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Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2017-96) afin de mettre à jour
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Abstract: Let G be a graph of order n. The energy E(G) of a simple graph G is the sum of absolute values of
the eigenvalues of its adjacency matrix. The Laplacian energy, the signless Laplacian energy and the distance
energy of graph G are denoted by LE(G), SLE(G) and DE(G), respectively. In this paper we introduce a
distance Laplacian energy DLE and distance signless Laplacian energy DSLE of a connected graph. We
present Nordhaus-Gaddum type bounds on Laplacian energy LE(G) and signless Laplacian energy SLE(G)
in terms of order n of graph G and characterize graphs for which these bounds are best possible. The complete
graph and the star give the smallest distance signless Laplacian energy DSLE among all the graphs and
trees of order n, respectively. We give lower bounds on distance Laplacian energy DLE in terms of n for
graphs and trees, and characterize the extremal graphs. Also we obtain some relations between DE, DSLE
and DLE of graph G. Moreover, we give several open problems in this paper.

Keywords: Distance eigenvalues, distance (signless) Laplacian eigenvalues, (signless) Lapplacian energy,
distance energy, distance (signless) Laplacian energy

Résumé : Soit G un graph d’ordre n. L’énergie E(G) d’un graph simple G est la somme de des valeurs
absolues des valeurs propres de sa matrice d’adjacenc. L’énergie du laplacien, l’énergie du laplacien sans
signe et l’énergie de la matrice des distances sont notées LE(G), SLE(G) et DE(G), respectivement. Dans
le présent article, nous introduisons l’énergie du laplacien des distances DLE et l’énergie du laplacien sans
signe des distances DSLE d’un graph connexe. Nous présentons des bornes de la forme Nordhaus-Gaddum
sur l’énergie du laplacien LE(G) et sur l’énergie du laplacien sans signe SLE(G) en fonction de l’ordre n
de G, et charactériserons les graphes pour lesquels ces bornes sont atteintes. Le graphe complet et l’étoile
donne la plus petite valeur de l’énergie du laplacien sans signe des distances DSLE, sur l’ensemble des
graphes et l’ensemble des arbres d’ordre n, respectivement. Nous donnons des bornes inférieures sur l’énergie
du laplacien des distances DLE en fonction de n pour les graphes et les arbres, et nous charactériserons les
graphes extrêmes. Nous démontrons également quelques relations entre DE, DSLE et DLE d’un graphe G.
De plus, nous donnons plusieurs problèmes ouverts.

Mots clés : Valeurs propres des distances, valeurs propres du laplacien (sans signe) des distances, énergie
du laplacien (sans signe), énergie du laplacien (sans signe) des distances

Acknowledgments: The first author was supported by GERAD and the Data Mining Chair of HEC
Montréal.
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1 Introduction

In the present paper we consider simple, undirected and connected graphs. Let G = (V, E) be a graph with

vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G), where |V (G)| = n, |E(G)| = m. Also let di be the

degree of the vertex vi ∈ V (G). For vi ∈ V (G), the set of adjacent vertices of the vertex vi is denoted by

NG(Vi). Given two vertices vi and vj in a connected graph G, dij = dG(vi, vj) denotes the distance (the

length of a shortest path) between vi and vj . The diameter of a graph is the maximum distance between any

two vertices of G. Let d be the diameter of G. The complement graph of a graph G is denoted by G. The

transmission Tr(vi) (or Di or Di(G)) of a vertex vi is defined to be the sum of the distances from vi to all

other vertices in G, that is,

Tr(vi) =
∑

vj∈V (G)

dG(vi, vj).

The average transmission is denoted by t(G) and is defined by

t(G) =
1

n

n∑
i=1

Tr(vi).

The Wiener index W (G) of a connected graph G is defined to be the sum of all distances in G, that is,

W (G) =
1

2

∑
vi, vj∈V (G)

dG(vi, vj).

Let A(G) be the adjacency matrix of G and λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn denote the eigenvalues of A(G).

Sometimes, for convenience sake, we write λi = λi(G). The energy of the graph G is defined as

E(G) =

n∑
i=1

|λi| .

This spectrum-based graph invariant has been much studied in both the chemical and the mathematical

literatures. Its mathematical properties were extensively investigated, see the book [21], the recent articles [14,

18, 20, 22] and the references cited therein.

Let L(G) = D(G)−A(G) and Q(G) = D(G)+A(G) be, respectively, the Laplacian matrix and the signless

Laplacian matrix of the graph G, where D(G) is the diagonal matrix of vertex degrees. The eigenvalues of

L(G) and Q(G) will be denoted by µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ µn = 0 and q1 ≥ q2 ≥ · · · ≥ qn−1 ≥ qn ,

respectively. Then the Laplacian energy and the signless Laplacian energy of G are defined as

LE = LE(G) =

n∑
i=1

∣∣∣∣µi − 2m

n

∣∣∣∣ and SLE = SLE(G) =

n∑
i=1

∣∣∣∣qi − 2m

n

∣∣∣∣ ,
respectively. The Laplacian energy is nowadays reasonably well elaborated (see [11, 12, 14, 17, 21] and the

references cited therein). For more results on the signless Laplacian energy SLE(G), we refer readers to the

references [1, 12, 13]. Moreover, SLE(G) = LE(G) for any bipartite graph G.

The distance matrix of G, denoted by D(G), is a symmetric real matrix with (i, j)-entry being dG(vi, vj)

(or dij). The polynomial PD(∂) = det(∂ I−D(G)) is defined as the distance characteristic polynomial of the

graph G. Let ∂1 ≥ ∂2 ≥ · · · ≥ ∂n−1 ≥ ∂n be the distance spectra of G. The distance energy of a connected

graph G was defined in [19] as

DE = DE(G) =

n∑
i=1

|∂i|.

Its mathematical properties were extensively investigated, see the recent articles [5, 19, 27, 28, 33] and the

references cited therein.

Let DL(G) = Diag(Tr)−D(G) and DQ(G) = Diag(Tr) +D(G) be, respectively, the distance Laplacian

matrix [3, 7] and the distance signless Laplacian matrix [3, 6, 10] of the graph G, where Diag(Tr) denotes
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the diagonal matrix of the vertex transmissions in G. The eigenvalues of DL(G) and DQ(G) will be denoted

by ∂L1 ≥ ∂L2 ≥ · · · ≥ ∂Ln−1 ≥ ∂Ln = 0 and ∂Q1 ≥ ∂Q2 ≥ · · · ≥ ∂Qn−1 ≥ ∂Qn , respectively. Then the distance

Laplacian energy and the distance signless Laplacian energy of G are defined as

DLE = DLE(G) =

n∑
i=1

∣∣∂Li − t(G)
∣∣ and DSLE = DSLE(G) =

n∑
i=1

∣∣∣∂Qi − t(G)
∣∣∣

respectively. The distance Laplacian energy of a graph G was first defined in [30], where several lower and

upper bounds were obtained. As usual, we denote by K1, n−1 the star, by Kn the complete graph, by Pn the

path and by Cn the cycle. each on n vertices.

The paper is organized as follows. In Section 2, we give a list of some previously known results. In

Section 3, we present Nordhaus-Gaddum type bounds on Laplacian energy and signless Laplacian energy

of graph G and characterize graphs for which these bounds are best possible. In Section 4, we show that

the complete graph and the star give the smallest distance signless Laplacian energy DSLE among all the

graphs and trees of order n, respectively. In Section 5, we give some lower bounds on distance Laplacian

energy DLE in terms of n for graphs and trees, and characterize the extremal graphs and trees. In Section 6,

we obtain some relations between DE, DSLE and DLE of graph G.

2 Preliminaries

In this section, we shall list some previously known results that will be needed in the proofs of our results in

the next four sections.

We first recall the well-known and widely used Courant-Weyl inequalities.

Lemma 2.1 (Courant-Weyl; see, e.g., [25]) For a real symmetric matrix M of order n, let

ρ1(M) ≥ ρ2(M) ≥ · · · ≥ ρn(M) denote its eigenvalues. If N1 and N2 are two real symmetric matrices

of order n and if N = N1 +N2, then for every i = 1, 2, . . . , n, we have

ρi(N1) + ρ1(N2) ≥ ρi(N) ≥ ρi(N1) + ρn(N2).

The next recalled result is a characterization of the smallest eigenvalue of a symmetric matrix, using the

Rayleigh quotient.

Lemma 2.2 ([31]) If A is a symmetric n × n matrix with eigenvalues ρ1 ≥ ρ2 ≥ · · · ≥ ρn then for any

x ∈ Rn (x 6= 0),

xTAx ≥ ρnxTx. (1)

Equality holds if and only if x is an eigenvector of A corresponding to the smallest eigenvalue ρn.

Ning et al. [23] proved a lower on the largest Laplacian eigenvalue of a graph in terms of order n and

size m. It is stated in the following result:

Lemma 2.3 ([23]) Let G be a graph of order n with m edges. Then

q1 ≥
4m

n

with equality holding if and only if G is regular.

Cvetković et al. [9] obtained a relationship between the Laplacian and the signless Laplacian spectra of

a regular graph on n vertices.

Lemma 2.4 ([9]) Let G be a r-regular graph of order n. Then the signless Laplacian spectrum of graph G is

given by
SLS(G) = {2r, 2r − µn−1, 2r − µn−2, . . . , 2r − µ2, 2r − µ1},

where µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ µn = 0 are the Laplacian eigenvalues of graph G.
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Xing et al. [29] presented lower bound on distance signless Laplacian spectral radius ∂Q1 (G) of a connected

graph G in terms of its average transmission t(G), or equivalently, in terms of its order and its Wiener

index W (G) and order n.

Lemma 2.5 ([29]) Let G be a connected graph of order n with wiener index W (G). Then

∂Q1 (G) ≥ 2 t(G) =
4W (G)

n

with equality holding if and only if G is transmission regular.

The relation between Laplacian eigenvalues and distance Laplacian eigenvalues are given in the following

result:

Lemma 2.6 ([3]) Let G be a connected graph on n vertices with diameter d(G) ≤ 2. Let µ1(G) ≥ µ2(G) ≥
· · · ≥ µn−1(G) ≥ µn(G) = 0 be the Laplacian eigenvalues of G. Then the distance Laplacian eigenvalues of G

are 2n−µn−1(G) ≥ 2n−µn−2(G) ≥ . . . ≥ 2n−µ1(G) > ∂Ln (G) = 0. Moreover, for every i = 1, 2, . . . , n− 1,

the eigenspaces corresponding to µi and to 2n− µi are the same.

For the statement of the next lemma, we need to recall the following definitions. Let M be a real and

symmetric matrix of order n. Let si(M), i = 1, 2, . . . , n, be its singular values and xi(M), i = 1, 2, . . . , n,

its eigenvalues. Then si(M) = |xi(M)| for i = 1, 2, . . . , n.

Lemma 2.7 ([16]) Let X, Y , and Z be square matrices of order n, such that X + Y = Z. Then

n∑
i=1

si(X) +

n∑
i=1

si(Y ) ≥
n∑
i=1

si(Z) .

Equality holds if and only if there exists an orthogonal matrix P , such that P X and P Y are both positive

semi-definite.

For a graph G on n vertices and m edges with Laplacian spectrum µ1 ≥ µ2 ≥ · · · ≥ µn = 0, let ν

(1 ≤ ν ≤ n− 1) be the largest positive integer such that

µν ≥
2m

n
.

The Laplacian energy of graph G presented in terms of ν:

Lemma 2.8 ([12]) Let G be a graph of order n with m edges. Then

LE(G) = max
1≤k≤n

{
2

k∑
i=1

µi −
4mk

n

}
= 2

ν∑
i=1

µi −
4mν

n
.

Chen et al. [8] proved a lower bound on Laplacian spread of a connected graph G and characterized the

corresponding extremal graphs. The result is as follows:

Lemma 2.9 ([8]) Let G be a connected non-complete graph of order n > 2. Then µ1−µn−1 ≥ 2 with equality

holding if and only if G ∼= sK2 ∪ (n− 2s)K1, where 1 ≤ s ≤
⌊
n
2

⌋
.

For a graph G on n vertices and m edges with signless Laplacian spectrum q1 ≥ q2 ≥ · · · ≥ qn, let τ

(1 ≤ τ ≤ n− 1) be the largest positive integer such that

qτ ≥
2m

n
.

Lemma 2.10 ([12]) Let G be a graph of order n with m edges. Then

SLE(G) = max
1≤k≤n

{
2

k∑
i=1

qi −
4mk

n

}
= 2

τ∑
i=1

qi −
4mτ

n
.
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Denote by T 1
n−3, 1, is a tree of order n such that the maximum degree is n− 2. The next results gives the

tree with the second smallest Wiener index over all trees with given order n.

Lemma 2.11 [15] Let T (� K1, n−1) be a tree of order n. Then

W (T ) ≥ n2 − n− 2

with equality holding if and only if T ∼= T 1
n−3, 1.

The lower bound on Wiener index of a connected graph G is given in the following result:

Lemma 2.12 ([15]) Let G be a connected graph of order n with wiener index W . Then

W (G) ≥ n(n− 1)

2

with equality holding if and only if G ∼= Kn.

3 On Laplacian energy and signless Laplacian energy of graphs

In 1956, Nordhaus and Gaddum gave lower and upper bounds on the sum and the product of the chromatic

number of a graph and its complement, in terms of the order of the graph.

Theorem 3.1 ([24]) If G is a graph of order n

2
√
n ≤ χ(G) + χ(G) ≤ n+ 1 and n ≤ χ(G) · χ(G) ≤ (n+ 1)2

4
.

Furthermore, these bounds are best possible for infinitely many values of n.

Since then, relations of a similar type are called Nordhaus-Gaddum inequalities and have been proposed

for many other graph invariants, in several hundred papers. See [2] for a survey of such results.

In this section, we present Nordhaus-Gaddum type inequalities on Laplacian energy LE and signless

Laplacian energy SLE of graph G and characterize graphs for which these bounds are best possible.

It is well known that the Laplcian spectrum and the signless Laplacian spectrum are same for bipartite

graph, so one can easily see that the Laplacian energy LE and the signless Laplacian energy SLE are same

for bipartite graphs. We first give a result on regular graph:

Theorem 3.2 Let G be a r-regular graph of order n. Then

(i) LE(G) = SLE(G),

(ii) LE(G) = SLE(G),

(iii) LE(G) + LE(G) = SLE(G) + SLE(G).

Proof. Since G is a regular graph, by Lemma 2.4, we have

LE(G) =

n∑
i=1

|µi − r| =
n∑
i=1

|2r − µi − r| = SLE(G).

Since G is a regular graph, we have G is also a regular graph. Hence LE(G) = SLE(G). From (i) and (ii),

we get the required result in (iii).

Before stating our next result, we recall a known lower bound on LE(G) + LE(G) of graphs G. Zhou

et al. [32] gave the following lower bound in terms on n:

LE(G) + LE(G) ≥ 2(n− 1)

with equality holding if and only if G ∼= Kn or G ∼= Kn. We now give a lower bound on LE(G) + LE(G) in

the following result:
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Theorem 3.3 Let G (� Kn, Kn) be a graph of order n. Then

LE(G) + LE(G) ≥ 2n (2)

with equality holding if and only if G ∼= C4 or G ∼= P3.

Proof. Since G � Kn, Kn, one can easily check that the inequality in (2) holds for n ≤ 4 and the equality

in (2) holds for C4 and P3. Otherwise, n ≥ 5.

Let m and µi be the number of edges in G and the i-th largest Laplacian eigenvalue of L(G), respectively.

By Lemma 2.8, we have

LE(G) + LE(G) ≥ 2
( n−2∑
i=1

µi −
2m (n− 2)

n

)
+ 2

( n−2∑
i=1

µi −
2m (n− 2)

n

)
= 2

(
4m

n
− µn−1)

)
+ 2

(
4m

n
− µn−1)

)
as

n−1∑
i=1

µi = 2m,

n−1∑
i=1

µi = 2m

= 4 (n− 1)− 2(µn−1 + n− µ1) as 2m+ 2m = n(n− 1), µn−1 = n− µ1

= 2n− 4 + 2(µ1 − µn−1).

If G is connected, then by Lemma 2.9, we have LE(G) + LE(G) ≥ 2n as G � Kn. Otherwise, G is

disconnected, that is, µn−1 = 0. Since G � Kn, then G has at least one edge and hence µ1 ≥ 2. Therefore

LE(G) + LE(G) ≥ 2n− 4 + 2µ1 ≥ 2n.

The first part of the proof is done.

Suppose that equality holds in (2). First we assume that G is connected. Then by Lemma 2.9, we have

G ∼= sK2 ∪ (n− 2s)K1, where 1 ≤ s ≤
⌊
n
2

⌋
, that is, G ∼= sK2 ∪ (n− 2s)K1. Therefore we must have

LE(G) =

(
2− 2s

n

)
s+

2s

n
(n− s) = 4s− 4s2

n
=

8s

n
,

that is, n = s+ 2, that is, n ≤ 4 as 1 ≤ s ≤
⌊
n
2

⌋
, a contradiction.

Next we assume that G is disconnected. Then µ1 = 2 and hence G ∼= sK2∪(n−2s)K1, where 1 ≤ s ≤
⌊
n
2

⌋
.

Similarly, as before, we can prove that n ≤ 4, a contradiction. This completes the proof of the theorem.

We now give a lower bound on SLE(G) + SLE(G) in terms of n of graph G and characterize the

extremal graphs.

Theorem 3.4 Let G be a graph of order n. Then

SLE(G) + SLE(G) ≥ 2(n− 1)

with equality holding if and only if G ∼= Kn or G ∼= Kn.

Proof. If G ∼= Kn or G ∼= Kn, then one can easily see that the equality holds. Otherwise, G � Kn, Kn. In

this case we have to prove that the inequality is strict. For this, let m and q1 be the number of edges in G

and the largest eigenvalue of Q(G), respectively. By Lemmas 2.3 and 2.10, we have

SLE(G) + SLE(G) ≥ 2

(
q1 −

2m

n

)
+ 2

(
q1 −

2m

n

)
= 2(q1 + q1)− 2(n− 1) as 2m+ 2m = n(n− 1)

≥ 2

(
4m

n
+

4m

n

)
− 2(n− 1) = 2(n− 1).

The first part of the theorem is done.
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Suppose that equality holds. Then by Lemma 2.3, both G and G are regular graphs. Since G � Kn, Kn,

then by Theorems 3.2 and 3.3, we get

SLE(G) + SLE(G) = LE(G) + LE(G) ≥ 2n > 2(n− 1).

This completes the proof of the theorem.

H1 H2 H3 H4

H5 H6 H7

H8 H9 H10 H11

Figure 1: Graphs Hi, i = 1, 2, . . . , 11.

Remark 3.5 For both bipartite graph and regular graph, we have seen that LE = SLE. For the graphs

G = Hi, i = 1, 2, 3, 4 (Figure 1) are satisfying LE(G) > SLE(G); for G = Hi, i = 5, 6, 7 (Figure 1)

are satisfying LE(G) < SLE(G) and for G = Hi, i = 8, 9, 10, 11 (see, Figure 1) are satisfying LE(G) =

SLE(G). Hence LE(G) and SLE(G) are incomparable.

Therefore it is interesting to get all the graphs divided into three classes in the following problem:

Problem 1 Characterize all the graphs for which LE(G) > SLE(G), LE(G) < SLE(G) and LE(G) =

SLE(G).

4 On distance signless Laplacian energy of graphs

In this section we prove that the complete graph and the star give the smallest distance signless Laplacian

energy DSLE among all the graphs and trees of order n, respectively.

First we prove that the complete graph gives the minimal distance signless Laplacian energy over the

class of all connected graphs with fixed order n.

Theorem 4.1 Let G be a connected graph of order n. Then

DSLE(G) ≥ 2(n− 1)

with equality holding if and only if G ∼= Kn.
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Proof. Let σ be the largest positive integer such that ∂Qσ (G) ≥ t(G). We have

n∑
i=1

∂Qi (G) =

n∑
i=1

Di = n t(G) = 2W (G).

Using this result with the definition of distance signless Laplacian energy, we have

DSLE(G) =

σ∑
i=1

(∂Qi (G)− t(G)) +

n∑
i=σ+1

(t(G)− ∂Qi (G))

= 2

(
σ∑
i=1

∂Qi (G)− t(G)σ

)
.

First we have to prove that

DSLE(G) = 2

(
σ∑
i=1

∂Qi (G)− t(G)σ

)
= 2 max

1≤k≤n

(
k∑
i=1

∂Qi (G)− t(G) k

)
. (3)

For k > σ, we have

k∑
i=1

∂Qi (G)− t(G) k =

σ∑
i=1

∂Qi (G) +

k∑
i=σ+1

∂Qi (G)− t(G) k

<

σ∑
i=1

∂Qi (G)− t(G)σ as ∂Qi (G) < t(G), i ≥ σ + 1.

Similarly, for k ≤ σ,
k∑
i=1

∂Qi (G)− t(G) k ≤
σ∑
i=1

∂Qi (G)− t(G)σ.

Hence this proves the result in (3). By Lemmas 2.5 and 2.12, from (3), we have

DSLE(G) ≥ 2
(
∂Q1 (G)− t(G)

)
≥ 4W (G)

n
≥ 2(n− 1).

By Lemmas 2.5 and 2.12 with the above results, we conclude that DSLE(G) = 2(n − 1) if and only if

G ∼= Kn.

The distance signless Laplacian spectrum of the star K1, n−1 [4] is

DSLS(K1, n−1) =

5n− 8±
√

9n2 − 32n+ 32

2
, 2n− 5, 2n− 5, . . . , 2n− 5︸ ︷︷ ︸

n−2

 .

We have

t(K1, n−1) = 2n− 4 +
2

n
.

From the definition of distance signless Laplacian energy, we have

DSLE(K1, n−1) =
√

9n2 − 32n+ 32 +

(
1 +

2

n

)
(n− 2) = n+

√
9n2 − 32n+ 32− 4

n
.

We now prove that the star gives the minimal distance signless Laplacian energy for any tree of order n.

Theorem 4.2 Let T be a tree of order n. Then

DSLE(T ) ≥ n+
√

9n2 − 32n+ 32− 4

n

with equality holding if and only if G ∼= K1, n−1.
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Proof. If T ∼= K1, n−1, then the equality holds. Otherwise, T � K1, n−1 and n ≥ 4. Then by Lemma 2.11,

we have

t(T ) =
2W (T )

n
≥ 2n− 2− 4

n
.

Using Lemma 2.5 with the above result and from (3), we get

DSLE(T ) ≥ 2
(
∂Q1 (T )− t(T )

)
≥ 2 t(T )

≥ 2

[
2n− 2− 4

n

]
> 2

[
2n− 2.6− 2

n

]
as n ≥ 4

> n+
√

9n2 − 32n+ 32− 4

n
= DSLE(K1, n−1).

This completes the proof.

5 On distance Laplacian energy of graphs

In this section we give some lower bounds on distance Laplacian energy DLE in terms of n for graphs and

trees, and characterize the extremal graphs.

Let σ′ be the largest positive integer such that ∂Lσ′(G) ≥ t(G). We have

n∑
i=1

∂Li (G) =

n∑
i=1

Di = n t(G) = 2W (G).

Similar to the case of distance signless Laplacian energy of a graph G, we have

DLE(G) = 2

 σ′∑
i=1

∂Li (G)− t(G)σ′

 = 2 max
1≤k≤n

(
k∑
i=1

∂Li (G)− t(G) k

)
. (4)

By Lemma 2.12, we have 2W (G) ≥ n(n− 1). Using this result, from the above, we get

DLE(G) ≥ 2

(
n−1∑
i=1

∂Li (G)− t(G)(n− 1)

)
= 2(2W (G)− t(G) (n− 1)) =

4W (G)

n
≥ 2(n− 1).

From the above results, one can easily see that DLE(G) = 2(n − 1) if and only if G ∼= Kn. Hence we

have the following result:

Theorem 5.1 Let G be a connected graph of order n. Then

DLE(G) ≥ 2(n− 1)

with equality holding if and only if G ∼= Kn.

Denoted by Sn, is a graph of order n such that the maximum degree n− 1. That is, K1, n−1 ⊆ Sn ⊆ Kn.

Lemma 5.2 Let Sn be a graph of order n. Then ∂Ln−1(Sn) = n.

Proof. It is well known that µ1(Sn) = n as ∆(Sn) = n − 1. Since d(Sn) ≤ 2, by Lemma 2.6, we have
∂Ln−1(Sn) = 2n− µ1(Sn) = n.
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We now give an upper bound on ∂Ln−1(G) of any connected graph G.

Theorem 5.3 Let G be a connected graph of order n. Then

∂Ln−1(G) ≤ nDn

n− 1
, (5)

where Dn is the minimum transmission of graph G. Moreover, the equality holds in (5) if and only if G ∼= Sn.

Proof. By Lemma 2.2, we have

∂Ln−1(G) ≤
∑

1≤i<j≤n dij (xi − xj)2
n∑
i=1

x2i

,

where x = (x1, x2, . . . , xn)T is any vector in Rn.

We choose x =

 1√
n (n− 1)

, . . . ,
1√

n (n− 1)︸ ︷︷ ︸
n−1

, −
√

n−1
n

, then from the above, we get

∂Ln−1(G) ≤

∑n−1
j=1 djn

(√
n−1
n + 1√

n (n−1)

)2

1
=
nDn

n− 1
.

The first part of the proof is done.

Suppose that equality holds in (5). Then x =

 1√
n (n− 1)

, . . . ,
1√

n (n− 1)︸ ︷︷ ︸
n−1

, −
√

n−1
n

 is an eigenvector

corresponding to the eigenvalue ∂Ln−1(G) of DL(G). For vi ∈ V (G) such that vivn ∈ E(G), we have

∂Ln−1(G)
1√

n (n− 1)
= Di

1√
n (n− 1)

− (Di − din)
1√

n (n− 1)
+ din

√
n− 1

n
,

that is,

∂Ln−1(G) = ndin = n.

For vn ∈ V (G), we have

−∂Ln−1(G)

√
n− 1

n
= −Dn

√
n− 1

n
−Dn

1√
n (n− 1)

,

that is,

∂Ln−1(G) =
nDn

n− 1
.

From the above two results, we have Dn = n− 1. Then vnvk ∈ E(G), k = 1, 2, . . . , n− 1 and hence G ∼= Sn.

Conversely, one can easily see that the equality holds in (5) for Sn, by Lemma 5.2.

Now we introduce a graph transformation:

Transformation A. Suppose that T is a nontrivial tree of order n and Pd+1 : v1v2 . . . vdvd+1 is a diametral

path in T such that DT (v1) ≥ DT (vd+1). Let T ′ be a tree of order n obtained from T by T ′ = T − {v2vi :

vi ∈ NT (v2)}+{v3vi : vi ∈ NT (v2), i 6= 3}+v2v3. The above referred trees have been illustrated in Figure 2.
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T T ′

Figure 2: Trees T and T ′.

Lemma 5.4 Let T and T ′ be two trees of order n > 5 as shown in Figure 2. Then

n∑
i=1

[
Di(T )−Di(T

′)
]
>

n2

2(n− 1)

[
Dn(T )−Dn(T ′)

]
,

where Dn(T ) and Dn(T ′) are the minimum transmissions of tree T and T ′, respectively.

Proof. We assume that S = {vk : v2vk ∈ E(T ), k 6= 3} ∪ {v2} and |S| = p, (say). Let vn be the vertex

in T such that Dn(T ) = min{Di(T ) : vi ∈ V (T )}. Then one can easily see that vn ∈ V \S. We have

Di(T ) = Di(T
′) + n− p− 1, vi ∈ S\{v2}; D2(T ) = D2(T ′)− p+ 1; and Di(T ) = Di(T

′) + p− 1, vi ∈ V \S.

From this we conclude that the same vertex vn gives the minimum Dn(T ′) in T ′. Since DT (v1) ≥ DT (vd+1),

we must have p ≤ n/2. Now,

n∑
i=1

[
Di(T )−Di(T

′)
]

=
∑
vi∈S

[
Di(T )−Di(T

′)
]

+
∑
V \S

[
Di(T )−Di(T

′)
]

= (n− p− 1)(p− 1)− (p− 1) + (p− 1) (n− p)
= 2 (p− 1) (n− p− 1).

Moreover, Dn(T )−Dn(T ′) = p− 1 as vn ∈ V \S. Since

f(x) = 3n2 − 4nx− 8n+ 4x+ 4, x ≤ n/2

is a strictly decreasing function on x ≤ n/2 and hence f(x) ≥ f(n/2) > 0 (as n > 5), that is, 3n2 − 4np −
8n+ 4p+ 4 > 0. Using this result, one can easily see that

2 (p− 1) (n− p− 1) >
n2

2(n− 1)
(p− 1),

which gives the required result. This completes the proof of the lemma.

The next lemma provides a lower bund on the average transmission of a tree, and will be used in the

proof of our next theorem.

Lemma 5.5 Let T be a tree of order n > 4. Then

t(T ) ≥ 2n− 4 +
2

n
+
n (Dn(T )− n+ 1)

2(n− 1)
, (6)

where Dn(T ) is the minimum transmission of tree T . Moreover, the equality holds in (6) if and only if

T ∼= K1, n−1.

Proof. For T ∼= K1, n−1, then the equality holds in (6). For T ∼= P5 and T ∼= K1
2, 1, one can easily check

that the inequality in (6) is strict. We therefore assume that T � K1, n−1, that is, d(T ) ≥ 3 and n ≥ 6. In
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this case we have to show that the inequality in (6) is strict. Let Pd+1 : v1v2 . . . vdvd+1 be a diametral path

in T such that DT (v1) ≥ DT (vd+1). We transform T into another tree T ′ by Transformation A. Then by

Lemma 5.4, we have
n∑
i=1

[
Di(T )−Di(T

′)
]
>

n2

2(n− 1)

[
Dn(T )−Dn(T ′)

]
.

If T ′ ∼= K1, n−1, then from the above result, one can easily see that

2W (T )− (2n2 − 4n+ 2) >
n2

2(n− 1)

(
Dn(T )− n+ 1

)
,

which gives the required result in (6). Otherwise, we continue the construction as follows. Let Pd+1 :

v1v2 . . . vdvd+1 be a diametral path in T ′ such that DT ′(v1) ≥ DT ′(vd+1). Repeating the Transformation A
sufficient number of times, we arrive at a tree in which diameter d = 2, i. e., we arrive at K1, n−1. Thus

n∑
i=1

[
Di(T )−Di(T

′)
]
>

n2

2(n− 1)

[
Dn(T )−Dn(T ′)

]
,

n∑
i=1

[
Di(T

′)−Di(T
′′)
]
>

n2

2(n− 1)

[
Dn(T ′)−Dn(T ′′)

]
,

· · · · · ·
n∑
i=1

[
Di(T

k−1)−Di(K1, n−1)
]
>

n2

2(n− 1)

[
Dn(T k−1)−Dn(K1, n−1)

]
.

Adding the above inequalities, we have

n∑
i=1

[
Di(T )−Di(K1, n−1)

]
>

n2

2(n− 1)

[
Dn(T )−Dn(K1, n−1)

]
,

that is,

2W (T )− (2n2 − 4n+ 2) >
n2

2(n− 1)

(
Dn(T )− n+ 1

)
,

which gives the required result in (6). This completes the proof of the lemma.

We are now ready to give a lower bound on the distance Laplacian energy of tree of order n and characterize

the extremal graphs.

Theorem 5.6 Let T be a tree of order n. Then

DLE(T ) ≥ 2

(
3n− 8 +

4

n

)
(7)

with equality holding if and only if G ∼= K1, n−1.

Proof. For T ∼= K1, n−1, the distance Laplacian spectrum is

DLS(T ) = {2n− 1, . . . , 2n− 1︸ ︷︷ ︸
n−2

, n, 0}, t(T ) = 2n− 4 +
2

n

and hence the equality holds in (7). For T ∼= P4, one can easily check that the inequality in (7) is strict.

Otherwise, T � K1, n−1 and n ≥ 5. Using (5), from (4), we get
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DLE(T ) ≥ 2

(
n−2∑
i=1

∂Li (T )− t(T ) (n− 2)

)
= 2

(
2W (T )− ∂Ln−1(T )− t(T ) (n− 2)

)
≥ 2

(
4W (T )

n
− nDn

n− 1

)
.

Using the above result with (6), we get

DLE(T ) > 2

(
3n− 8 +

4

n

)
as T � K1, n−1 and n ≥ 5, which is the required result in (7). This completes the proof.

6 Relations between DSLE, DLE and DE of graphs

Since all energies DSLE, DLE and DE are based on distances, their comparison is a question that arises

naturally. Within that context we performed experiments and computations about wich we report in this

section. A sample of our computational results is given in the tables below.

Table 1: Distance signless Laplacian energy and Distance energy of Hi, i = 12, 13, 14, 15.

G DSLE(G) DE(G)
H12 42.326 31.024
H13 39.055 31.572
H14 22.029 22.446
H15 21.74 22.771

Table 2: Distance Laplacian energy and Distance energy of Hi, i = 16, 17, 18, 19.

G DLE(G) DE(G)
H16 38.258 36.634
H17 71.263 47.163
H18 15.5 16
H19 16 17.092

From Table 1, we have DSLE(Hi) > DE(Hi), i = 12, 13 (see, Figure 3) and DSLE(Hi) < DE(Hi),

i = 14, 15 (see, Figure 3). Therefore, our first conclusion is that DSLE(G) and DE(G) are incomparable.

From Table 2, we have DLE(Hi) > DE(Hi), i = 16, 17 (see, Figure 3) and DLE(Hi) < DE(Hi),

i = 18, 19 (see, Figure 3). Thus, our second conclusion, DLE(G) and DE(G) are also incomparable.
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H12 H13 H14

H15 H16 H17

H18 H19

Figure 3: Graphs Hi, i = 12, 13, . . . , 19.

Despite the above conclusions, when considering the three energies together, we have the following sur-

prising result:

Theorem 6.1 Let G be a graph of order n. Then

DSLE(G) +DLE(G) ≥ 2DE(G) ≥ DSLE(G)−DLE(G).

Proof. We have DQ(G) − DL(G) = 2D(G), that is,
(
DQ(G)− t(G) I

)
−
(
DL(G)− t(G) I

)
= 2D(G). By

Lemma 2.7, we get the left inequality. Moreover, we apply the same Lemma 2.7 on
(
DQ(G)− t(G) I

)
=(

DL(G)− t(G) I
)

+ 2D(G), we get the right inequality. This completes the proof of the theorem.

Remark 6.2 From Theorem 6.1, we conclude that there is a graph G either DSLE(G) > DE(G) or DLE(G) >

DE(G) or both.

In order to improve the first inequality in Theorem 6.1 over the class of trees, we give two upper bounds

on the second smallest distance Laplacian eigenvalue ∂Ln−1(T ), of a tree T , in terms of n, p (no. of pendant

vertices) and average transmission t.

Theorem 6.3 Let T be a tree of order n with average transmission t. Then

∂Ln−1(T ) ≤ t(T )− p+
5p+ 2

2n
+

1

2
,

where p is the number of pendant vertices in T .

Proof. Let vn and vn−1 be the vertices in T such that Dn and Dn−1 are the smallest and the second

smallest transmission. First we have to prove that vnvn−1 ∈ E(T ). For this we consider any pendant path

vnvi1vi2 . . . vik from vertex vn to a pendant vertex vik . For tree T , one can easily see that

Dr −Dq = nq − nr for vrvq ∈ E(T ), (8)
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(nr counts the number of vertices of T lying closer to the vertex vr than to vertex vq and nq counts the number

of vertices of T lying closer to the vertex vq than to vertex vr). Since Dn is minimum, for vnvi1 ∈ E(T ),

we have Di1 ≥ Dn, that is, nn ≥ ni1 . Since vnvi1vi2 . . . vik is a pendant path in tree T , therefore we have

nn ≥ ni1 > ni2 > · · · > nik . From (8), we conclude that Dn ≤ Di1 < Di2 < · · · < Dik . Hence vn−1 ∈ NT (vn),

that is, vnvn−1 ∈ E(T ).

For any pendant vertex vi and non-pendant vertex vk such that vivk ∈ E(T ), Di −Dk = n− 2. For any

non-pendant vertex vk, Dk −Dn ≥ 1, k 6= n− 1, n. Now,

t− Dn−1 +Dn + 2

2
=

n∑
i=1

[2Di − (Dn−1 +Dn)]

2n
− 1

=

n−2∑
i=1

[2Di − (Dn−1 +Dn)]

2n
− 1

≥ 2p (n− 2) + n− p− 2

2n
− 1 = p− 5p+ 2

2n
− 1

2
.

Therefore we have
Dn−1 +Dn + 2

2
≤ t− p+

5p+ 2

2n
+

1

2
.

Putting x = (0, 0, . . . , 0, 1, −1) in (1), we get

∂Ln−1 ≤
Dn−1 +Dn + 2

2
as vnvn−1 ∈ V (T ).

Using the above results, we have

∂Ln−1 ≤ t− p+
5p+ 2

2n
+

1

2
,

which gives the required result.

From the proof of the above theorem, we get the following result:

Theorem 6.4 Let G be a connected graph of order n. Then

∂Ln−1(G) ≤ min

{
Di +Dj + 2 dij

2
: 1 ≤ i < j ≤ n

}
,

where Di is the i-th vertex transmission of graph G.

We now give a relation between DSLE, DLE and DE of any tree T , which is a stronger result then that

of Theorem 6.1, but it is only applicable for trees.

Theorem 6.5 Let T be a tree of order n. Then

DSLE(T ) +DLE(T ) ≥ 2DE(T ) + 2

(
p− 5p+ 2

2n
− 1

2

)
,

where p is the number of pendant vertices in T .

Proof. It is well known that

DE(T ) =

n∑
i=1

|∂i(T )| = 2 ∂1(T ), (9)

as there is exactly one positive distance eigenvalue of tree T .

We have DQ = DL + 2D. By Lemma 2.1, we have ∂Q1 ≥ 2 ∂1. Using this result with Theorem 6.3,

from (3), (4) and (9), we get
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DSLE(T ) +DLE(T ) ≥ 2 (∂Q1 − t) + 2
(

2W − ∂Ln−1 − t (n− 2)
)

= 2
(
∂Q1 + t− ∂Ln−1

)
≥ 4 ∂1 + 2

(
p− 5p+ 2

2n
− 1

2

)
= 2DE(T ) + 2

(
p− 5p+ 2

2n
− 1

2

)
.

This completes the proof.

Comparing DE(G), DLE(G) and DSLE(G) over the class of transmission regular graphs, we have the

following result.

Proposition 6.6 If G is transmission regular graph, then DE(G) = DLE(G) = DSLE(G).

Proof. Let ∂1 ≥ ∂2 ≥ · · · ≥ ∂n be the distance eigenvalues of graph G. It is well known that for transmission

regular graph G, the distance Laplacian spectrum and the distance signless Laplacian spectrum are

DLS(G) = {k − ∂n, k − ∂n−1, . . . , k − ∂1} and DSLS(G) = {k + ∂n, k + ∂n−1, . . . , k + ∂1}.

Using these results, one can easily see that DE(G) = DLE(G) = DSLE(G).

Remark 6.7 The converse of Proposition 6.6 is not necessarily true. For example, G ∼= C3 ∪ C6, G ∼= C4 ∪K4

and G ∼= C6 ∪ 3K2 satifying DE(G) = DLE(G) = DSLE(G), but these graphs are not transmission regular.

Example 2 The following two graphs are also satisfying DLE(G) = DSLE(G).

H20 H21

Figure 4: Graphs Hi, i = 20, 21.

The above observations lead to the statement of the following problem.

Problem 3 Characterize all the graphs for which

DLE(G) = DSLE(G).

Remark 6.8 For complete graph Kn, we have

E(Kn) = LE(Kn) = SLE(Kn) = DE(Kn) = DLE(Kn) = DSLE(Kn) = 2(n− 1).

Also, the above remark leads to the statement of the following problem.

Problem 4 Is there any connected graph G (� Kn) such that E(G) = LE(G) = SLE(G) = DE(G) =

DLE(G) = DSLE(G)?
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