positive diagonal entries, two symmetric positive definite matrices Q, K € R¥*8, and a constant v > 0 such

that
ATPA—-P+Q+y’ly  ATP  ATP

== PA P —~lg P =0, (8)
PA P P-K
for
A= (A - LC) 07
0 (A—LC)

Then x,X € L3, and so 2, T € L.

Proof. Let us define

xe=xi' xi' " =l &,

=0 "Ff(yo—V)—a 'F (ypo+ V) + Hp
+ Ly — LV,

G=a '"Ft(yo+V)—a 'F (42— V) + Hp
+ Ly + L'V

The dynamics of the interval observer can be rewritten as
Xt+1 = Axe + J max{0, x¢} + €, (9)

where the matrix A is defined in the theorem. Consider a Lyapunov function V(x;) = xf Px: (By using
Lemma 2, the matrix P can be chosen diagonal since the matrix .4 is non-negative), and let 7 = V(x441) —
V(xt). We have
7 =x{ (ATPA - P)xy + x{ AT PJmax{0, x;}
+ max{0, x;} " JT PAx; + max{0, x;}* JT PJ max{0, x;}
+ 2xF AT Pe; + 2¢f PT max{0, x;} + ¢/ Pe;.

Taking into account that |J max{0, xt}|2 < n|xt|2, we get

T <x; (ATPA = P)x; + x{ AT PJmax{0, x:}
+ max{0, x;} " JT PAyx; + max{0, x;}* JT PJ max{0, x;}
+2xF AT Pe; + 2¢F PTmax{0, x;} + €} (P — K)e,
+ef Key +yn°x7t x¢ — ymax{0, x; }* JTJ max{0, x;}
+ X7 @xt — Xi Qxt,
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T
Xt Xt
< [Jmax{0,x:}| = |Jmax{0,x:}| — X?QXt
€ €t

+ e/ Ke,
< —x{ Qxt + € Key,

because of (8). This inequality shows that the system (9) is input-to-state stable from e to x [27, 10], hence
from y to . Since € € L3 by construction, x and X stay bounded for all ¢ > 0. O

In this paper, we select the observer gains L, L manually. However, because of the diagonal structure
of P, one can in fact also optimize the observer gains L, L using semidefinite-programming to improve the
observer’s accuracy, following the approach of [10] to reformulate the matrix inequality (8).

4 Simulations

In this section, we illustrate the performance of the proposed interval observer. Consider a scenario where

fue = po +0.05 sin(%),at ~0.240.1 sinQ(gt),
Y =" +0.1 Sin(%t),ﬂt = Fo(1+ HCOS(Zt)),

with pg = 0.4/year, g = 0.4/year, Sy = 0.5/year and the degree of seasonality x = 0.4. The output

measurements y; are corrupted by noise such that v; = Vcos(§t) with V = %. The state’s initial
conditions are Sy = %, Ey = %, Iy = ﬁ and Ry = %. We select

L=(1-9)00100]",

L=(1+o)00100]",

with [ = 2—10. Assumption 1 holds for these choices of L and L and all conditions of Theorem 1 are satisfied.
Figure 2 shows the results of the interval estimation for g = %, where the solid lines represent the states xy,
k =1,2,3,4 and the dash lines are used for the interval estimates x; and Tj. Notice that the dynamics of

S; and its estimates can be deduced from Figure 2 by using the relation S, =1 — FE; — I; — R;.

0.05

Infected
Recovered
o
o
R

.

time(weeks) time(weeks)

Figure 2: Evolution of the actual state and the observed bounds.

5 Conclusion

The problem of state-observer design for a discrete-time SEIR epidemic model of ILI has been considered in
this paper. The proposed approach only requires sets of admissible values for the model’s disturbances or
uncertainties and parameters, and no information about the bounding values of the time-varying transmission
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rate from the “susceptible” to the “infected” stage. A new approach for the estimation of the the four com-
partments’ state is proposed, where an interval observer is used instead of a point-wise one. Its performance
is illustrated in simulation. Future work can focus on performance evaluation for real data collected by the
Public health services.
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