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of linear systems via maximum feasible subsets, Rapport technique, Les
Cahiers du GERAD G–2018–104, GERAD, HEC Montréal, Canada.
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Abstract: Algorithms for finding sparse solutions of underdetermined systems of linear equations have been
the subject of intense interest in recent years, sparked by the development of compressed sensing, where
this is a central problem. There are also reasons for interest in finding sparse solutions for general linear
systems of equations and inequalities. This paper describes several new and effective linear-programming-
based algorithms for both underdetermined sets of linear equations, and general linear systems, derived from
algorithms for solving the maximum feasible subset problem. The algorithms allow greater compression
and potentially better denoising in the compressed sensing application, and are the first methods applied to
general linear systems. Extensive experimental results are reported.

Acknowledgments: This research was supported by the Natural Sciences and Engineering Research Council
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1 Introduction

A sparse solution is one in which only a small fraction of the variables take values other than zero; these

nonzero variables are called the supports. A solution having k supports is called k -sparse. Algorithms for

finding sparse solutions of linear systems have been the subject of intense research since the development of

compressed sensing in the 2000s (e.g. (Donoho 2006)), which permits the compression of a sparse signal into

a space much smaller than otherwise expected. A critical step in compressed sensing is the recovery of a

sparse solution from a set of linear equations. Standard methods in compressed sensing such as Basis Pursuit

(Chen et al 2001) require that the input signal be very sparse. This paper develops improved algorithms for

the recovery of sparse input signals that have more supports than can be handled by methods such as Basis

Pursuit. This permits greater signal compression. Variants also offer promise of better denoising.

Sparse solutions of general linear systems that include inequality constraints and variable bounds as well

as equalities are also useful, but this is a much less studied topic. This paper develops a number of methods

for finding sparse solutions for general linear systems as well.

The algorithms developed here are based on methods for solving the maximum feasible subset (maxFS )

problem, which is this: given an infeasible set of linear constraints, find the largest cardinality feasible subset.

The sparse solution problem can be formulated as an instance of maxFS. Heuristic solutions for the NP-hard

maxFS problem date to the early 1980s (e.g. Bordetskii and Kazarinov 1981), well before the explosion of

interest in compressed sensing. A series of very effective linear programming based methods were developed

beginning in the 1990s (Chinneck 1996, 2001). Surprisingly, the maxFS solution approach has not been taken

up by the compressed sensing community: a single paper (Jokar and Pfetsch 2008) explores the possibility

of using known maxFS algorithms to solve the central problem posed by compressed sensing.

Jokar and Pfetsch (2008) compare seven methods for solving sparse systems of underdetermined linear

equations in a compressed sensing scenario:

1. Three methods from the compressed sensing literature: LP-based Basis Pursuit, Orthogonal Matching

Pursuit (Pati et al. 1993) which includes a nonlinear step, and a linearized version of Orthogonal

Matching Pursuit,

2. Four methods from the maxFS solution literature: an exact branch-and-cut method (Pfetsch 2008), a

nonlinear method due to Mangasarian (1999), a nonlinear bilinear formulation (Bennett and Breden-

steiner 1997), and an LP-based heuristic by Chinneck (2001).

Their results show that the maxFS heuristics by Mangasarian and Chinneck provide the best results, with

Chinneck’s method the best overall. This motivates the development here of new maxFS algorithm variants

of Chinneck’s method, and their application to both underdetermined linear equations, and general linear

systems that include inequalities and bounded variables . These new methods have advantages over existing

methods for compressed sensing, and, as far as we are aware, provide the first results for sparse solutions of

general linear systems.

1.1 Compressed sensing

The first step in compressed sensing is to generate a measurement vector of size m from a sparse input vector

of size n, where m << n. The small measurement vector can be stored or transmitted in place of the much

larger original vector. The trick is to be able to recover the original sparse input vector from the much

smaller measurement vector: this is where sparse solutions for sets of underdetermined linear equations come

into play.

The small m × 1 measurement vector b is generated from the large sparse n × 1 input vector x by

multiplying it by the m×n encoding matrix A, that is Ax = b. There are some restrictions on A, chiefly the

Restricted Isometry Property (Candes 2008), but this is satisfied by random matrices or random Gaussian

matrices for example. We wish to recover the original large sparse input vector at some later time or at the

signal receiver. Assuming that we know b and the encoding matrix, the unknown original sparse vector x is



2 G–2018–104 Les Cahiers du GERAD

recovered by finding a sparse solution to the underdetermined linear system of equations Ax = b where all

variables are unbounded in both directions.

An intuitive understanding of compressed sensing is given by analogy to identifying counterfeit coins with

a small number of weighings of different subsets of the coins: see Bryan and Leise (2013).

An m × n underdetermined linear system of equations Ax = b, where m << n and A is random, has

the property that any random subset of m columns will admit a solution, with probability very close to 1.0.

Thus there always exists a solution that is at most m-sparse. For most compressed sensing signal recovery

algorithms to correctly return the original input vector, the input vector must have a k-sparsity in which

k << m. This affects m: the smaller the maximum ratio k/m for effective recovery, the larger m must be,

and hence the less the compression. Thus a goal of compressed sensing algorithms is be effective at as high

a ratio of k/m as possible in order to maximize the compression.

In the experiments by Jokar and Pfetsch (2008) with exact recovery using random unit matrices of size

128×256 for encoding, the largest k/m ratios at around 0.5 are obtained by the methods of Mangasarian and

Chinneck. One goal of any new methods is to obtain higher k/m ratios.

1.2 Basis pursuit and variants

Let us define ‖x‖0 to mean the number of supports in a vector x . The sparse solution goal is to find min‖x‖0
while satisfying the constraints. Because this is NP-hard, many methods instead try to minimize a different

vector norm. One of the original and most-used methods in compressed sensing minimizes ‖x‖1, i.e. the

sum of the magnitudes of the variables; this is known as Basis Pursuit (Chen et al. 2001). Basis pursuit is

easily implemented as a linear program (LP) by a variable substitution: each xj is replaced by the difference

of two nonnegative variables uj − vj , with the objective function min
∑

j (uj + vj). The solution is obtained

by solving a single LP.

In Matching Pursuit algorithms (Mallatt and Zhang 1993), supports are chosen one at a time. At any

intermediate iteration h there is a current solution xh in which only the supports chosen thus far are nonzero,

and the residual error rh = b – Axh. The next support chosen is the one that maximizes
∣∣∣AT

j r
h
∣∣∣ where AT

j

is the j th column of A. After adding a support, the approximate solution xh+1 is found to minimize the

residual error rh+1; this is found in various ways, allowing only the supports selected so far to take nonzero

values. In Orthogonal Matching Pursuit (Pati et al. 1993) xh is found by minimizing the residual error in

least squares sense. There are numerous matching pursuit variants.

1.3 Chinneck’s original maxFS heuristic

The new algorithm variants developed here are based on Chinneck’s original maxFS algorithm for infeasible

general sets of linear constraints (Chinneck 1996, 2001). This algorithm elasticizes the input constraints by

adding nonnegative elastic variables as follows:

nonelastic constraint elastic version

aix ≥ bi aix + ei ≥ bi
aix ≤ bi aix – ei ≤ bi
aix = bi aix + e′i − e′′i = bi

This allows constraints to be “stretched” as needed to provide a solution. An elastic objective function,

min Z=
∑

i (ei + e′i + e′′i ), works to minimize the sum of the constraint violations. The original model is

feasible if the minimum elastic Z is zero.

The algorithm solves the dual of the maxFS problem: it finds the smallest set of constraints which, when

removed from the infeasible set, renders the remainder of the set feasible. The small removed set is called

the cover set ; its complement is the maxFS solution.

Chinneck’s original algorithm is shown in Algorithm 1. NINF is the number of constraints that are violated

(by having an associated elastic variable that is nonzero) after an elastic LP is solved. The algorithm tests
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the effect on elastic Z of temporarily removing each member of a set of candidate constraints, one at a time:

the candidate constraint whose temporary removal most reduces elastic Z is removed permanently. The

algorithm terminates when enough constraints are permanently removed that elastic Z becomes zero; the

permanently removed constraints constitute the cover set, and the maxFS solution is the complement of this.

The list of candidate variables can be constructed several ways. The longest list, shown in Algorithm 1,

consists of all constraints having a nonzero dual price at the LP solution in which the last permanently

removed constraint was dropped. This list can be shortened by sorting it in decreasing order by the absolute

value of the dual price associated with each constraint, and then selecting only the top k of these.

It is also possible to shorten the list of candidates by dividing the complete list of candidates into two

sub-lists: those having a nonzero elastic variable (“violated”), and those whose elastic variables are zero, but

who have a nonzero dual price (“satisfied”). The violated set is sorted in decreasing order of the product of

the nonzero elastic variable and the absolute dual price (an estimate of the expected reduction in elastic Z

were this constraint to be removed), and the satisfied set is sorted in decreasing order by the absolute dual

price. Now take the top k elements from each list. Values of k in the range of 1–7 provide significant

speed-ups with relatively little loss of accuracy.

Algorithm 1 Chinneck (1996) heuristic for maxFS

Input: Constraints defining an infeasible set of linear constraints.
0. CoverSet ←∅. Set up elastic LP.
1. Solve elastic LP.

if NINF = 1 then add the single violated constraint to CoverSet and exit.

HoldSet ← {constraints having nonzero dual prices}.
2. MinZ ←∞.

CandidateSet ← HoldSet.
for each constraint in CandidateSet :

Delete the constraint.
Solve elastic LP.
if elastic Z = 0 then

Add constraint to CoverSet and exit.
if elastic Z < MinZ then

Winner ← currently deleted constraint.
MinZ ← elastic Z.
HoldSet ← {all constraints having nonzero dual prices}.
if NINF = 1 then NextWinner ← single violated constraint.
else NextWinner ← ∅.

Reinstate the constraint.
3. Add Winner to CoverSet.

if NextWinner 6= ∅ then add NextWinner to CoverSet and exit.

Delete the Winner constraint permanently.
Go to Step 2.

Output: The maxFS solution is the complement of CoverSet.

2 MaxFS-based algorithm options

There are numerous ways to formulate the linearly-constrained sparse solution problem for an LP-based

maxFS solution derived from Chinneck’s methods. The original formulation (Chinneck 2008) adds explicit

non-elastic variable zeroing constraints of the form xj = 0, one for every variable, to the system Ax=b. The

solution is obtained via Algorithm 1 with the exception that candidate constraints can only be taken from

among the variable zeroing constraints. The maxFS solution thus preserves the largest number of variable

zeroing constraints. The drawback of this formulation is the blow-up in model size. Where the original model

has m constraints and n variables, the revised model has m + n constraints.

Jokar and Pfetsch (2008) proposed a different formulation for solution by a variant of Algorithm 1,

specifically for sparse solutions of underdetermined systems of linear equations. The model uses the Basis

Pursuit change of variables xj = uj − vj and objective function (see Section 1.2). The nonnegative uj and vj
variables operate as elastic variables in a virtual variable zeroing constraint, and the Basis Pursuit objective

function operates as the elastic objective function. The virtual variable zeroing constraint on variable xj is

removed by setting the objective function values of uj and vj to zero.
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The set of candidates consists of those variables xj having nonzero values at the LP solution. The winning

candidate is the one whose virtual removal most reduces Z; the objective coefficients of the associated uj

and vj variables are then permanently zeroed. A shorter list of candidates is obtained by sorting the variables

in decreasing order by uj +vj and taking only the top k from this list. This implementation provides excellent

results in the experiments conducted by Jokar and Pfetsch. They also show that using a short list of size

k = 1 provides a very large speed-up with little loss in solution quality.

The Jokar and Pfetsch implementation is efficient: where the original model has m constraints in n

variables, their formulation has m constraints in 2n variables, which has little impact on solution time since

the speed of the simplex method for LPs is mainly proportional to the number of constraints. The algorithm

sometimes adds unneeded variables to the support set, so Jokar and Pfetsch employ a post-processing step.

During post-processing, each support is temporarily forced to zero in turn; if the reduced set of supports still

yields a feasible solution, then the support is permanently zeroed.

These two examples hint at the range of possible formulations for solution via variants of Algorithm 1.

The formulation elements that can be adjusted are described below.

Constraints can be elasticized by the addition of nonnegative elastic variables, or left in their original state.

Variable zeroing can be accomplished in multiple ways:

1. Implicitly using the Basis Pursuit substitution of uj−vj in place of xj , where uj and vj are nonnegative,

and the associated Basis Pursuit objective function. Variables can be encouraged to small (if not zero)

values by assigning large objective coefficients to their associated uj , vj pair, or can be encouraged

to take nonzero values by assigning smaller or zero values to the objective function coefficients of the

associated uj , vj pair.

2. Implicitly by adding elastic zeroing constraints of the form xj + e+j − e−j = 0 where e+j and e−j are

nonnegative, and using the standard elastic Z minimization. As in the previous point, the relative size

of the elastic variable objective coefficient can encourage the variable value towards or away from zero.

3. Explicitly by adding nonelastic variable zeroing constraints of the form xj = 0.

4. Explicitly by setting the variable lower and upper bounds to zero.

In the first two options above, appropriate adjustments can be made if there are upper or lower bounds

on the variables.

The objective function can be set up in multiple ways:

1. Where the xj = uj − vj variable substitution has been used, the objective is to minimize the sum of

the nonnegative uj and vj variables.

2. If the constraints are elasticized, or if there are elastic variable zeroing constraints, or both, then the

objective is minimize the sum of the elastic variables.

3. If the xj = uj − vj variable substitution has been used, and the constraints have been elasticized, then

the objective is to minimize the sum of the nonnegative uj and vj variables and the nonnegative elastic

variables.

4. The objective function coefficients can be dynamically adjusted as the solution proceeds.

The solution style can be set as additive or subtractive. Algorithm 1 is additive: constraints are added to

the cover set as the algorithm proceeds. However it is also possible to start with all constraints in the cover

set, and to remove constraints from it as the algorithm proceeds. For example, in the subtractive style the

algorithm can remove a constraint from the cover set if doing so does not make the complementary set of

constraints infeasible. The post-processing algorithm described later is subtractive.

Using the different possibilities for each formulation element listed above, a wide variety of LP-based

maxFS algorithm variants can be generated. We explore a few of the options in this paper.
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3 New maxFS algorithms for underdetermined systems of linear
equations

Four new maxFS -based algorithms were created by combining the formulation elements in different ways.

The initial model has m constraints and n variables.

Method A. The constraints are elasticized and variables are zeroed by setting their upper and lower bounds

to zero. All variables are initially zeroed. The candidate list consists of variables having a bound with nonzero

reduced cost, sorted in decreasing order by absolute value. Supports are added by removing the upper and

lower bounds on the variables. This gives a model having m constraints in n + 2m variables. Note that this

method is the only one that evaluates intermediate solutions based on the constraint violations (i.e. the sum

of the constraint elastic variables).

Method B. This is a variant of the Jokar and Pfetsch implementation. Constraints are not elasticized, and

the variable substitution xj = uj−vj is used. This gives a model in m constraints and 2n variables, when all n

original variables are unbounded in both directions, or fewer variables when some of the original variables

are nonnegative or nonpositive. Candidates are variables that have nonzero values and are not already in

the list of supports. A reduced set of candidates is chosen by taking the top k largest magnitude candidates.

The extensions to the Jokar and Pfetsch implementation are as follows:

1. When a candidate is moved into the support set, the objective function coefficients of its correspond-

ing uj and vj variables are reduced to 0.1 instead of 0. This has the advantage of encouraging supports

that were incorrectly added to the support set to take the value zero. The values of the variables at

the final solution are checked and only those that are actually nonzero constitute the output set of

supports.

2. Because the constraints are not elasticized, they are satisfied at all times. Thus every intermediate LP

solution generated by candidate testing is checked for the actual number of supports. The solution

having the fewest supports is remembered, and if it has fewer members than the support set generated

by the main algorithm, then it is returned instead.

Method C. Constraints are not elasticized. Variables are zeroed by explicit elastic constraints, so the

objective function seeks to minimize the sum of the elastic variables. This gives a model of size m + n

constraints in 3n variables when all n original variables are unbounded. There are fewer constraints and

elastic variables if some original variables can never be zero because their bounds prevent this (e.g. x≥1),

and fewer elastic variables if some of the original variables are nonnegative or nonpositive. There are two

sets of candidates: (i) original variables that have nonzero values and are not already in the list of supports,

and (ii) original variables having the value zero and a nonzero dual price in the associated variable zeroing

constraint. A reduced set of candidates can be chosen by taking the top k largest magnitude candidates from

each list (thus 2k candidates in total). Candidates are moved into the support set by releasing the elastic

variable zeroing constraints by setting the objective function coefficients of their elastic variables to zero.

Intermediate solutions are checked.

Method M1. The Basis Pursuit (BP) algorithm has some attractive properties. If the input vector has

k-sparsity much smaller than m, then it returns the correct solution after solving a single LP. If it returns

an incorrect solution, it normally has a small relative squared error (defined in Section 4.1) for compressed

sensing. However method B is able to provide correct solutions up to a much larger value of k/m. Thus we

combine the two algorithms in method M1. When the equations must be satisfied exactly, BP is run first,

and if the solution has fewer than m−3 supports, then it is returned immediately, otherwise method B is also

run and the smaller of the two solutions is returned. If some error is permitted in the equations, then both

methods are always run and the smaller of the two solutions is returned. If the sparsities of the two solutions

match, then the BP solution is returned since it tends to have a smaller relative squared error compared to

the input vector.
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The LP-based solutions also make it easy to adjust the solution to allow for errors, or to limit the number

of supports, as described next.

Absolute or relative error tolerances. Controlled error in the sets of linear equations is permitted by adjust-

ing the b matrix. LP solvers typically treat b as two vectors: lower bounds b l and upper bounds bu. For an

equality constraint i, bli = bui . To permit a small absolute error ∆abs in equation i the bounds are adjusted

to bli = borigi −∆abs and bui = borigi + ∆abs. To permit a small relative error ∆rel in equation i the bounds are

adjusted to bli = borigi −
∣∣∣borigi

∣∣∣ ∆rel and bui = borigi +
∣∣∣borigi

∣∣∣ ∆rel. It is also possible to cap the relative error to

be less than a given ∆abs when bli and bui are initialized. Error tolerances are used in the compressed sensing

application to remove noise and allow greater signal compression (with some signal quality loss) (Chen et al.

2001). The same idea can be applied for general linear systems if fewer supports are desired.

Limited number of supports. It is possible to restrict the allowable number of supports to be less than some

value sl. Since the new methods described above return the supports one by one, it is possible to simply

stop adding supports when sl supports have been returned. It is also possible to let any method find a set

of supports and then select a subset of size at most sl. Where there are more than sl supports, one way to

make the selection is to choose the sl largest absolute value supports.

Post-processing. Some algorithms generate a list of supports that can be shortened by a post-processing

step, as originally described by Jokar and Pfetsch (2008). In post-processing, each support is temporarily

forced to zero in turn; if the reduced set of supports still yields a feasible solution, then the support is

permanently zeroed. Note that the order of the variables has an impact on the outcome, but there is no

way to know the best order in advance: we simply use the order of the variables as listed in the support set

returned by the initial algorithm. Post-processing is quite successful for some algorithms, but requires the

solution of k LPs, where the initial solution is k-sparse.

Obtaining the output vector. The new algorithms are intended to return a list of the supports, but not

their values. However the actual output vector is needed for comparison to the input vector. This is obtained

by solving a final LP constructed as follows: remove all non-support variables from the A matrix, make the

change of variables xj = uj−vj , elasticize all of the constraints (by adding e+i − e−i to each constraint, where

these variables are nonnegative) and add the elastic objective function min
∑

j (uj + vj) + 100
∑

i

(
e+i + e−i

)
.

This finds a solution that has the smallest possible values of xj ; the large penalty on the constraint elastic

variables prevents minor error tolerance issues.

4 Experiments: Undetermined random linear systems

In a common compressed sensing scenario, the problem is finding a sparse solution for the underdetermined

systems of linear equations Ax=b, where A and b are given, A is random, and the variables are not bounded.

We experiment with methods for finding exact solutions, solutions with a limited amount of equation error,

and solutions having a limited number of supports.

4.1 Experimental setup

Experiments were conducted under these conditions:

Hardware. Intel 64-bit Xeon 6-core E5-1650 v3 CPU, 3.50 GHz, with 32 Gbytes of RAM. Windows 10

operating system.

Software. Algorithms are programmed in Matlab R2017b. The LP solver is Mosek (2018), called via the

Mosek Fusion API for Matlab, release 8.1.0.34. The feasibility tolerance for the LP solutions is the MOSEK

default 1×10−6. The same tolerance is applied to identify supports.

Test data. Random encoding matrices A of size 128×256 are generated using a uniform distribution be-

tween 0 and 1 (Matlab rand function). Each column of the matrix was then normalized to a length of 1.
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Known input vectors of k-sparsity are generated from A by randomly selecting k columns and assigning each

selected column a weight chosen randomly from a normal distribution with mean 0 and standard deviation 1.

Ten trials are conducted at each selected value of input sparsity.

Methods compared. Basis Pursuit (BP), and the maxFS-based formulations JP (the Jokar and Pfetsch

formulation), A, B, C and M1.

Evaluation metrics:

• Number of successes. A count of the number of instances in which the recovery algorithm succeeds in

returning the known input vector, over 10 trials. This is used when the error delta is zero, i.e. an exact

solution is required (within accepted tolerances).

• Sparsity of solution. When a nonzero error is allowed, every method returns a solution having fewer

nonzeros than the input vector. Thus it is more meaningful to examine the sparsity of the solution

vector in comparison to the sparsity of the input vector.

• Solution time. The total time needed for the sparse solution algorithm to complete. For some algorithms

this includes post-processing time (not all algorithms require this). Times are averaged over 10 trials,

on a lightly loaded machine.

• Relative squared error. This evaluates the differences between the input vector x in and x sol, the vector

output by the sparse recovery algorithm:
∑

j (xsol
j −x

in
j )

2∑
j (xin

j )
2 .

4.2 Exact solutions

These experiments examine the case where the allowable error delta on the equations is 0.0 (aside from the

default LP solver feasibility tolerance of 1× 10−6). There are 10 tests at every second input sparsity from 62

to 98. Input sparsities begin at 62 since previous work indicates that existing algorithms such as basis pursuit

fail well before k/m = 0.5 (in this case at k = 64). Sparsities beyond 86 are not shown because there are

zero successes. Ten different random A matrices are used at each input sparsity at each list length; the same

random A matrix is used for each method, but the A matrices differ between list lengths. Three list lengths

are tested: 1, 7, and unlimited. The number of successful recoveries of the input vector are summarized in

Table 1.

Table 1: Number of successes of 10 trials for exact solutions.

List Length 1 List Length 7 List Length Unlimited

k BP JP+ A+ B+ C+ M1+ BP JP+ A+ B+ C+ M1+ BP JP+ A+ B+ C+ M1+

62 1 10 0 10 10 10 0 9 0 9 9 9 0 10 1 10 10 10
64 0 10 0 10 10 10 0 10 0 10 10 10 0 9 0 9 9 9
66 0 9 0 9 9 9 0 10 0 10 10 10 0 10 0 10 10 10
68 0 9 0 9 9 9 0 9 0 10 9 10 0 6 0 8 6 8
70 0 8 0 10 8 10 0 7 0 8 7 8 0 5 0 8 5 8
72 0 6 0 6 6 6 0 6 0 8 6 8 0 4 0 7 4 7
74 0 3 0 3 3 3 0 4 0 5 4 5 0 4 0 5 4 5
76 0 6 0 8 6 8 0 3 0 5 3 5 0 3 0 5 3 5
78 0 4 0 4 4 4 0 3 0 4 3 4 0 3 0 4 3 4
80 0 2 0 1 2 1 0 1 0 1 1 1 0 1 0 3 1 3
82 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0
84 0 2 0 2 2 2 0 0 0 1 0 1 0 0 0 1 0 1
86 0 0 0 0 0 0 0 2 0 2 2 2 0 0 0 0 0 0

Post-processing is indicated by a “+” added to the method name. Its effectiveness varies by method.

Over the 570 trials for each method, the post-processing success rates are BP 0%, JP 18.8%, A 1.2%,

B 57.7%, C 36.8%, M1 2.8%. Post-processing was applied for all methods except BP.

For the 128×256 A matrices in this experiment, the tested sparsities range between 0.48m (k = 62) and

0.77m (k = 98). As shown by Jokar and Pfetsch (2008), BP cannot reliably return the correct solution

when the sparsity exceeds 0.31m. Method A+ is completely ineffective at the range of sparsities tested,
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whereas the other new methods are much more effective. Method A+ is the only new method that uses an

equation-oriented evaluation of the intermediate solutions: the sum of the constraint elastic variables. All of

the other new methods use a variable-oriented evaluation of the intermediate solutions based on the size of

the supports, which is more directly related to the sparsity goal.

The underlines in Table 1 indicate the largest input sparsity row above which all trials have 9 or more

successes out of 10. This is the largest input k-sparsity for which the method and list length can be considered

reliably successful. The highest sparsity that can be reliably recovered by any method is 70 (0.55m), for

methods B+ and M1+, at list length 1. It is surprising that this happens at list length of 1; previous work in

analyzing infeasible sets of linear constraints indicated that longer list lengths tend to be better. This result

may be an artifact of this particular experiment: recall that any m variables will yield a feasible solution;

thus it may be that choosing the single most promising variable at each iteration, as in list length 1, is the

most reliable way to the shortest sequence of selected variables.

When a method fails to succeed it almost always return a solution of size m. In some cases the newer

methods are able to find solutions of size m−1 or m−2. Note also that methods JP+ and C+ have identical

success rates at all sparsities and over all 3 list lengths. This indicates that candidate magnitude is a better

metric for variable selection than variable bound sensitivity.

Average solution times are summarized in Table 2. As expected, solution times for the new methods grow

with the list length. Times also increase with the k-sparsity of the input vector, typically with a peak in the

middle of the range of input sparsities tested. BP consists of a single LP solution, so solution times are stable

across the range of input sparsities. The solution time for method C+ is roughly double that of method B+

or method C+ because it uses a candidate list that is twice as long.

Table 2: Average solution times (seconds) for exact solutions.

List length 1 List Length 7 List Length Unlimited

k BP JP+ A+ B+ C+ M1+ BP JP+ A+ B+ C+ M1+ BP JP+ A+ B+ C+ M1+

62 0.1 3.8 2.2 3.9 6.4 3.6 0.1 21.9 14.3 23.2 42.1 23.2 0.1 202.9 340.7 206.5 613.7 206.3
64 0.1 4.1 2.1 4.2 6.9 4.3 0.1 20.3 14.0 21.2 38.9 21.3 0.1 223.5 351.8 228.4 671.6 228.1
66 0.1 4.6 2.1 4.8 7.7 4.8 0.1 21.4 14.2 22.5 41.5 22.4 0.1 228.1 358.7 232.7 670.7 232.5
68 0.1 4.7 2.2 4.9 7.8 5.0 0.1 24.0 13.7 23.3 46.4 23.4 0.1 303.0 353.2 281.2 833.6 281.1
70 0.1 5.2 2.1 4.6 8.7 4.7 0.1 28.1 14.1 28.1 53.5 28.1 0.1 309.8 354.1 283.7 859.6 283.8
72 0.1 5.6 2.1 5.8 9.6 5.9 0.1 29.8 13.6 28.6 57.7 28.6 0.1 333.0 356.7 304.2 908.8 306.2
74 0.1 7.0 2.1 7.5 11.5 7.6 0.1 33.5 14.0 34.6 64.5 34.8 0.1 341.7 359.2 341.0 922.0 340.6
76 0.1 6.1 2.1 5.8 10.1 5.9 0.1 35.0 14.0 35.0 66.8 35.3 0.1 350.6 352.9 347.9 944.5 347.9
78 0.1 6.7 2.1 7.2 11.1 7.4 0.1 35.5 14.1 37.0 68.1 37.2 0.1 350.4 354.2 357.2 961.1 357.2
80 0.1 7.6 2.2 8.7 12.6 8.8 0.1 38.0 13.9 42.2 72.4 42.3 0.1 377.4 354.1 382.7 1011.9 383.2
82 0.1 9.2 2.1 8.8 15.1 8.8 0.1 38.2 14.2 42.8 73.0 42.8 0.1 381.0 357.8 404.4 1032.3 405.2
84 0.1 11.3 3.0 11.4 12.9 10.4 0.1 39.3 14.2 42.5 75.0 42.5 0.1 382.0 354.3 398.3 1045.3 398.6
86 0.1 8.1 2.2 9.0 13.4 9.0 0.1 37.2 14.1 41.1 71.5 41.2 0.1 386.7 349.7 409.0 1052.7 409.3
88 0.1 8.1 2.2 8.9 13.6 9.1 0.1 39.5 14.2 44.0 75.4 44.2 0.1 381.0 352.3 403.4 1030.7 404.9
90 0.1 7.8 2.1 8.6 12.9 8.7 0.1 39.5 14.3 44.4 75.4 44.4 0.1 379.9 356.7 402.0 1030.4 401.5
92 0.1 7.8 2.1 8.5 12.9 8.7 0.1 39.2 13.9 43.7 75.5 43.8 0.1 383.4 359.3 406.2 1041.5 407.7
94 0.1 7.8 2.1 8.6 13.1 8.8 0.1 39.5 14.3 44.3 75.3 44.5 0.1 386.1 356.8 410.0 1045.7 412.3
96 0.1 7.8 2.1 8.6 13.0 8.7 0.1 39.4 14.0 43.9 75.4 44.0 0.1 381.6 349.9 404.6 1030.6 405.1
98 0.1 7.9 2.1 8.6 13.0 8.8 0.1 39.2 14.0 43.9 75.0 44.0 0.1 385.4 359.0 411.3 1050.0 411.4

List length 1 is not only faster, but has generally higher solution accuracies, and hence is preferred in

this application. Even at this list length, solution times are much longer than for BP, making these methods

useful for archival purposes rather than in real-time applications.

The average relative squared errors are shown in Table 3. The best values at each input sparsity at

each list length are shown in boldface. Table 3 shows that method M1+ generally gives the lowest relative

squared error at any given list length and input sparsity. The results between list lengths are not directly

comparable because different A matrices are used for each list length. M1+ provides lower errors than BP at

the lower input sparsities tested because it finds the correct solution more often. At higher input sparsities,

both methods fail, producing solutions of size m and in this case M1+ outputs the BP solution. Thus for

the higher input sparsities methods BP and M1+ have identical errors.
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Table 3: Average relative squared errors for exact solutions.

List Length 1 List Length 7 List Length Unlimited

k BP JP+ A+ B+ C+ M1+ BP JP+ A+ B+ C+ M1+ BP JP+ A+ B+ C+ M1+

62 0.085 0 0.673 0 0 0 0.096 0.017 0.463 0.014 0.017 0.010 0.095 0 0.503 0 0 0
64 0.105 0 0.673 0 0 0 0.088 0 0.676 0 0 0 0.118 0.018 0.577 0.016 0.019 0.021
66 0.079 0.008 0.610 0.008 0.008 0.016 0.075 0 0.429 0 0 0 0.130 0 0.608 0 0 0
68 0.106 0.051 0.564 0.057 0.051 0.014 0.095 0.056 0.421 0 0.056 0 0.179 0.186 0.734 0.147 0.186 0.056
70 0.122 0.109 0.777 0 0.109 0 0.204 0.168 0.658 0.134 0.167 0.056 0.142 0.187 0.721 0.115 0.188 0.055
72 0.184 0.152 0.969 0.330 0.152 0.099 0.134 0.119 0.651 0.067 0.119 0.037 0.159 0.210 0.820 0.212 0.210 0.051
74 0.194 0.337 0.857 0.424 0.337 0.157 0.187 0.175 0.720 0.180 0.175 0.109 0.190 0.253 0.849 0.312 0.253 0.123
76 0.173 0.080 0.779 0.158 0.080 0.042 0.200 0.357 0.833 0.324 0.357 0.121 0.164 0.265 0.780 0.186 0.265 0.092
78 0.215 0.233 0.871 0.257 0.233 0.156 0.192 0.305 0.648 0.330 0.305 0.110 0.212 0.289 0.743 0.382 0.289 0.158
80 0.177 0.274 0.950 0.586 0.274 0.165 0.232 0.397 0.757 0.339 0.397 0.222 0.226 0.307 0.807 0.336 0.307 0.176
82 0.247 0.315 0.884 0.332 0.315 0.247 0.240 0.388 1.002 0.765 0.388 0.226 0.256 0.337 1.012 0.400 0.337 0.256
84 0.274 0.345 1.120 0.438 0.345 0.243 0.315 0.557 0.850 0.946 0.557 0.301 0.209 0.357 1.008 0.477 0.357 0.197
86 0.290 0.483 1.091 0.603 0.483 0.290 0.260 0.444 0.786 0.372 0.444 0.232 0.274 0.548 1.143 0.487 0.548 0.274
88 0.300 0.531 1.066 0.522 0.531 0.300 0.267 0.523 1.188 0.696 0.523 0.267 0.305 0.664 0.890 0.545 0.664 0.305
90 0.261 0.630 1.316 0.765 0.630 0.261 0.311 0.746 1.018 1.030 0.746 0.311 0.338 0.773 1.163 0.594 0.773 0.338
92 0.285 0.635 1.268 0.735 0.635 0.285 0.265 0.498 1.032 0.510 0.498 0.265 0.267 0.561 0.911 0.706 0.561 0.267
94 0.294 0.609 1.193 0.911 0.609 0.294 0.363 0.823 1.218 1.222 0.823 0.363 0.271 0.655 0.829 0.839 0.655 0.271
96 0.350 0.825 1.058 0.804 0.825 0.350 0.334 0.794 1.057 0.757 0.794 0.334 0.411 0.782 1.337 1.553 0.782 0.411
98 0.343 0.744 1.230 0.749 0.744 0.343 0.378 0.788 1.300 0.891 0.788 0.378 0.342 0.715 1.107 0.993 0.716 0.342

avg 0.215 0.335 0.945 0.404 0.335 0.172 0.223 0.377 0.827 0.451 0.377 0.176 0.226 0.374 0.871 0.437 0.374 0.179

Method A+, with its constraint-oriented evaluations, gives the largest relative squared errors. Methods

JP+ and C+ give identical relative squared errors over all input sparsities and list lengths. Since they also

give identical solution rates, method JP+ dominates method C+ because it is much faster. Method M1+ at

list length 1 is preferred for this compressed sensing scenario due to the combination of accuracy, speed, and

low relative squared error.

A significant result is that methods B+ and M1+ at list length 1 are reliable up to k/m = 0.55 (k = 70

where m = 128). This is a much higher k/m ratio than BP or similar existing methods, meaning that the

transmitted or stored b vector can be much smaller. Jokar and Pfetsch (2008) found BP to be reliable up

to about k/m = 0.31, thus for accurate recovery of the sparse signal b must have length k/0.31 = 3.2k. For

methods B+ and M1+ at list length 1, b must have a length of just k/0.55 = 1.83k.

4.3 Approximate solutions

The LP formulation makes it easy to allow small constraint equation errors by adjusting the equation tol-

erances. This can be beneficial for two reasons: (i) denoising (Chen et al. 2001), and (ii) finding solutions

that are sparser than the input signal. Experiments with an allowable constraint error deviation of ±0.1 in

each bi (a value suggested by Chen et al. 2001)) were conducted under the conditions described in Section 4.1.

Since the input vector is not recovered, the important metrics are the sparsity and relative squared error of

the solution.

The solution sparsity results are summarized in Table 4. Post-processing is very effective for all methods

in this experiment, including Basis Pursuit. The smallest average output sparsities for each list length in

each row are shown in boldface.

The constraint error tolerance allows all methods to return solutions having fewer supports than the

input vector. BP+ and row-oriented Method A+ return solutions having many more supports than the other

methods. There is little difference between the average solution sparsities of the better methods (JP+, B+,

C+, M1+), though JP+ and C+ are marginally better on average. These methods return solutions having

40–50% fewer supports than the input vector at this level of constraint error.

The average relative squared errors are shown in Table 5. The lowest errors on average are given by

methods B+ and M1+ at all list lengths. However there is a noticeable pattern in the results: B+ and M1+

dominate up to about 0.64m (k = 80), and BP+ dominates thereafter. The slightly fewer supports returned
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by JP+ and C+ come at the cost of higher relative squared errors. As expected the relative squared errors

for constraint error delta 0.1 are significantly larger than for the exact solutions. The errors are expected to

be smaller for smaller constraint error deltas.

Table 4: Average supports in solution for constraint error delta 0.1.

List Length 1 List Length 7 List Length Unlimited

k BP+ JP+ A+ B+ C+ M1+ BP+ JP+ A+ B+ C+ M1+ BP+ JP+ A+ B+ C+ M1+

62 57.6 37 42.3 37 36.9 37 57.3 35.4 41 36.3 35.4 36.3 55.2 34.8 38.5 34.8 34.6 34.8
64 59.6 39.1 44.8 38.4 39 38.4 61.1 37.3 42.2 37.9 37.2 37.9 62.8 39 43.7 40 38.9 40
66 59.5 37.7 45.3 37 37.9 37 59.2 36.4 40.7 36.4 36.4 36.4 59.1 36.9 40 36.4 36.6 36.4
68 60 39.1 45.6 39.3 38.8 39.3 62.3 38.5 45.1 39.2 38.4 39.2 61.1 37.6 42.1 38.3 37.7 38.3
70 66.6 40.2 49.4 40 40 40 65.3 39.4 46 40 39.4 40 64.1 41.2 45.4 42 41.1 42
72 65.5 43 51.1 43.5 43.1 43.5 65.3 40.8 45.6 41.1 40.8 41.1 64.5 41.1 47 41 41 41
74 67.1 42.2 48.6 43.2 42.2 43.2 67.1 42.4 50.1 43.2 42.1 43.2 64.4 41.5 45.8 42.6 41.4 42.6
76 63.7 42.3 48.3 42.4 42.3 42.4 65.5 41.6 46.1 41.2 41.3 41.2 66.1 42.9 47.1 44.2 42.9 44.2
78 68.2 43.8 50.1 42.6 43.5 42.6 64.4 43 47.5 42.6 43.1 42.6 67.7 42.2 48.3 43.4 42.5 43.4
80 70.2 46.2 52.5 46.8 46.2 46.8 68.9 43.6 49.1 43.5 43.5 43.5 68.6 43.6 49.7 44.2 43.6 44.2
82 66.2 44.3 51 44.4 44.3 44.4 67.3 44.5 51.3 44.7 44.5 44.7 69.6 45.2 51.9 45.1 45 45.1
84 70.4 44.7 52.2 44.1 44.5 44.1 70.1 44.4 52.1 44.9 44.3 44.9 72.6 46.6 51.6 46.8 46.6 46.8
86 72.5 47.4 55.5 48 47.4 48 72 46.5 52.6 47.8 46.5 47.8 71.8 46.1 50.9 47 45.9 47
88 73.1 46.2 52.9 46.9 46.1 46.9 69.6 45.2 51.9 45.6 45.2 45.6 72.6 47.8 53.1 47.8 47.7 47.8
90 72.9 47.2 54.2 47.6 47.2 47.6 73.5 46.4 53 46.7 46.4 46.7 74.2 47.3 52.7 48.2 47.3 48.2
92 76.5 49.8 57.9 51.1 49.8 51.1 74.8 48.4 55.1 49 48.5 49 74.4 47.4 55.2 48 47.2 48
94 76.1 50.4 57.1 50.4 50.5 50.4 75.9 48.6 54.2 48.7 48.4 48.7 74.8 48.4 53.3 48.9 48.3 48.9
96 75.7 49.3 57.1 50.5 49.3 50.5 75.1 49.1 56.1 49 49 49 75 48 54.6 47.6 47.8 47.6
98 79 50 58.5 49.5 49.9 49.5 78 48.1 58.1 49.4 48.2 49.4 76.2 47.4 53.2 47.8 47.6 47.8

avg 68.4 44.2 51.3 44.4 44.2 44.4 68 43.1 49.4 43.5 43.1 43.5 68.1 43.4 48.6 43.9 43.4 43.9

Table 5: Average relative squared error for constraint error delta 0.1.

List Length 1 List Length 7 List Length Unlimited

k BP+ JP+ A+ B+ C+ M1+ BP+ JP+ A+ B+ C+ M1+ BP+ JP+ A+ B+ C+ M1+

62 0.287 0.260 0.367 0.254 0.259 0.254 0.279 0.278 0.453 0.237 0.281 0.237 0.294 0.201 0.325 0.182 0.191 0.182
64 0.310 0.305 0.513 0.278 0.305 0.278 0.298 0.260 0.347 0.251 0.256 0.251 0.421 0.354 0.508 0.352 0.354 0.352
66 0.288 0.268 0.372 0.179 0.270 0.179 0.275 0.184 0.320 0.175 0.185 0.175 0.281 0.193 0.297 0.175 0.179 0.175
68 0.329 0.240 0.374 0.222 0.232 0.222 0.352 0.235 0.412 0.258 0.235 0.258 0.346 0.338 0.440 0.271 0.336 0.271
70 0.351 0.237 0.580 0.221 0.235 0.221 0.389 0.397 0.597 0.344 0.395 0.344 0.381 0.329 0.598 0.310 0.330 0.310
72 0.389 0.384 0.591 0.365 0.388 0.365 0.392 0.334 0.527 0.370 0.332 0.370 0.332 0.253 0.428 0.213 0.250 0.213
74 0.445 0.470 0.594 0.439 0.469 0.439 0.399 0.448 0.584 0.436 0.449 0.436 0.423 0.383 0.496 0.351 0.382 0.351
76 0.377 0.329 0.540 0.283 0.329 0.283 0.369 0.307 0.426 0.250 0.315 0.250 0.464 0.436 0.468 0.389 0.436 0.389
78 0.420 0.522 0.624 0.447 0.517 0.447 0.435 0.454 0.626 0.377 0.447 0.377 0.416 0.357 0.495 0.339 0.358 0.339
80 0.455 0.594 0.625 0.494 0.595 0.494 0.466 0.487 0.662 0.392 0.486 0.392 0.431 0.428 0.557 0.412 0.433 0.412
82 0.408 0.509 0.597 0.451 0.509 0.451 0.456 0.420 0.624 0.364 0.409 0.364 0.459 0.503 0.740 0.453 0.504 0.453
84 0.477 0.585 0.781 0.466 0.577 0.466 0.536 0.657 0.818 0.577 0.664 0.577 0.390 0.530 0.653 0.415 0.524 0.415
86 0.471 0.489 0.735 0.436 0.491 0.436 0.522 0.583 0.627 0.455 0.579 0.455 0.514 0.581 0.707 0.481 0.584 0.481
88 0.522 0.653 0.694 0.534 0.656 0.534 0.503 0.591 0.746 0.523 0.591 0.523 0.492 0.592 0.742 0.538 0.590 0.538
90 0.482 0.574 0.702 0.529 0.571 0.529 0.619 0.665 0.726 0.620 0.665 0.620 0.632 0.790 0.897 0.688 0.793 0.688
92 0.468 0.654 0.768 0.551 0.652 0.551 0.546 0.623 0.739 0.542 0.620 0.542 0.550 0.758 0.843 0.648 0.760 0.648
94 0.544 0.672 0.728 0.609 0.667 0.609 0.558 0.675 0.822 0.596 0.679 0.596 0.529 0.725 0.683 0.665 0.725 0.665
96 0.541 0.820 0.879 0.714 0.823 0.714 0.519 0.773 0.906 0.679 0.775 0.679 0.495 0.597 0.900 0.558 0.604 0.558
98 0.588 0.813 0.951 0.571 0.809 0.571 0.546 0.815 1.055 0.682 0.806 0.682 0.556 0.717 0.790 0.636 0.719 0.636

avg 0.429 0.494 0.632 0.423 0.492 0.423 0.445 0.483 0.632 0.428 0.483 0.428 0.442 0.477 0.609 0.425 0.477 0.425

Solution times are summarized in Table 6, and are much smaller than for the exact solutions. At one

extreme, method B+ takes about a quarter of the time at unlimited list length vs. the exact solution. On

the other hand, since post-processing is used for method B, method B+ takes much longer. Times are likely

to be shorter for larger allowable constraint error tolerances.

Considering the average output sparsities, relative squared errors, and solution times, method B+ at list

length 1 is preferred in this scenario.
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Table 6: Solution times (seconds) for constraint error delta 0.1.

List Length 1 List Length 7 List Length Unlimited

k BP+ JP+ A+ B+ C+ M1+ BP+ JP+ A+ B+ C+ M1+ BP+ JP+ A+ B+ C+ M1+

62 3.3 2.2 1.8 2.2 4.0 5.4 3.2 9.6 3.8 9.1 21.7 12.3 3.2 57.2 75.4 57.0 352.3 60.2
64 3.5 2.5 2.0 2.3 4.4 5.8 3.5 10.4 4.0 10.0 23.3 13.5 3.6 72.8 91.6 73.6 417.3 77.3
66 3.4 2.5 2.0 2.2 4.3 5.5 3.4 9.9 3.8 9.4 22.7 12.6 3.3 61.5 82.2 61.5 377.0 64.9
68 3.8 2.5 2.0 2.4 4.5 6.1 3.7 11.0 4.7 10.5 24.8 14.3 3.5 67.6 89.6 67.2 397.0 70.7
70 4.2 2.6 2.4 2.5 4.7 6.6 3.8 11.4 4.9 10.7 25.3 14.5 3.8 80.8 96.9 81.7 442.0 85.6
72 4.0 2.7 2.4 2.6 5.0 6.7 3.9 11.9 4.8 11.2 26.7 15.0 3.9 80.9 99.6 80.6 442.9 84.3
74 4.0 2.8 2.3 2.8 5.0 6.8 4.1 12.5 5.5 12.1 27.8 16.0 3.9 83.1 98.0 83.9 444.5 87.7
76 3.8 2.8 2.2 2.7 5.0 6.5 4.0 12.1 4.8 11.1 26.9 15.1 4.1 88.6 106.1 89.6 464.6 93.7
78 4.1 3.0 2.3 2.8 5.2 6.9 4.0 12.8 5.0 11.8 28.5 15.9 4.1 86.9 112.3 88.0 460.4 91.8
80 4.3 3.2 2.6 3.2 5.9 7.5 4.3 13.4 5.3 12.5 29.7 16.9 4.1 89.6 110.8 89.6 475.8 93.8
82 4.0 3.0 2.5 3.0 5.3 7.0 4.1 13.6 5.7 12.8 29.9 16.8 4.4 97.5 116.0 96.0 491.2 100.5
84 4.3 3.1 2.5 2.9 5.5 7.3 4.6 13.6 6.1 13.2 30.2 17.8 4.4 102.6 123.7 102.4 512.4 106.4
86 4.6 3.4 2.8 3.3 5.9 7.9 4.5 14.5 6.0 13.9 32.0 18.5 4.5 102.7 118.0 104.6 510.1 108.9
88 4.4 3.3 2.6 3.2 5.8 7.6 4.3 13.9 5.7 13.0 30.7 17.3 4.5 109.1 122.0 109.0 536.4 113.6
90 4.4 3.2 2.7 3.2 5.8 7.7 4.9 14.7 6.3 13.8 32.0 18.8 4.7 108.2 117.1 110.8 528.7 115.6
92 4.8 3.7 3.0 3.7 6.4 8.5 4.8 15.8 6.2 14.9 34.5 19.7 5.1 106.8 133.4 108.9 516.2 113.5
94 4.7 3.8 2.9 3.6 6.5 8.4 4.8 15.5 6.2 14.6 33.8 19.4 4.6 111.2 118.1 113.6 530.2 118.2
96 4.9 3.5 2.9 3.7 6.1 8.5 4.8 15.8 6.6 15.0 34.6 19.8 4.7 111.8 133.3 110.6 540.5 115.9
98 4.9 3.8 3.1 3.7 6.4 8.5 4.9 15.4 6.9 15.0 33.5 19.9 4.8 108.8 124.1 110.3 528.8 114.9

avg 4.2 3.0 2.5 3.0 5.4 7.1 4.2 13.0 5.4 12.4 28.9 16.5 4.2 90.9 108.9 91.5 472.0 95.7

4.4 Limited support solutions

Rather than permitting small errors in the constraint equations, an alternative is to directly limit the number

of supports to be less than some upper limit sl. This can be done for any solution method by taking the

output set of supports, choosing the sl largest magnitude supports, and then recalculating the output solution

vector using only the chosen supports. The steps in the recalculation are:

1. For variables not chosen as supports, set the upper and lower bounds to zero. For the chosen variables,

use the change of variables xj = uj − vj .

2. Set up the weighted elastic program as described in “Obtaining the Output Vector” in Section 3.

3. Solve the resulting LP to find the values of the chosen supports.

This recalculation finds the solution that comes closest to satisfying the constraints using only the chosen

supports. The assumption is that the variables having the largest magnitudes in the original solution are the

most important and will give a solution that has the smallest relative squared error.

The maxFS -based algorithms provide a different way of choosing a limited number of supports. These

methods choose supports in a sequence, each time choosing the candidate variable that most reduces some

elastic evaluation measure. Thus we can simply choose the first sl supports returned by one of these methods,

and then carry out the recalculation of values as described above. This should be faster since the solution

process is truncated.

An experiment was conducted to test the selection of supports using the order of their return by a maxFS -

based algorithm. Given a k-sparse input vector, an upper limit of sl = k/2 supports was imposed, for k

ranging from 62 to 98, with a constraint error delta of zero and 10 trials for each method at each value

of k. The other conditions are as described in Section 4.1. Methods compared include (i) a random selection

of sl supports, (ii) the sl largest magnitude variables returned by the BP solution, and (iii) maxFS -based

methods JP, B and C, with supports chosen in sequence with list lengths 1 and 7. Method M1 is omitted

because the maxFS -based sequences will be identical with those for method B. Method A is omitted due

to its previous poor results. The random selection method is included to give an idea of the relative scale

of improvement provided by the other methods. No method is post-processed; there is no point with the

maxFS -based methods since the number of supports is limited to less than the actual number in the input

vector, and the selection of the largest elements makes this unnecessary in BP.
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Note that in all experiments, the number of constraints not satisfied by a solution (by any method) is

equal to 128− sl. This is a property of the random A matrices (of size 128× 256).

The average relative squared errors are summarized in Table 7. The best results at each input sparsity

at each list length are shown in boldface. Comparing to Table 5 we see that the relative squared errors are

smaller in almost every case for the support-limited approach than for the constraint error delta approach,

and with fewer supports (compare to Table 4). This suggests that limiting the number of supports may

provide better denoising than allowing a nonzero equation delta.

Which method performs best depends on the input k-sparsity. At lower values (up to say input k = 78

or 0.61m) the maxFS -based methods (JP, B, C) provide lower errors than BP, but the situation reverses at

higher input sparsities. This breakpoint corresponds with the input sparsity beyond which the maxFS -based

methods do not reliably recover the exact input solution. As expected, random selection of sl supports

provides terrible results.

Solution times are summarized in Table 8. Times are generally less than those for equation error delta 0.1.

This is mainly due to the omission of post-processing, and partly due to the earlier termination of the

solution process.

In conclusion it appears that limiting the supports generally gives sparser solutions, with lower relative

squared errors, in less computation time as compared to using equation error deltas. The maxFS -based

methods are preferred up to about k/m = 0.61 (method B has the lowest average in this range), with

selection of the sl largest magnitude BP+ supports thereafter.

5 Experiments: General linear systems

Sparse solutions for general linear systems that include inequalities and variable bounds are useful, e.g. for

sparse portfolio selection where the risk is linearized (Kremer et al 2017), and classifier feature selection

(Fung and Mangasarian 2004). The algorithms described previously can be modified to handle this case as

well. One modification for simplicity is to limit the list of candidate zero-valued variables by eliminating

from consideration variables that must be supports due to their bounds, e.g. x≥1.

Table 7: Average relative squared error for limited supports.

List Length 1 List Length 7

k sl random BP JP B C random BP JP B C

62 31 1.440 0.125 0.108 0.108 0.108 1.281 0.199 0.143 0.137 0.143
64 32 1.357 0.156 0.120 0.120 0.120 1.328 0.181 0.136 0.128 0.136
66 33 1.293 0.165 0.122 0.126 0.122 1.365 0.132 0.113 0.111 0.113
68 34 1.381 0.132 0.117 0.122 0.117 1.309 0.149 0.143 0.140 0.143
70 35 1.281 0.275 0.289 0.307 0.289 1.378 0.199 0.216 0.212 0.216
72 36 1.439 0.181 0.156 0.163 0.156 1.401 0.169 0.140 0.117 0.140
74 37 1.485 0.252 0.296 0.259 0.296 1.446 0.274 0.303 0.257 0.303
76 38 1.300 0.295 0.311 0.249 0.311 1.316 0.277 0.341 0.306 0.341
78 39 1.348 0.233 0.266 0.221 0.266 1.468 0.209 0.269 0.218 0.269
80 40 1.384 0.279 0.338 0.270 0.338 1.388 0.231 0.333 0.303 0.333
82 41 1.549 0.326 0.453 0.370 0.453 1.383 0.351 0.418 0.359 0.418
84 42 1.476 0.320 0.466 0.395 0.466 1.388 0.360 0.405 0.400 0.405
86 43 1.545 0.295 0.376 0.403 0.376 1.550 0.353 0.542 0.507 0.542
88 44 1.610 0.323 0.481 0.423 0.481 1.449 0.412 0.625 0.514 0.625
90 45 1.529 0.358 0.629 0.582 0.629 1.657 0.425 0.545 0.513 0.545
92 46 1.576 0.379 0.572 0.471 0.572 1.494 0.389 0.662 0.605 0.662
94 47 1.540 0.383 0.581 0.476 0.581 1.624 0.520 0.865 0.785 0.865
96 48 1.470 0.395 0.609 0.575 0.609 1.507 0.448 0.755 0.670 0.755
98 49 1.553 0.509 0.846 0.798 0.846 1.515 0.438 0.793 0.683 0.793

avg 1.450 0.283 0.376 0.339 0.376 1.434 0.301 0.408 0.367 0.408
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Table 8: Average solution times (seconds) for limited supports.

List Length 1 List Length 7

k sl random BP JP B C random BP JP B C

62 31 0.0 0.1 1.8 1.8 3.5 0.0 0.1 11.7 12.0 23.0
64 32 0.0 0.1 1.8 1.8 3.5 0.0 0.1 12.3 12.5 24.1
66 33 0.0 0.1 1.9 1.9 3.7 0.0 0.1 12.8 13.0 25.1
68 34 0.0 0.1 1.9 2.0 3.7 0.0 0.1 12.8 13.2 25.0
70 35 0.0 0.1 1.9 2.0 3.7 0.0 0.1 13.1 13.3 25.2
72 36 0.0 0.1 2.0 2.1 3.9 0.0 0.1 13.6 13.9 26.3
74 37 0.0 0.1 2.1 2.1 4.0 0.0 0.1 14.0 14.3 27.7
76 38 0.0 0.1 2.1 2.1 4.0 0.0 0.1 14.1 14.4 27.4
78 39 0.0 0.1 2.1 2.2 4.1 0.0 0.1 14.4 14.8 28.2
80 40 0.0 0.1 2.2 2.2 4.3 0.0 0.1 14.8 15.1 28.5
82 41 0.0 0.1 2.2 2.3 4.3 0.0 0.1 14.8 15.2 28.6
84 42 0.0 0.1 2.3 2.4 4.5 0.0 0.1 15.2 15.4 29.3
86 43 0.0 0.1 2.3 2.4 4.4 0.0 0.1 15.6 16.3 30.8
88 44 0.0 0.1 2.4 2.5 4.6 0.0 0.1 16.9 17.1 32.4
90 45 0.0 0.1 2.5 2.6 4.7 0.0 0.1 16.3 16.7 31.7
92 46 0.0 0.1 2.5 2.6 4.8 0.0 0.1 16.6 17.2 32.2
94 47 0.0 0.1 2.5 2.6 4.9 0.0 0.1 16.9 17.3 32.8
96 48 0.0 0.1 2.5 2.6 4.9 0.0 0.1 17.2 17.7 33.2
98 49 0.0 0.1 2.6 2.7 5.0 0.0 0.1 17.5 18.1 34.1

avg 0.0 0.1 2.2 2.3 4.2 0.0 0.1 14.8 15.1 28.7

We tested the following algorithms:

MILP. This is a standard mixed-integer linear program that seeks to minimize the number of supports. As

noted in previous work (e.g. Jokar and Pfetsch (2018)), the “big-M” formulation causes too many solution

failures to be useful. Results are omitted for this reason.

genLP. Solve the LP with no objective function, which in MOSEK stops at the first feasible solution found.

Count the number of supports.

genBP. Like Basis Pursuit, minimize the sum of the absolute values of the potential zero variables using the

standard change of variables. Count the number of supports.

GenJP, GenA, GenB, GenC. The general linear system version of the corresponding maxFS -based algorithms

described earlier. Changes to the earlier algorithms include:

1. Handling bounded variables. (i) Some variables must be supports due to bounds that restrict them to

nonzero values; genA omits zeroing constraints for these, and the other methods omit them from the

objective function. (ii) For elastic minimization, nonnegative variables have an objective weight of 1.0,

nonpositive variables have a weight of −1.0, and variables that span zero are split into two nonnegative

variables via the change of variables xj = uj − vj where both uj and vj have objective weights of 1.0.

2. All methods output a fall-back result if the main method times-out, or fails, or produces a result that

is worse than the fall-back. The fall-back for GenA is the result from the single initial non-elastic LP

solution (i.e. genLP). The fall-back for GenJP, GenB, and GenC is the solution having the smallest

number of supports at any intermediate elastic solution.

Post-processing. This has two stages. The first stage solves the LP with all non-supports forced to zero

and with no objective function (this simply checks feasibility); if any support variables are equal to zero in

the solution they are removed from the support set. In the second stage, variables are forced to zero one by

one and if the LP has a feasible solution with the reduced set of supports, the variable is removed from the

support set permanently. The output of stage 1 is the input to stage 2.
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5.1 Experiments

The test set consists of the LP models in the Netlib (2018) repository and some larger models from the

kennington set at the ZIB (2018) repository, for a total of 114 models (the Netlib forplan model is omitted

due to difficulties in reading the file). Table 9 summarizes some overall statistics for the models (since these

are linear programs, the statistics include the objective row and nonzeros). Total time for any solution is

limited to 3600 seconds for the base algorithm plus post-processing.

Table 9: General linear system statistics.

average median maximum

Variables 12,535.8 1,595.5 232,966.0
Rows 3,696.2 621.5 105,127.0
Nonzeros 61,047.1 8,214.0 1,630,758.0

There are 12 models which have zero supports; this solution is returned by all of the methods. There are

an additional 15 models for which all methods return the same non-zero number of supports. GenLP fails on

one very large model. No maxFS -based run fails completely due to the availability of the fall-back solutions.

Table 10 summarizes the results. Given the failure of the exact MILP algorithm, we can only evaluate

relative performance. We compare the result found for each method to the fewest supports returned by any

method for a given input model. Of the individual methods, genJP with unlimited list length finds the fewest

supports the most often (65 of 114 models), and with list length 1 finds the largest number of unique minima.

GenJP with list length 1 has the lowest average difference from the fewest supports (6.8). The best result in

each column is shown in boldface.

Multiple methods can be run concurrently on a multi-core machine. One promising combination of

methods is to run genJP at all 3 list lengths and take the best result (“best of genJP”): this returns the

fewest supports for 89 of 114 models (78%) and has a significantly lower average difference from fewest

supports (1.2). It also finds 15 unique minima if it replaces the 3 list lengths.

Table 10: Overall results for general LPs.

Times fewest
of 114

Unique
minima

Avg diff from
fewest supports

Largest diff from
fewest supports

Total solution
time (hrs)

genLP 37 0 210.4 12819 3.2
genBP 42 1 96.2 3149 2.4

genJP
LL 1 60 5 6.8 315 8.3
LL 7 61 4 22.3 770 15.4
unlim 65 3 73.2 2201 41.5

best of genJP 89 15 1.2 29 41.5

genA
LL 1 38 1 218.4 12819 9.1
LL 7 38 0 226.0 12819 13.4
unlim 53 0 267.7 12819 43.9

genB
LL 1 57 0 25.0 1342 8.5
LL 7 58 1 37.3 1128 16.1
unlim 60 1 107.9 3816 42.2

genC
LL 1 57 0 29.2 1448 8.9
LL 7 56 0 57.6 3361 17.3
unlim 58 1 142.2 3807 60.3

Table 10 also shows the solution time totalled over the 114 solutions. GenLP and genBP are very fast

since they require the solution of a single LP. For the other methods, as the list length increases, so does

the solution time. The total solution time for “best of genJP” is the sum of the maximum solution times for

each model over the 3 list lengths. Table 11 gives information on the number of time-outs, which impacts

the total solution time. The number of time-outs increases with the list length, as expected.
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GenLP times out on 1 model (and has no fall-back solution), while genBP succeeds for all models. Table 11

gives the exit status for the maxFS -based methods. The maxFS column gives the number of models for which

the maxFS -based main algorithm returns the solution, while the fall-back column gives the number of models

for which the fall-back method returns the solution. The two columns in italics show the number of time-outs

and subproblem failures: these events lead to fall-back solutions as also happens when the fall-back solution

cardinality is smaller than the cardinality of the solution found by the maxFS -based main algorithm. The

main maxFS -based algorithm is rarely successful for genA: the fall-back genLP solution is usually better.

The two genA failures are due to the inability to build the models in Matlab (it builds a dense matrix model

before sparsifying it).

Table 11: Exit status for general LPs.

MaxFS Fall-back Time-out
Subprob.
failure

genJP
LL 1 61 53 5 1
LL 7 55 59 12 1
unlim 47 67 34 1

genA
LL 1 19 95 4 2
LL 7 20 94 9 2
unlim 31 83 37 2

genB
LL 1 54 60 5 1
LL 7 54 60 12 1
unlim 42 72 35 1

genC
LL 1 54 60 6 1
LL 7 53 61 15 1
unlim 27 87 59 0

Table 12 shows the results of post-processing the general LPs. The “models” column shows the number of

models which did not time out when running the main heuristic, thus allowing the post-processing routines

to run. The remaining columns give the fraction of the outcomes in each category over the number of

models indicated. “Stage 1 (2)” success indicates that the first (second) post-processing stage provides

the improved output solution. There are a small number of failures in which the post-processing routine

initial LP determines that the input set of supports does not allow a feasible solution, though this same set

was verified before output from the main algorithm: this is due to minor tolerance differences or accumulated

numerical errors. Post-processing is generally quite fast unless the input support set is very large. Stage 2 of

post-processing is much more successful than stage 1.

Table 12: Post-processing results for general LPs.

Models Stage 2 Stage 1
No

improvement
Failure Time out

genLP 113 0.593 0.044 0.336 0.018 0.018
genBP 114 0.553 0.105 0.325 0.009 0.009

genJP
LL 1 109 0.321 0.055 0.578 0.046 0.000
LL 7 102 0.265 0.069 0.627 0.039 0.000
LL unlim 80 0.150 0.063 0.763 0.025 0.000

genA
LL 1 110 0.555 0.082 0.336 0.018 0.009
LL 7 105 0.562 0.086 0.324 0.019 0.010
LL unlim 77 0.273 0.052 0.649 0.026 0.000

genB
LL 1 109 0.422 0.037 0.514 0.028 0.000
LL 7 102 0.412 0.039 0.520 0.029 0.000
LL unlim 79 0.304 0.063 0.608 0.025 0.000

genC
LL 1 108 0.417 0.037 0.519 0.028 0.000
LL 7 99 0.424 0.040 0.505 0.030 0.000
LL unlim 55 0.291 0.055 0.636 0.018 0.000

Method genJP is a little better overall than methods genB and genC for finding sparse solutions to

general LPs. The “best of genJP” is markedly better. GenA returns much worse results than all other

methods.
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6 Discussion

In the compressed sensing scenario (underdetermined systems of linear equations in unbounded variables,

with dense random A matrices) the best methods for exact recovery of sparse input vectors are B+ and M1+,

which provide exact recovery with high probability up to 0.55m at list length 1, at the lowest relative squared

errors. M1+ continues to provide the smallest relative squared errors beyond that point as well. Both methods

require significantly more solution time that Basis Pursuit.

For approximate solutions in the compressed sensing scenario by allowing a constraint error delta,

methods B+ and M1+ are again the best in terms of compression and relative error delta, though all of

the maxFS -based methods (with the exception of A+) do well. The list length makes relatively little differ-

ence. When limiting the number of supports, the best results are given by relying on the sequence of supports

returned by the maxFS -based methods JP, B, and C at lower input sparsities (up to say input sparsity 0.61m),

but BP+ is better at higher values of k-sparsity. Limiting the supports generally gives sparser solutions, with

lower relative squared errors, in less computation time as compared to using constraint error deltas.

For general linear systems that include inequalities and variable bounds, and whose A matrices are

usually sparse, the maxFS -based genJP formulation returns the smallest cardinality solutions on average at

list length 1 and records the most minimum-cardinality solutions when the list length is unlimited. The best

results are given by running all three list lengths of genJP concurrently.

There are several interesting observations from the experiments:

• Formulations for a maxFS -based approach to the sparse solutions problem can use constraint-based

evaluations (minimizing elastic variables on the constraints) or variable-based evaluations (elastic vari-

ables on explicit variable zeroing constraints, or minimizing variable magnitudes). As the experimental

results show, variable-based evaluations are far superior. Methods A and genA use constraint-oriented

evaluations and provide far worse results than all of the other maxFS-based methods.

• In the compressed sensing scenario:

– All of the maxFS -based methods (except A+) give better sparse solution recovery than Basis

Pursuit, and are able to do so at higher k/m ratios. The drawback is longer solution times.

– Limiting the number of supports based on the order that they are selected in a maxFS -based

algorithm gives greater compression at lower relative squared error in less computation time than

allowing a constraint error delta. This may indicate that limiting the supports in this way is a

better option for denoising.

7 Conclusions

This paper examines the use of maxFS -based algorithms for finding sparse solutions to linear systems under

several scenarios: (i) underdetermined linear systems of equations in unbounded variables with random

matrices as seen in compressed sensing applications, including approximate solutions obtained by allowing

constraint equation errors and limiting the number of supports, and (ii) general linear systems including

inequalities and bounded variables. Experimental results show that the maxFS approach provides very

good results.

The main contributions are:

• Several new and effective maxFS -based methods for finding sparse solutions of linear systems.

• Two of the new methods (B+ and M1+ at list length 1) allow greater compression of the transmitted

signal in the compressed sensing scenario.

• A new method with potential for improved denoising in compressed sensing: limiting the number of

supports by using the order in which they are found by a maxFS -based method.

• The first methods specifically developed for general linear systems.
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• The observation and experimental confirmation that variable-based subproblem evaluations are much

more effective than constraint-based evaluations (e.g. the sum of the constraint elastic variables) in the

maxFS -based methods for finding sparse solutions.

There is wide scope for future research, including:

• Exploring other maxFS -based formulations and methods. The wide variety of formulation options holds

out hope that even better methods await discovery.

• Finding ways to determine the best parameter values for approximate solutions in the compressed

sensing scenario. What is the best equation error delta to use? Use absolute error or relative error?

Use a capped relative error? What is the best upper limit on the number of supports?

• Multiple methods can be run simultaneously on multi-core machines. What is the most effective

combination of methods to run in each of the scenarios studied?
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