
Les Cahiers du GERAD ISSN: 0711–2440

A parallel algorithm using VNS with shared
memory and message passing interface for
community detection in complex networks

E. Camby, G. Caporossi,
S. Perron

G–2018–04

February 2018

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis à des revues avec comité de révision. Lorsqu’un
document est accepté et publié, le pdf original est retiré si c’est
nécessaire et un lien vers l’article publié est ajouté.

Citation suggérée: Camby, Eglantine; Caporossi, Gilles; Perron, Sylvain
(Février 2018). A parallel algorithm using VNS with shared memory
and message passing interface for community detection in complex
networks, Rapport technique, Les Cahiers du GERAD G-2018-04,
GERAD, HEC Montréal, Canada.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2018-04) afin de mettre à jour
vos données de référence, s’il a été publié dans une revue scientifique.

The series Les Cahiers du GERAD consists of working papers carried
out by our members. Most of these pre-prints have been submitted to
peer-reviewed journals. When accepted and published, if necessary, the
original pdf is removed and a link to the published article is added.

Suggested citation: Camby, Eglantine; Caporossi, Gilles; Perron,
Sylvain (February 2018). A parallel algorithm using VNS with shared
memory and message passing interface for community detection in
complex networks, Technical report, Les Cahiers du GERAD G-2018-04,
GERAD, HEC Montréal, Canada.

Before citing this technical report, please visit our website (https://
www.gerad.ca/en/papers/G-2018-04) to update your reference data,
if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce au
soutien de HEC Montréal, Polytechnique Montréal, Université McGill,
Université du Québec à Montréal, ainsi que du Fonds de recherche du
Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2018
– Bibliothèque et Archives Canada, 2018

The publication of these research reports is made possible thanks to the
support of HEC Montréal, Polytechnique Montréal, McGill University,
Université du Québec à Montréal, as well as the Fonds de recherche du
Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2018
– Library and Archives Canada, 2018

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2018-04
https://www.gerad.ca/en/papers/G-2018-04
https://www.gerad.ca/en/papers/G-2018-04




A parallel algorithm using VNS with shared memory and mes-
sage passing interface for community detection in complex
networks

Eglantine Camby a,b,c

Gilles Caporossi b

Sylvain Perron b

a Université libre de Bruxelles, 1050 Brussels, Belgium

b GERAD & HEC Montréal, Montréal (Québec),
Canada, H3T 2A7

c INOCS, INRIA Lille Nord-Europe, 59650 Villeneuve
d’Ascq, France

ecamby@ulb.ac.be

gilles.caporossi@hec.ca

sylvain.perron@hec.ca

February 2018
Les Cahiers du GERAD
G–2018–04
Copyright c© 2018 GERAD, Camby, Caporossi, Perron

Les textes publiés dans la série des rapports de recherche Les Cahiers du
GERAD n’engagent que la responsabilité de leurs auteurs. Les auteurs
conservent leur droit d’auteur et leurs droits moraux sur leurs publica-
tions et les utilisateurs s’engagent à reconnâıtre et respecter les exigences
légales associées à ces droits. Ainsi, les utilisateurs:
• Peuvent télécharger et imprimer une copie de toute publication

du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une ac-
tivité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publication.
Si vous pensez que ce document enfreint le droit d’auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
l’accès au travail et enquêterons sur votre demande.

The authors are exclusively responsible for the content of their research
papers published in the series Les Cahiers du GERAD. Copyright and
moral rights for the publications are retained by the authors and the users
must commit themselves to recognize and abide the legal requirements
associated with these rights. Thus, users:
• May download and print one copy of any publication from the

public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.



ii G–2018–04 Les Cahiers du GERAD

Abstract: For the last decades, community detection is a well-studied problem because it has applications
in various fields. Variable Neighborhood Search (VNS) is an efficient metaheuristic for solving combinatorial
optimization problems. Naturally, it has been applied to community detection in networks. If parallel
algorithms exist for finding communities in networks and parallel implementations of VNS are designed for
a variety of problems, parallel VNS was not yet used for community detection. For this problem, we present
a parallel algorithm using VNS with shared memory and message passing interface. Numerical results are
encouraging.

Keywords: Parallel algorithm, variable neighborhood search, community detection and complex networks

Acknowledgments: This work was partially supported by a post-doc grant “Bourse d’Excellence
WBI.WORLD” from Fédération Wallonie-Bruxelles (Belgium) as well as NSERC and Foundation HEC
Montréal (Canada).



Les Cahiers du GERAD G–2018–04 1

1 Introduction

Community detection has been intensively studied in the last decades, regardless of the kind of networks:

the Internet, email networks, citation networks, the world wide web, software call graphs, transportation

networks, food webs, and social and biochemical networks [2, 6, 16, 17, 30, 32, 43]. In this paper, we investigate

the community detection in complex networks. This problem has been receiving a lot of attention [4, 13, 18,

22, 27, 31, 33, 38, 39, 40]. To learn more on the topic, we invite the reader to overview the survey conducted

by Fortunato [18].

A complex network is based on a graph G = (V,E) where V is the vertex (or node) set and E is the

edge (or arc) set. Usually, nodes represent people, articles, emails, molecules, . . . , objects in the network,

depending on its nature. Moreover, edges correspond to relations between some objects. A feasible solution

in community detection is a partition P = (Ci)
k
i=1 of the vertex set, i.e.,

k⋃
i=1

Ci = V and Ci ∩ Cj = ∅ ∀i, j.

We said that each Ci is a cluster, and corresponds to a community.

There is no unique definition for the concept of community in networks. Indeed, a community can be

defined by a property, like the community in a weak or strong sense [39], or by optimizing a specific function:

for instance, edge ratio [11], normalized cut [28] or modularity [36].

The latter is likely the well-known standard measure in community detection. The modularity of a

cluster compares the number of edges inside a cluster with the expected number of edges in the cluster if the

network were random with the same number of vertices and where each vertex keeps its degree, but edges are

randomly attached. The modularity of a partition is the sum of modularities of its clusters. More formally,

an equivalent definition of the modularity for a partition P is as follows:

1

2m

∑
C∈P

∑
i,j∈C

(
Ai,j −

didj
2m

)
,

where m is the number of edges, A is the adjacency matrix and di is the degree of the vertex i. Networks

with high modularity have dense connections between vertices within clusters but sparse connections between

vertex in distinct clusters. However, this measure has a resolution limit [19]: two clusters with all possible

edges inside and weakly interconnected would be merged by modularity optimization if the network were

sufficiently large whereas complete graphs represent the best identifiable communities. For this reason,

optimizing modularity in large networks would fail to resolve small communities, even when they are well

defined. This bias [25] is inevitable for modularity optimization. In spite of its lack of resolution, modularity

remains the reference in terms of community detection.

Several authors [3, 7, 9, 11, 13, 22, 27, 31, 33, 38, 40, 41] proposed different kinds of algorithms for

the community detection problem, according to their proper definition of community. Using the Variable

Neighborhood Search (VNS) [12, 24, 29], Aloise, et al. [3] designed a successful algorithm for this problem.

However, to the best of our knowledge, no parallel VNS implementation was proposed for community detection

in networks, even if parallel VNS was already used for data clustering [14, 21, 37] or other combinatorial

optimization problems [15]. Moreover, even if parallel algorithms [5, 20, 42] were designed for the community

detection problem, none of them implements VNS and the goal of this paper is to fill this gap.

The paper is organized as follows. In the next section, we describe the parallel algorithm which uses

the Variable Neighborhood Search approach. In Section 3, we explain how the parallelization works on the

algorithm while numerical results are presented in Section 4. Finally, the last section concludes the paper

with some further remarks.



2 G–2018–04 Les Cahiers du GERAD

2 Algorithm

The present algorithm is based on the Variable Neighborhood Search (VNS) approach. VNS [24, 29] is a

metaheuristic method for solving combinatorial optimization and global optimization problems. This method

has two main steps : finding a local optimum according to transformations and perturbating the neighborhood

to get out the corresponding valley. We use a routine called Variable Neighborhood Descent (V ND) for the

first part of the algorithm, and a perturbation scheme called PERTURB for the second part. As it is often

the case in combinatorial optimization, both the V ND and PERTURB algorithms are based upon the

concept of neighborhood which is defined as follows :

Definition 1 The neighborhood N t(S) of the solution S with regard to the transformation t is the set of

solutions that may be obtained from S by applying t.

By abuse of language, we use equivalently words neighborhood and transformation since they are closely

related.

In the context of community detection, the following neighborhoods (or transformations) were used :

• Move one node from its cluster to another cluster from its neighbors.

• Merge two clusters into a single one.

• Split one cluster into two new ones.

• Redispatch two clusters, i.e., merge two clusters sharing at least one edge and split the newly formed

cluster.

Note that if the move transformation could theoretically allow any solution to be reached from any other

solution, this would likely be very time consuming since each step only involves a very small transformation

of the solution. The other transformations have a more important impact on the solution but none of them

could be used alone to find the best solution. Indeed, the merge transformation reduces the number of

clusters by 1, the split one increases this number by 1 and redispatch, which is a combination of both, keeps

the number of clusters. An efficient algorithm for finding a good solution would likely need more than one

of those transformations.

If move and merge are straightforward to explore and require few CPU time at each step, split and

redispatch require a combinatorial optimization problem to be solved, which is not efficient in practice. For

this reason, it was decided that a heuristic is applied. Namely, the split part is done by (i) choosing one edge

whose extremities n1 and n2 are both in the concerned cluster c, (ii) assigning n1 to cluster c1 and n2 to
cluster c2, then (iii) assigning each node n of c to c1 or c2 depending if n is closer to n1 or n2 (and randomly

in case of ties).

2.1 Variable Neighborhood Descent

First of all, we define Algorithm 1 to obtain a local search associated to one transformation. The goal of this

routine is successively to apply a transformation t in order to improve the current solution.

Algorithm 1: LocalSearch
Input: S an initial partition of V
Input: N t a given transformation
Output: S? a local optimum according to N t

Let imp← true
Let S? ← S
while imp = true do

imp← false
for each S′ ∈ N t(S?) do

if S′ better than S? then
S? ← S′

imp← true.

return S?



Les Cahiers du GERAD G–2018–04 3

The Variable Neighborhood Descent is described from [12] by Algorithm 2. It relies upon a series of local

search algorithms that are applied sequentially until none of them improves the solution.

Algorithm 2: VND
Input: S an initial partition of V
Input: N t given transformations for t = 1, . . . , T
Output: S? a local optimum according to N t, t = 1, . . . , T
Let imp← true
Let S? ← S
while imp = true do

imp← false
for t = 1, . . . , T do

S′ ← LocalSearch(S?,N t)
if S′ better than S? then

S? ← S′

imp← true

return S?

2.2 Perturbation scheme

According to the VNS rules, a perturbation should have a magnitude corresponding to the value of a param-

eter k. Algorithm 3 illustrates the magnitude of the perturbation.

Algorithm 3: PERTURB(k)

Input: k the magnitude of the perturbation
Input: S an initial partition of V
Output: S? the resulting partition from S after the perturbation of magnitude k
Let S? ← S
repete k times

Randomly apply to S? redispatch to two clusters sharing at least one edge.

return S?

2.3 The Variable Neighborhood Search algorithm

The main routine is based upon the Variable Neighborhood Search [12] which is described by Algorithm 4.

After VND was applied, one could just expect a local optimum to be found. Improving further to better

Algorithm 4: VNS
Input: S an initial partition of V
Input: kmax the maximum value of the magnitude
Output: S? a local optimum
Let S? ← S
Let k ← 1
repete

S′ ← PERTURB(S?, k),
S′′ ← V ND(S′).
if S′′ better than S? then

S? ← S′′,
k ← 1.

else
k ← k + 1.
if k > kmax then

let k ← 1.

until stopping condition;
return S?.

solutions thus implies to leave the current local optimum. The VNS algorithm then suggests to apply a

perturbation (i.e., to shake the solution). At first, a small perturbation is applied, and if improving the



4 G–2018–04 Les Cahiers du GERAD

solution was not observed after a subsequent VND, the magnitude of that perturbation is increased. Since

applying a perturbation that is too large would destroy the structure of the current solution, the maximum

magnitude of a perturbation should be limited. Otherwise, the perturbation would behave like a random

solution which implies a waste of time before getting again to a reasonable quality solution.

3 Parallel implementation

Foremost, notice that the stopping cirterion is the CPU time. Then, parallelization may occur at two different

places in the VNS algorithm and each of them involves a completely different underlying principle.

(a) VND Parallelization: The VND routine involves a list of neighborhoods to use for the local search.

Again, these searches may be done simultaneously. With no need to wait for one local search to finish

before trying another one may improve the efficiency of the algorithm. This parallelization clearly

involves a collaborative search in order to improve a single current solution.

(b) VNS Parallelization: The main loop of Algorithm 4 (repete until stopping criterion) is achieved

successively for various perturbed solutions. It is easy to apply more than a single search at each time,

which may also improve the overall efficiency of the algorithm. The goal of this parallelization is to

search various regions of the solution space.

According to the goal associated to each of the parallelizations, it was decided that the different threads

involved in the VND parallelization (a) work on a single solution and therefore use shared memory on the

same computer to reduce the communication delay over the network. On the reverse, the VNS parallelization

(b) involves few communication as only the best known solution needs to be shared between successive VND

searches. Shared memory would not help much in this context and an Message Passing Interface (MPI)

implementation was chosen, which allows the use of various computers in a network.

While no synchronization is required for the VNS parallelization, the situation is clearly different for the

VND. Namely, the various local searches involved in VND do not require the same time to be achieved and

we want that these searches are collaborative, i.e., when one local search modifies the current solution, then

all the others should benefit from this improvement. For this reason, it was decided to randomize these local

searches by applying them to a random node in the case of move or to random clusters in cases of split, merge

or redispatch. In all cases, it is difficult to know whether a local optimum was found or not. Accordingly,

a threshold time is used. Each local search is then applied for a certain amount of time after which the

obtained solution is compared to the best known solution.

The initial solution used for the tests yields
√
n clusters, where n is the total number of nodes in the

network. Technically, one node is chosen at random for each cluster and the other nodes are assigned to the

closest cluster according to the geodesic distance.

4 Numerical results

The algorithm was applied to the modularity maximization problem [36], even if no routine of the algorithm

is specifically designed for this problem. One should then expect that other heuristics may perform better

in this special case. However, the main goal of this paper is not to propose a specific algorithm for mod-

ularity maximization, but to test the efficiency of the parallelization for the VNS algorithm in the context

of community detection in networks. Instead of our local searches, local searches specific for the modularity

optimization may be applied, for instance LPAm [7], LPAm+ [26], or Blondel [9].

All the tests were done on computers equipped with i7-3930K/3.2GHz processors with 32 Gb RAM running

linux except tests on 3 computers for which the third computer was equipped with a Xeon W3690/3.47GHz

processor and 24Gb RAM. All the tests were applied with a threshold time of 1
12 of the CPU time allowed to

each process, so that even in the sequential treatment, each transformation used is applied at least 3 times.



Les Cahiers du GERAD G–2018–04 5

4.1 Sequential treatments

In order to ensure the efficiency of the parallel algorithm, all the sequential variants of the VND were

implemented and ran 5 times on one dataset (email [23]) which is neither large nor easy. As such, it is a

good candidate for evaluating the performance of the algorithm.

The average results for each combination are presented on Table 1 (k represents the move transformation,

r redispatch, s split and m merge). The column sequence indicates the transformations used and the order in

which they were applied. The column avg Q indicates the average modularity of the obtained solutions and

the column avg M gives the average number of the resulting clusters.

Table 1: Results obtained on the email dataset according to the specific sequence of transformations.

Sequence Avg Q Avg M Sequence Avg Q Avg M

krms 0.5331144 21.4 rkms 0.5570734 35
krsm 0.5436980 21.6 rksm 0.5583908 34.6
kmrs 0.5259654 20.6 rmks 0.5618820 34.6
kmsr 0.5344604 20 rmsk 0.5601560 35
ksrm 0.5385528 21.2 rskm 0.5599074 35
ksmr 0.5429212 19.8 rsmk 0.5582694 34.6

mkrs 0.3336808 7.6 skrm 0.3100030 66.4
mksr 0.3482818 7.4 skmr 0.3029860 67.6
mrks 0.3595042 7.6 srkm 0.3065090 68.6
mrsk 0.3738932 7.4 srmk 0.2872020 67
mskr 0.3663708 7.8 smkr 0.3087834 66.4
msrk 0.3305418 7.4 smrk 0.3012088 64.2

krm 0.5394936 21 rkm 0.5611878 35
krs 0.5367700 21.6 rks 0.5585546 35
kmr 0.5330780 21.4 rmk 0.5604382 35
kms 0.5374776 19.8 rms 0.5584852 35
ksr 0.5415092 21.6 rsk 0.5597448 35
ksm 0.5437150 20.4 rsm 0.5580760 34.6

mkr 0.3485654 7.4 skr 0.3062478 67.4
mks 0.3480930 7.6 skm 0.3114778 66.8
mrk 0.3492632 7.4 srk 0.2933530 68.8
mrs 0.3590250 6.8 srm 0.3118240 67.8
msk 0.3528762 7.4 smk 0.3064486 68.2
msr 0.3231858 6.8 smr 0.2976148 71.8

kr 0.5302394 21.4 rk 0.5592488 34.6
km 0.5268996 22.8 rm 0.5613172 35
ks 0.5403116 21.2 rs 0.5596802 34.6

mk 0.3332574 6.2 sk 0.2992462 71
mr 0.3523118 7.4 sm 0.2941366 69.8
ms 0.3521740 7.4 sr 0.2971450 67.4

k 0.5354100 22.2 r 0.5590738 35
m 0.3419090 7.2 s 0.3056708 65

It is clear from Table 1 that the sequence has a significant impact on the obtained solution. For instance,

the sequences starting by the split transformation have poor results and a large number of clusters. On

the reverse, those starting by the merge transformation have less clusters, with poor results also. The best

solutions are obtained by sequences starting by the redispatch transformation slightly followed by sequences

starting by the move transformation. We notice that from the 320 runs achieved for these tests, no solution

with a modularity higher than 0.569 was found.

4.2 Parallel treatments

Various configurations were tested involving 1, 2 or 3 workers (i.e., different machines connected through

MPI) for the VNS parallelization, each worker running on 4 or 8 threads for the VND collaborative with

shared memory parallelization. The allowed CPU time was divided by the total number of threads running



6 G–2018–04 Les Cahiers du GERAD

to solve the problem. For example, in the case of the email dataset, 180 seconds were allowed, which means

that if the test was achieved on 3 workers with 8 threads each, the CPU time for each job was limited to

7.5 seconds. In all cases, a separate machine running a single thread was used for synchronization purpose,

i.e., sending and receiving the best known solution to share through the message passing interface. Each

configuration was tested 10 times on different classical networks from the literature. A first set of instances

consists in moderate-size networks which were run for 180 seconds, and another set consists in larger-size

networks that were run for 900 seconds. Table 2 and Table 3 present results from these tests. Observe that

avg Q is the average of the modularity and avg M is the average of the number of clusters. Moreover, the

time column indicates the real time needed for the optimization, i.e., total CPU time divided by the total

number of threads.

We first notice that, looking at results from the email dataset, the worst obtained solution from all the

parallel runs has a modularity above 0.573, which is larger than the best from all the sequential runs (0.569),

even if the cumulative CPU time was larger in this last case (240 seconds vs 180 seconds).

Table 2: Results obtained on moderate-size networks according to the parallelization strategy with a cumulative CPU time limited
to 180 seconds. The value Avg Q indicated on the first line is that of Aloise et al. [3] (180 seconds CPU time).

Networks # Nodes # Arcs # Workers # Threads Avg Q Avg M Time

email 1 133 5 451 – – 0.582636 – –
1 4 0.576820 11.2 45
1 8 0.577795 11.1 22.5
2 4 0.579675 11.2 22.5
2 8 0.577207 11.5 11.25
3 4 0.580178 11 15
3 8 0.578341 10.8 7.5

polblogs [1] 1 490 16 715 – – 0.427105 – –
1 4 0.427079 12 45
1 8 0.427071 12.1 22.5
2 4 0.427085 12 22.5
2 8 0.427071 12 11.25
3 4 0.427084 12 15
3 8 0.427079 12 7.5

netscience [35] 1 589 2 742 – – 0.95990 – –
1 4 0.959799 279 45
1 8 0.959749 279 22.5
2 4 0.959774 279 22.5
2 8 0.959824 279 11.25
3 4 0.959850 279 15
3 8 0.959875 279 7.5

power [44] 4 941 6 594 – – 0.940776 – –
1 4 0.940548 42.1 45
1 8 0.940741 41.8 22.5
2 4 0.940692 41.8 22.5
2 8 0.940715 41.8 11.25
3 4 0.940665 42.3 15
3 8 0.940545 42.5 7.5

Results from Table 2 and Table 3 show rather stable. However, for large-size networks (see Table 3), the

best values are mainly obtained when 4 threads are running on each worker. The quality of the obtained

solutions are slightly worse when the number of threads and workers increases, which is not surprising since

the total CPU time is split into the various simultaneous processes. Similar results then imply a direct

proportion of the number of threads and the speed of the optimization, which corresponds to a very small

overhead associated to the parallelization (except the extra worker assigned to the synchronization).

Our results are encouraging, looking on the time column in comparison to the regular VNS implementation

designed by Aloise et al. [3]. Most of the time, the results are the same, even if the algorithm in the present

paper is not designed specially for modularity maximization while the former used LPAM+[26] which is

obviously designed toward the modularity maximization.



Les Cahiers du GERAD G–2018–04 7

Table 3: Results obtained on large-size networks according to the parallelization strategy, with a cumulative CPU time limited to
900 seconds. The value Avg Q indicated on the first line is that of Aloise et al. [3] (1800 seconds CPU time).

Problem Nodes Arcs Workers Threads Avg Q Avg M Time

erdos02 [8] 6 927 11 850 – – – – –
1 4 0.711715 38.6 225
1 8 0.709719 38.9 112.5
2 4 0.712448 39.1 112.5
2 8 0.694226 70.4 56.25
3 4 0.711166 40.1 75
3 8 0.674474 80.7 37.5

hep-th [34] 8 361 15 751 – – 0.857601 – –
1 4 0.853785 627.7 225
1 8 0.852821 627.2 112.5
2 4 0.853874 626.7 112.5
2 8 0.812360 906.7 56.25
3 4 0.853320 627 75
3 8 0.770900 1200.2 37.5

pgp [10] 10 680 24 316 – – 0.885989 – –
1 4 0.884249 105.2 225
1 8 0.877263 124.6 112.5
2 4 0.884197 106.5 112.5
2 8 0.857665 121.8 56.25
3 4 0.883078 104.2 75
3 8 0.846114 107.7 37.5

5 Conclusion and future works

The proposed parallel algorithm seems to scale rather well, with a very small overhead due to the paralleliza-

tion. There are some explanations for that performance.

First, the VND parallelization corresponds to a collaboration between various complementary transfor-

mations to be used in the local searches. As soon as one of these transformations improves the solution, the

others take advantage of this improvement. Depending on the network or the current solution, one transfor-

mation or another may be needed. By allowing all the transformation to work simultaneously, the program

avoids the waste of time due to the tentative to apply a useless transformation. The same principle holds for

the VNS parallelization. When working on various zones of the solution space simultaneously, the impact of

a search in a bad region is shared by all the workers and the overall performance is increased.

Some further tests deserve to be achieved in order to know until which point the parallelization is worth.

Even if it patently helps, the gain obtained by parallelization seems to slightly decrease with the number of

workers and threads. An interesting issue to explore in the future is the design of transformations that are

well suited to collaborate.

Compared to the VNS implementation of Aloise et al., the results are impressive given the difference in

the resolution time. Furthermore, in their paper, Aloise et al. propose a decomposition scheme and use a

local search dedicated to the problem that were not implemented here.

We notice that both the VND and VNS parallel implementations respectively using shared memory and

MPI are efficient as well as their combination. Parallelization is clearly a direction for future research both

on the use of VNS and for community detection.

References

[1] L. A. Adamic and N. Glance. The political blogosphere and the 2004 u.s. election: Divided they blog. In
Proceedings of the 3rd International Workshop on Link Discovery, LinkKDD ’05, pages 36–43, New York, NY,
USA, 2005. ACM.

[2] R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Reviews of modern physics, 74(1):47,
2002.



8 G–2018–04 Les Cahiers du GERAD

[3] D. Aloise, G. Caporossi, P. Hansen, L. Liberti, S. Perron, and M. Ruiz. Modularity maximization in networks
by variable neighborhood search. Graph Partitioning and Graph Clustering, 588:113, 2012.

[4] A. Arenas and A. Diaz-Guilera. Synchronization and modularity in complex networks. The European Physical
Journal Special Topics, 143(1):19–25, 2007.

[5] S.-H. Bae, D. Halperin, J. D. West, M. Rosvall, and B. Howe. Scalable and efficient flow-based community
detection for large-scale graph analysis. ACM Trans. Knowl. Discov. Data, 11(3):32:1–32:30, March 2017.

[6] A.-L. Barabási. Network science. Cambridge university press, 2016.

[7] M. J. Barber and J. W. Clark. Detecting network communities by propagating labels under constraints. Physical
Review E, 80(2):026129, 2009.

[8] V. Batagelj and A. Mrvar. Pajek datasets. http://vlado.fmf.uni-lj.si/pub/networks/data/. Accessed:
2018-01-31.

[9] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E Lefebvre. Fast unfolding of communities in large networks.
Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008, 2008.

[10] M. Boguna, R. Pastor-Satorras, A. Diaz-Guilera, and A. Arenas. Models of social networks based on social
distance attachment. Phys. Rev. E, 70:056122, 2004.

[11] S. Cafieri, P. Hansen, and L. Liberti. Edge ratio and community structure in networks. Physical Review E,
81(2):026105, 2010.

[12] G. Caporossi, P. Hansen, and N. Mladenović. Variable neighborhood search. In P. Sarry, editor, Metaheuristics,
chapter 3, pages 77–98. Springer International Publishing, 2016.

[13] A. Clauset, M. Newman, and C. Moore. Finding community structure in very large networks. Physical review
E, 70(6):066111, 2004.

[14] T. G. Crainic, M. Gendreau, P. Hansen, and N. Mladenović. Cooperative parallel variable neighborhood search
for the p-median. Journal of Heuristics, 10(3):293–314, 2004.

[15] A. Djenić, N. Radojičić, M. Marić, and M. Mladenović. Parallel vns for bus terminal location problem. Applied
Soft Computing, 42:448–458, 2016.

[16] S. Dorogovtsev and J. Mendes. Evolution of networks: From biological nets to the Internet and WWW. OUP
Oxford, 2013.

[17] E. Estrada. The structure of complex networks: theory and applications. Oxford University Press, 2012.

[18] S. Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174, 2010.

[19] S. Fortunato and M. Barthélemy. Resolution limit in community detection. Proceedings of the National Academy
of Sciences, 104(1):36–41, 2007.

[20] P. Gagnon, G. Caporossi, and S. Perron. Parallel community detection methods for sparse complex networks.
In C. Cherifi, H. Cherifi, M. Karsai, and M. Musolesi, editors, Complex Networks & Their Applications VI.
COMPLEX NETWORKS 2017. Studies in Computational Intelligence, volume 689. Springer, Cham, 2018.

[21] F. Garćıa-López, B. Melián-Batista, J. A Moreno-Pérez, and J. M. Moreno-Vega. The parallel variable neigh-
borhood search for the p-median problem. Journal of Heuristics, 8(3):375–388, 2002.

[22] M. Girvan and M. Newman. Community structure in social and biological networks. Proceedings of the national
academy of sciences, 99(12):7821–7826, 2002.

[23] R. Guimera, L. Danon, A. Diaz-Guilera, F. Giralt, and A. Arenas. Self-similar community structure in a network
of human interactions. Phys. Rev. E, 68:065103, 2003.

[24] P. Hansen and N. Mladenović. Variable neighborhood search: Principles and applications. European Journal
of Operational Research, 130(3):449–467, 2001.

[25] J. M. Kumpula, J. Saramäki, K. Kaski, and J. Kertész. Limited resolution in complex network community
detection with potts model approach. The European Physical Journal B, 56(1):41–45, 2007.

[26] X. Liu and T. Murata. Advanced modularity-specialized label propagation algorithm for detecting communities
in networks. Physica A: Statistical Mechanics and its Applications, 389(7):1493–1500, 2010.

[27] S. Lozano, J. Duch, and A. Arenas. Analysis of large social datasets by community detection. The European
Physical Journal Special Topics, 143(1):257–259, 2007.

[28] S. Mancoridis, B. S. Mitchell, C. Rorres, Y.-F. Chen, and E. R. Gansner. Using automatic clustering to produce
high-level system organizations of source code. In IWPC, volume 98, pages 45–52. Citeseer, 1998.

[29] N. Mladenović and P. Hansen. Variable neighborhood search. Computers & Operations Research, 24(11):1097–
1100, 1997.

[30] M. Newman. The structure and function of complex networks. SIAM review, 45(2):167–256, 2003.

[31] M. Newman. Fast algorithm for detecting community structure in networks. Physical review E, 69(6):066133,
2004.

http://vlado.fmf.uni-lj.si/pub/networks/data/


Les Cahiers du GERAD G–2018–04 9

[32] M. Newman. Networks: an introduction. Oxford university press, 2010.

[33] M. Newman and M. Girvan. Finding and evaluating community structure in networks. Physical review E,
69(2):026113, 2004.

[34] M. E. J. Newman. The structure of scientific collaboration networks. Proc. Natl. Acad. Sci., pages 404–409,
2001.

[35] M. E. J. Newman. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E,
page 036104, 2006.

[36] M. E. J Newman. Modularity and community structure in networks. Proceedings of the National Academy of
Sciences, 103(23):8577–8582, 2006.

[37] J. A. M. Pérez, P. Hansen, and N. Mladenovic. Parallel variable neighborhood search. Citeseer, 2004.

[38] C. Pizzuti. Ga-net: A genetic algorithm for community detection in social networks. In International Conference
on Parallel Problem Solving from Nature, pages 1081–1090. Springer, 2008.

[39] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi. Defining and identifying communities in
networks. Proceedings of the National Academy of Sciences of the United States of America, 101(9):2658–2663,
2004.

[40] U. N. Raghavan, R. Albert, and S. Kumara. Near linear time algorithm to detect community structures in
large-scale networks. Physical review E, 76(3):036106, 2007.

[41] R. Santiago and L. C. Lamb. Efficient modularity density heuristics for large graphs. European Journal of
Operational Research, 258(3):844–865, 2017.

[42] C. L. Staudt and H. Meyerhenke. Engineering parallel algorithms for community detection in massive networks.
IEEE Transactions on Parallel and Distributed Systems, 27(1):171–184, 2016.

[43] S. H. Strogatz. Exploring complex networks. nature, 410(6825):268, 2001.

[44] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature, 393:440–442, 1998.


	Introduction
	Algorithm
	Variable Neighborhood Descent
	Perturbation scheme
	The Variable Neighborhood Search algorithm

	Parallel implementation
	Numerical results
	Sequential treatments
	Parallel treatments

	Conclusion and future works

