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Abstract: As more and more data about mining complex operations is collected and stored, it becomes
increasingly important for computer systems to help human operators make better, more informed decisions.
This can be done indirectly, through improved visualization or prediction, or directly, by suggesting decisions
that respond to new information. This paper contributes to the direct approach by showing how state-of-
the-art data-driven decision-making can be used for optimizing material flows in a large mining complex. To
this end, a combination of neural networks and policy gradient reinforcement learning is used for computing
material destination decisions that automatically respond to new information. Results using a computa-
tional model of a large copper mining complex show that the proposed method significantly outperforms an
optimized cut-off grade policy similar to the one currently used at the mine.
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1 Introduction

Due to decreased sensor and storage cost and increase standardization and ease of use, more and more data

is collected about the operation of industrial processes. In mining, in particular, information concerning the

properties of material as it flows through the mining complex can be collected using near-infrared reflectance

spectroscopy (Goetz et al, 2009) or camera images (Horrocks et al., 2015; Chatterjee, 2013), in addition to

the more traditional blasthole and in-fill drilling analysis. Material can also be better located thanks to the

use of GPS devices on hauling equipment or RFID tags embedded in the material (La Rosa et al, 2014).

All this data can allow staff to better understand the functioning of the mining complex, and to make

decisions that adapt to the new situations encountered. For instance, if too much material is waiting at one

of the crushers in a multi-crusher complex then staff might decide to re-route some of the material bound

for that crusher to others that are less busy. However, as the amount of available data increases it becomes

more and more difficult for a person to keep track of everything and to ensure that the best decisions are

being made in light of the new information.

This paper attempts to alleviate these issues by introducing a new system for automatically selecting

the best way to respond to new information. The system is based on data-driven stochastic optimization

techniques originating in the field of reinforcement learning (Sutton and Barto, 1998). In the last few years,

reinforcement learning has seen notable successes in simulated domains, such as producing the first Go

algorithm to successfully compete against the best human players (Silver et al., 2016) or playing video games

based on pixel information alone (Mnih et al., 2015). These successes have inspired companies to include it

as a core part of their operation, such as Microsoft’s Multiworld Testing framework1 or Google’s adaptive

data center cooling.2

An important advantage of reinforcement learning methods over other optimization techniques is that the

decision-making policies they compute explicitly encode what decisions to make in different situations. In

contrast, decisions computed using more traditional optimization approaches such as mixed integer stochastic

programming have to be re-optimized every time the system’s state changes as a result of new information.

This can make them too slow for practical use when decisions need to be frequently updated. More subtly,

the complexity of evaluating the effect of a re-optimization strategy can scale exponentially if the decisions

made before time t affect the optimality of decisions made after time t.

The standard stochastic programming response to these concerns is multi-stage stochastic program-

ming (MSP) (Birge and Louveaux, 1997; Boland et al., 2008). Given a set of realizations of uncertainty,

typically referred to as scenarios, MSP computes scenario-dependent decisions whose inherently optimistic

nature is kept in check through the use of non-anticipativity constraints. By modelling how decisions should

respond to different scenarios, MSP can approximately evaluate the effect of re-optimizing decisions in light

of new information. However, actually computing the optimal decision for a given situation using MSP is

heavily dependent on the metric used to measure how similar different scenarios are, and it is rarely clear

how to specify such a metric. In contrast, reinforcement learning can leverage modern machine learning

methods in order to automatically infer the similarity between different situations. The relationship between

MSP and reinforcement learning has been analyzed by various researchers (Powell, 2012; Powell et al., 2012;

Defourny et al., 2012).

The use of reinforcement learning for mining complex optimization has already been explored by Paduraru

and Dimitrakopoulos (2014). However, their work has the drawback that the decisions made for each block

depend explicitly on the position that the respective block has in a fixed extraction sequence. This limits the

use of their method to settings where the extraction sequence is fixed and pre-defined, ignoring the reality that

the order in which material is extracted is rarely known in advance, especially for multi-pit mining complexes.

The main contribution of this paper is to propose an alternative reinforcement learning approach that

overcomes these limitations, and to showcase its application using a challenging mining complex optimiza-

tion problem. The first part is accomplished by using more powerful reinforcement learning methods – in

1 https://www.microsoft.com/en-us/research/project/multi-world-testing-mwt/
2 https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
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particular, by using a method that incorporates recent algorithmic improvements in neural network training.

The second part involves building, based on geostatistical simulations and equipment performance data, a

stochastic hour-by-hour model of material flow for one of a large multi-pit copper mine. The model is used

for generating training data for the reinforcement learning approach, and for comparing the proposed method

to an optimized cut-off grade policy modelled based on the current practice at the mine.

The remainder of the paper proceeds as follows. Section 2 describes the rationale and implementation

for the stochastic hour-by-hour material flow model. Section 3 describes a method for optimizing material

flow by using neural network based reinforcement learning, and shows how this method can be applied to

the model introduced in Section 2. The resulting implementation is then compared to an optimized cut-off

grade policy, and the results are presented in Section 4. Finally, conclusions and future work are discussed

in Section 5.

2 Stochastic operational modelling of a mining complex

Material extracted in a mining complex undergoes various transformation before the concentrated or refined

product is shipped. Understanding the effect of these transformations, as well as the associated cash flows,

can help develop better planning strategies and provide a more realistic assessment of their impact. Therefore,

this section focuses on developing realistic models of material flow in a mining complex, starting by discussing

general concepts and then describing a particular implementation for a multi-pit copper mining complex.

Material flows, which determine the revenues obtained from the final product and the operating costs,

depend on several factors including geology, transportation availability, and processing characteristics. Since

none of these factors can be known a priori with full precision, explicitly modelling the uncertainty is necessary

for identifying and managing risk.

This work uses the common approach of incorporating geological uncertainty via a set of geostatistical

simulations. A wide range of models that can produce a set of simulations capturing geological uncertainty

have been proposed over the years (Goovaerts, 1997; Strebelle, 2002; Zhang et al., 2006; Boucher and

Dimitrakopoulos, 2009; Remi et al., 2011; Mustapha and Dimitrakopoulos, 2011). These can be combined

with a stochastic model of extraction, transportation, and processing, producing a set of joint simulations

that reflect the combined uncertainty.

For the purpose of this paper, extraction and transportation uncertainty refers to the time it takes to

extract material and transport it between various points in the mining complex. There are several potential
sources for this temporal uncertainty, including:

• equipment breakdown and repair times

• truck and shovel cycle times

• queueing times for trucks, either at the origin (shovel) or at the destination (crushers, plants, leach

pads etc.)

The uncertainty in crushing and processing times is partly due to geometalurgical properties, such as

SPI (Sag Power Index), BWI (Bond Work Index) and many other material property indexes. It can also be

due to equipment breakdown or additive (un)availability.

The different transformations undergone by extracted material can add non-temporal uncertainty to the

material flows. For instance, the level of coarseness resulting from crushing, recovery rates at the plants

or leach pads, or amount of deleterious elements in concentrate may all exhibit variability. Part of this

variability can be explained by quantities that can be measured – for instance, it is common for recovery

to be affected by head grade. However, there may also be unmeasured or imperfectly measured quantities

that cause variability in transformations’ output. Therefore, this paper proposes a mixed approach where the

outcome of transformations is modelled as a regression where the covariates are the quantities that are known

to affect the output of interest, and the variability remaining in the output after regression is performed is
modelled as stochastic noise. An example of this is illustrated in Section 2.1.3.
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The sources of uncertainty described above make it clear that there can be multiple interactions that

determine the amount of time a certain activity takes. Some of these interactions include:

• crushing and processing times depend on the rate of material sent to crushers and plants, which in turn

depends on cycle times and extraction rates

• queueing times are affected by

– the relationship between shovel productivity and the number of trucks assigned to each shovel

– the number of trucks sent to the same destination

– cycle times and extraction rates

– crushing and processing times

• extraction rates can be affected by queueing times if the shovel has to wait for trucks

• plant recovery rates can be affected by crushing parameters and performance

These interactions can be modeled using various methodologies, such as discrete event simulation (Zeigler

et al., 2000), system dynamics (Sterman, 2000), or agent-based modelling (Railsback and Grimm, 2011). For a

survey of the use of these methodologies in mining, see Govinda Raj et al. (2009). More recently, discrete event

simulation has been used for modelling truck-shovel systems by Jaoua et al. (2012) and Torkamani (2013).

The model proposed in this paper combines discrete event simulation and system dynamics concepts, and

will be outlined in the following section.

2.1 Case study implementation

A diagram of the material flow for the copper mining complex used in the case study is shown in Figure 1.

There are two pits, and five shovels for each pit. Material extracted by each of the shovels is transported

by truck to one of the four crushers (C1, C2, C3 and C5) or to one of the two leach pads. Each pit can

only send materials to a subset of the crushers, as indicated by the arrows in Figure 1. Crushed material is

sent on conveyor belts to one of the three plants, with the plants that each crusher can send material to also

indicated by arrows in Figure 1. The final product is either copper concentrate (from the plants) or copper

cathodes (from the leach pads). The details of the stochastic model built for this case study are presented in

the following sections.

Figure 1: Material flow diagram for the mining complex considered.
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2.1.1 Material representation

The material flowing through the mining complex is represented using a set of additive properties, similarly

to Goodfellow and Dimitrakopoulos (2015). For this case study, the properties are tonnage, copper content,

amount of soluble copper, and arsenic (in ppm). When material from different sources is combined, some

of these properties are added (e.g. tonnage, copper content) and others are computed as a mass-weighted

average (e.g. arsenic concentrations). The various destinations in the mining complex can effect non-linear

transformations on the material. For this case study, hardness-related properties are not considered, therefore

the transformations performed by the crushers are not considered.

2.1.2 Discrete event simulation

Because destination decisions for the material being sent from the shovels to the crushers are made at the

block level, and blocks are clearly defined discrete units, discrete event simulation will be used for modelling

material flow up to the crushers. More precisely, a discrete event is triggered whenever:

• the shovel finishes extracting a block (and starts extracting the next); this is determined by the amount

of time it takes to extract the current block, which is encoded by a variable extractionT ime.

• the block first reaches the crusher, which is modelled by a variable called timeToCrusher.

In order to compute extractionT ime, the following assumptions are made:

• Under perfect transportation and mechanical availability (meaning that a truck is always ready to be

loaded and the shovel does not break down), extraction time is assumed to follow a normal distribution.

The mean and standard deviation of this distribution were computed based on historical data.

• The shovel can break down according to an exponentially distributed failure model. If the shovel does

break down, the time it takes to get it back online is assumed to have a log-normal distribution (because

the repair time must be greater than zero). Since no data regarding shovel breakdowns was available,

the parameters of these two distributions were assigned arbitrary values; the expected value of the

resulting random variables were 600 hours for the time to failure and 12 hours for the repair time.

Adding shovel breakdown times to the ideal-conditions extraction time results in a random variable

called shovelOnlyT ime.

Extraction times are also impacted by the time that the shovel has to spend waiting for trucks. If the

block is being sent to the crusher, the waiting time is determined by the following two quantities:

• Truck cycle times, which similarly to shovel times are modelled using a normal distribution under

perfect mechanical availability. The mean of that distribution is determined by the depth of the block

and the distance to the destination. Modelling the effect of truck breakdowns is more complicated than

for shovels, since trucks can be replaced, and modelling each individual truck would have been too

fine-grained. Therefore, truck breakdowns are accounted for by multiplying the normal operation time

above by a constant whenever a “breakdown event” occurs; this is assumed to occur for each block with

a fixed probability. The corresponding random variable is called truckCycleT ime.

• The time that trucks have to wait before they unload at the crushers, which depends on how long it

takes to crush the block, which in turn depends on how much material has already been sent to that

crusher. This is reflected by the variable timeUntilBlockCrushed, which is computed by adding the

tonnage of the allocated block to the tonnage of the material waiting to be crushed and dividing by

the (deterministic) crusher throughput.

Precisely modelling the effect of transportation and crushing on extraction time requires detailed fleet

modelling that is beyond the scope of this work. Instead, the approximation used here accounts for the

different bottlenecks by taking the maximum of the three variables defined above, resulting in the random

variable extractionT ime being defined as

extractionT ime = max (shovelOnlyT ime, truckCycleT ime, timeUntilBlockCrushed) .
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If the block is sent to one of the leach pads, the extraction rate may be constrained by the rate at which ma-

terial sent to the leach pad can be flattened. This is determined by a variable called timeUntilBlockF lattened,

which is the equivalent of timeUntilBlockCrushed above. Consequently, if the block is sent to the leach

pad, extractionT ime is considered to be equal to

max (shovelOnlyT ime, truckCycleT ime, timeUntilBlockF lattened) .

In order to model the time when a block first reaches the crusher, it is assumed that the amount of time

that the truck spends loaded (i.e. transporting material from the shovel to the crusher) is a fixed percentage

of the cycle time, which is denoted by percentageT imeTruckLoaded. Then the time to reach the crusher

is simply

timeToCrusher = percentageT imeTruckLoaded ∗ truckCycleT ime,

where truckCycleT ime is the same value that was used to compute extractionT ime.

2.1.3 System dynamics

System dynamics models typically involve concepts such as stocks, flows, feedback loops and time delays,

which are all present for the mining complex considered in this paper. The main difference with respect to

discrete event simulation is that system dynamics models tend to divide time into discrete units and compute

the total effects of the various interactions within each unit of time, whereas discrete events may be triggered

at any point in time and have an immediate event once they are triggered. Because the operation of crushers,

plants, conveyor belts and leach pads is marked by very few temporal discontinuities, it was decided to use

a system dynamics approach for modelling these parts of the mining complex.

Every time step (hour), the following operations occur for the mining complex components modelled using

system dynamics:

• Each crusher transforms incoming material hauled by trucks into crushed material that gets placed

on the conveyor belt connecting it to the destination plant. A list of the blocks processed every

hour is maintained, and updated each time a block arrives at the crusher or finishes crushing. An

equal proportion of each of these blocks is crushed every hour, with the total amount that can be

crushed limited by the crusher’s (deterministic) throughput. The properties of the crushed material

are determined by averaging the properties of the input material.

• Crushed material is placed on the conveyor belt corresponding to the destination plant. The con-

veyor belt determines what fraction of that material will arrive at the plant during each of the subse-

quent hours.

• Each plant uses a feed pile that receives material from the conveyor belts and temporarily stores it

before it is processed. The material available for processing during each hour is computed by adding

the properties of the material placed on the feed pile during that hour to the properties of the material

already on the feed pile. A fraction of that material, computed according to the plant’s throughput,

is processed during each hour. The properties of interest for the concentrate (copper tonnes recovered

and arsenic concentration) are the results of transformations whose parameters were estimated using

historical data as outlined below.

Determining plant output

The characteristics of the concentrate produced by plants are in general a function of the properties of the

input material, additives, processing parameters etc. This function can be fit using historical data, and

increasingly complex and accurate models can be used if large amounts of data collected at a high temporal

resolution are available. However, for the case study presented in this paper only daily production data was

available. Based on this data, the best-performing model for the copper tonnes recovered was simply a linear

function of the input grade; similarly, the best-performing model for the amount of arsenic in concentrate was

a linear function of the amount of input arsenic concentration. Because significant variability in the output

did remain after using these explanatory variables, a stochastic model was used where the variance of the
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output variable was estimated as a linear function of the input value. For the copper tonnes recovered, this

can be written as

CuTonnesRecovered ∼ N (µ, σ)

µ = a ∗ inputGrade+ b

σ = α ∗ inputGrade+ β

The coefficients a, b, α and β were estimated using linear regression based on daily historical data collected

during five years of operation. A similar model was used for sampling arsenic concentration.

For the leach pads only monthly production data was available, resulting in a much smaller data set

that made density estimation less reliable. Therefore, the tonnage of recovered copper was estimated as a

deterministic linear function of the input grade.

2.1.4 Modelling joint uncertainty

In order to produce a full uncertainty model, the above components need to be merged and combined with a

set of simulations that capture geological uncertainty. The simulations used in this paper were generated as

part of a separate piece of work and were provided to us (see Kumar and Dimitrakopoulos, in this volume).

The simulated values include Cu, soluble Cu, and As, and are correlated both with each other and spatially.

All blocks were assumed to have the same (deterministic) tonnage.

The geostatistical simulations are combined with the aforementioned models for material transportation

and processing in order to produce a model of the combined uncertainty in the mining complex. This is a

generative model, meaning that rather than providing an analytical form of the joint distribution it consists

of an algorithm for sampling new scenarios from this distribution. For each time horizon T , a new scenario is

sampled by first randomly selecting one of the geostatistical simulations provided, and then performing the

following steps for each time period (hour) 0 < t ≤ T :

• The material extracted by each shovel is computed by first determining the block(s) extracted during

period t, and then using the current simulation to determine the properties (Cu, soluble Cu, and As)

for the extracted block(s). Each shovel starts period t by extracting the same block that was being

extracted at the end of period t − 1. The time when the block finishes extracting is computed by

sampling extractionT ime and adding it to the time when the block started being extracted. If the

resulting value falls within period t, a discrete event is triggered and the shovel moves on to the next

block. This next block, as well as the very first extracted block, are determined by a pre-defined

extraction order; the optimization of this order is left for future work.

• A list containing all the blocks that are being extracted and being sent for crushing is maintained for

each of the crushers. Each block has an associated random variable called tAtCrusher encoding the

time when the block first reaches the crusher. The value of tAtCrusher is computed by adding the

time when the block started to be extracted to a sampled value of timeToCrusher, which is computed

as described in Section 2.1.2.

• For each crusher, the blocks being crushed during the period t are the blocks that were being crushed

at the end of period t− 1, as well as the blocks on the list described above for which tAtCrusher falls

within period t. As described in Section 2.1.3, the output of each crusher is placed on the conveyor

belt corresponding to the destination plant for period t.

• The plant feed pile contents during period t, as well as the material processed during t, are determined

based on the conveyer belt material due to reach the plant during that period. The properties of the

concentrate produced during period t (recovered Cu and As concentration) are then sampled from the

stochastic plant model, based on the material processed during t.

3 Computing destination policies

The objective of this work is to compute a policy for determining the initial destination of each block at

the time when it starts being extracted. This is done via a reinforcement learning algorithm that uses
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neural networks. The optimized policy will be compared to a baseline consisting of a cut-off grade policy

similar to the one currently in use at the mine. The remainder of this section describes the baseline and

optimized policies.

3.1 Baseline destination policy

The baseline policy decides where to send each extracted block based on the block’s copper grade and soluble

copper content. The policy depends explicitly on the ratio CuSoluble
CuGrade between soluble copper and grade –

the higher the ratio, the more oxide-like the material is. The cutoff grades for the plants (vs everything

else), bio leach (vs waste), and acid leach (vs waste) are denoted by PlantCutoff , BioLeachCutoff and

AcidLeachCutoff respectively. If the eventual destination is one of the plants, the block is sent to the crusher

that has the minimum total tonnage being sent to it at the time when the block needs to be allocated, and the

crushed material is placed on the conveyor belt corresponding to the plant with the lowest feed pile tonnage.

The baseline policy is summarized below:

If CuSoluble
CuGrade < 0.2

If CuGrade > PlantCutoff

destination = Min Tonnage Crusher

Else

If CuGrade > BioLeachCutoff

destination = BioLeach

Else

destination = Waste

Else if CuSoluble
CuGrade < 0.5

If CuGrade > BioLeachCutoff

destination = BioLeach

Else

destination = Waste

Else

If CuSoluble
CuGrade > AcidLeachCutoff

destination = AcidLeach

Else

destination = Waste

3.2 Optimized destination policy

This section illustrates how destination policies can be optimized using reinforcement learning. Generally

speaking, reinforcement learning is concerned with the problem of optimizing control policies for time-varying

stochastic systems, based on data collected by interacting with the system of interest. For this paper, the

system of interest is represented by the stochastic mining complex model outlined in Section 2.1.4. The class

of policies being optimized maintains the same structure as the baseline destination policy, but replaces the

cutoff-based decisions with optimized sub-policies. The general form of the optimized policy will therefore in-
volve selecting one of three optimized sub-policies (CrusherVsBioLeachVsWastePolicy, BioLeachVsWastePolicy
and AcidLeachVsWastePolicy) depending on the value of CuSoluble

CuGrade :
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If CuSoluble
CuGrade < 0.2

destination = CrusherVsBioLeachVsWastePolicy

Else if CuSoluble
CuGrade < 0.5

destination = BioLeachVsWastePolicy

Else

destination = AcidLeachVsWastePolicy

In reinforcement learning, the policies being optimized are a function of the state of the system being

optimized. The state can be informally described as a numerical representation containing all the necessary

information about the system of interest.3 States change over time, reflecting new information obtained

about the system. For the case study in this paper, the state is a vector containing the following components,

which are updated every time a new block needs to be allocated:

• for all sub-policies, the properties (Cu, soluble Cu, and As) of the block being allocated

• for CrusherVsBioLeachVsWastePolicy and BioLeachVsWastePolicy, Cu tonnes and total tonnage of the

material placed on the Bio Leach

• for CrusherVsBioLeachVsWastePolicy, Cu tonnes, total tonnage and As of the material already sent to

each of the crushers

• for AcidLeachVsWastePolicy, Cu tonnes and total tonnage of the material placed on the Acid Leach

• for all sub-policies, the percentage of the blocks scheduled to be extracted next at each shovel that

would get sent to each of the destinations considered by the sub-policy, if they were being allocated

using the baseline policy; this gives an idea of the expected incoming load for the different destinations,

under the assumption that the baseline policy will be reasonably close to the optimized policy.

3.2.1 Policy representation

In reinforcement learning, the term policy has a specific meaning: it is a mathematical function mapping the

state space to the decision space. As such, it can be seen as an instantiation of the common use of the word

“policy” (“a course or method of action”). Expressing policies as explicit functions of the state allows them

to be optimized using numerical methods. In addition, by incorporating new information into the state as

soon as it becomes available policies can work as a mechanism for responding to this new information.

The objective of reinforcement learning problems is to find a policy that maximizes the sum of the so-

called rewards over the total duration that the policy is applied for. For each time t when a decision is made

according to policy π, the reward is defined as the net benefit occurring between t and the time when the

next decision is made. For the case study in this paper, the reward for the destination decision made by some

policy πdest is equal to the net cash flows obtained until the next destination is selected.4

Since finding the optimal policy is an optimization problem over functions, the class of functions that

the optimization is performed over needs to be decided on. For this paper, the policy class used for each

of the three policies consists of a neural network. Neural networks were chosen due to their versatility

in modelling arbitrary functions, as well as the success of recent improvements in gradient-based methods

for optimizing their parameters (LeCun, Bengio and Hinton, 2015; Schmidhuber, 2015). In a machine

learning context, neural networks are parameterized function architectures that can be viewed as layers of

(partially) interconnected nodes. They are sometimes referred to as “artificial neural networks”, in order to

distinguish them from the biological neural networks present in central nervous systems (from which they

draw inspiration).

The neural network used for the BioLeachVsWastePolicy is illustrated in Figure 2. It is a feed-forward

fully-connected network with a single hidden layer. The circles correspond to the interconnected “neurons”,

3 For a more in-depth and theoretical discussion of the concept of state, see Chatper 5 of Powell (2007).
4 In this sense, the framework used in this paper is closer to semi-Markov decision processes (Bradtke and Duff, 1995) than

to more commonly used Markov decision processes (Bellman, 1957).
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with the mention that for illustration purposes the number of hidden neurons in Figure 2 is much smaller than

the number used in the experiments described in Section 5, which used between 300 and 800 hidden neurons

depending on the size of the input layer. The input neurons correspond to the components of the state vector,

and the two output neurons correspond to the probability that the optimal destination is BioLeach or Waste,

respectively. In order for the policy to make a deterministic decision, the destination corresponding to the

highest probability can be selected. Note that a single output node would have sufficed, since p(Waste)

could have been computed as 1− p (BioLeach), but the two-output network structure was shown because it

better illustrates the type of multiple-output networks necessary when more than two destination decisions

are considered.

In order to compute p (d | s) for some state vector s with components s1, . . . s5 and some destination

d ∈ {BioLeach, Waste}, the following steps are performed for this particular network:

• The input to each hidden neuron hj is a linear combination of the input neurons:

input (hj) =

5∑
i=1

wh
ijsi

• The output of hidden neuron hj is determined by applying its activation function to its input. There are

many possible choices for the activation function. This paper uses the simple rectified linear function

(ReLU), which is generally regarded as a good choice for fully connected networks. The output using

ReLU activation is computed as:

output (hj) = max (0, input (hj))

• The input to each output neuron od, d ∈ {BioLeach, Waste}, is a linear combination of the outputs

of the hidden neurons:

input (od) =
∑
j

wo
jd ∗ output(hj)

• The output of each output neuron is computed by applying the softmax function to its input:

p (d) =
einput(od)∑
d e

input(od)
.

Figure 2: Neural network representation for BioLeachVsWastePolicy.

The networks used for the other two sub-policies are similar to the one for BioLeachVsWastePolicy, the

only differences being that the input neurons will correspond to the appropriate state representation for the
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sub-policy considered, the number of hidden neurons will differ in order to remain proportional with the

number of input neurons, and the number of output neurons will reflect the number of destinations that the

sub-policy chooses between.

3.2.2 Gradient-based policy optimization

This section describes the use of a policy gradient approach for optimizing the neural network policies. Policy

gradient has first been proposed by Williams (1992), who also described how it should be used in conjunction

with neural networks. However, neural policy gradient was seldom used until a recent surge of popularity

caused by applications enabled by new developments in neural network training – for instance, it was one of

the building blocks for the widely acclaimed AlphaGo program (Silver et al., 2016).

Policy gradient updates the parameters of the policy by performing gradient ascent on the objective

function. For stochastic optimization problems of the type this paper is concerned with, the objective

function is an expected value, and is not necessarily differentiable, so computing its gradient is non-trivial.

Policy gradient addresses this by relying on the key insight that, given a function f and a probability density

function pW parameterized by W , the following equality holds:

∇WEx∼pW (x) [f (x)] = Ex∼pW (x) [f (x)∇W log (pW (x)) ] (1)

For policy gradient, f corresponds to the objective function and pW corresponds to the decision selection

(output) probabilities5 computed by the neural network as described in Section 3.2.1. The probabilities are

parameterized by W , a matrix containing the values wh
ij and wo

jd defining the linear combinations that are

part of the neural network. The equation above circumvents the need for directly computing the gradient of

the objective function – instead, only the gradient of the action-selection probabilities needs to be computed.

This is considerably easier, since neural networks are typically built in order to ensure differentiability and

efficient gradient computation, whereas objective functions are not.

The optimization process starts with some initial policy, typically constructed by randomly initializing

the weight matrix W . The destination-selection process then interacts with the generative model described

in Section 2.1.4 by taking the following steps every time a block needs to be allocated:

1. The reward (cash flow since the last decision was made) is computed.

2. The state vector components are determined according to the most recent information concerning

material properties at different locations.

3. The state vector is used as an input to the corresponding sub-policy neural network, and a destination

is selected according to the probabilities computed by the output nodes of the network.

4. The reward, state, and decision are stored in order to be used by the optimization process.

5. When the planning horizon is reached, update the weights of the neural network based on the rewards

and decisions stored during the previous steps.

The updates at Step 5 are performed by taking a step in the direction of the approximate gradient of

the objective function (expected total reward for the period of interest). The gradients with respect to

different weights in the network are computed using backpropagation, a technique based on the chain rule

that iteratively computes the gradients for each layer in a neural network, starting with the output layer.

According to Equation 1, the gradient of the objective function can be written as a function of the gradient

of the logarithm of the destination-selection probabilities. The gradient of this logarithm with respect to the

output layer’s inputs is

∂logpW (d)

∂ input(od)
=

{
1 −pW (d) , if d was selected

−pW (d) , otherwise.

5 Although for production or testing deterministic decisions can be made simply by choosing the maximum probability
decision, probabilistic decisions are required during the optimization phase.
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Therefore, the gradient of logpW (d) with respect to each weight wo
jd is:

∂logpW (d)

∂ wo
jd

=

{
(1 −pW (d)) ∗ output (hj) , if d was selected

−pW (d) ∗ output (hj) , otherwise.

Continuing applying the chain rule, we get:

∂logpW (d)

∂ output (hj)
=
∂logpW (d)

∂ input (od)
∗ wo

jd

∂logpW (d)

∂ input (hj)
=

{
∂logpW (d)
∂ output(hj)

, if input (hj) > 0

0, otherwise

∂logpW (d)

∂ wh
ij

=
∂logpW (d)

∂ input (hj)
∗ si.

Going back to Equation 1, the gradient of the objective function f can be expressed as

Ex∼pW (x) [f (x)∇W log (pW (x)) ]

As is common in stochastic gradient methods, the outer expectation in the equation above is replaced by

a single-sample estimate – that is, Ex∼pW (x) [f (x)∇W log (pW (x)) ] is replaced by f (X)∇W log (pW (X)) ,

where f (X) is the net cash flow obtained during the planning horizon, and X is the vector of decisions that

led to that cash flow. The gradient of log (pW (X)) can be computed as

∇W log (pW (X)) =
∑
t

∑
d

∇W logpW (1d
t ) ,

where the outer sum is taken over all decision times encountered during the planning horizon, the inner sum

is taken over all the destinations, and 1d
t is equal to 1 if destination d was selected at decision time t and

zero otherwise.

Putting everything discussed above together, a stochastic approximation for ∇WEx∼pW (x) [f (x)] is ob-

tained. This allows the use of stochastic gradient ascent in order to update the parameter matrix W ap-

proximately in the direction of greatest increase in f . Rather than vanilla stochastic gradient ascent, the

RMSprop6 method, which performs slightly more complex updates in order to increase stability and con-

vergence speed, will be used. Denoting the stochastic approximation of ∇WEx∼pW (x) [f (x)] by ∇̂EW [f ],
RMSprop updates the weight matrix W using the equations

gk+1 = γgk + (1− γ) ∇̂EW [f ]
2

Wk+1 = Wk +
η ∇̂EW [f ]
√
gk+1 + ε

where γ, η and ε are user-defined parameters set to 0.99, 0.001 and 0.00001 respectively for the case study

in this paper.

This completes the description of step 5 above. The learning process involves repeating steps 1-5 until

a pre-defined condition is met (for instance, a pre-defined number of iterations have been performed, or the

network has achieved a satisfactory level of performance).

Once the learning process is complete, the final values for the neural network weights determine the three

sub-policies CrusherVsBioLeachVsWastePolicy, BioLeachVsWastePolicy and AcidLeachVsWastePolicy. Combin-

ing them results in an optimized policy for sending extracted material to the initial destinations. The policy

determines what initial destination each extracted block should be sent to, including which of the crushers.

The crushed material is placed on the conveyor belt corresponding to the plant with the lowest feed pile

tonnage, similarly to the baseline policy.

6 RMSprop was first proposed by Geoff Hinton in Lecture 6 of CSC321 Winter 2014 at the University of Toronto
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4 Case study

The case study compares the baseline cut-off grade policy to the neural network based policy for the task

of selecting the initial destination. The policies are compared according to the cash flows they obtain under

scenarios generated using the joint uncertainty model described in Section 2.1.4. In order to conduct a fair

evaluation, the 15 geostatistical simulations provided were divided into two groups. The first, consisting of

10 simulations, was used for optimizing the cut-off grades as well as the neural network parameters. The

cut-off grades were optimized using a grid search, resulting in values of 0.52, 0.33 and 0.49 for PlantCutoff ,

BioLeachCutoff and AcidLeachCutoff respectively. The neural network parameters were optimized using

policy gradient reinforcement learning, as discussed in the previous section. The 5 remaining simulations

were used for comparing the optimized cut-off policy to the optimized neural network policy. The policies’

behaviour was evaluated for a total of 6 months of production.

The rewards used by the reinforcement learning approach are the net cash flows obtained after processing

and selling the extracted material. The objective function is the expected value of the total reward for

a pre-defined period of time7, which for this case study was set to the 36 hours after the material in the

allocated block reaches its destination. The 36-hour window was chosen in order to account for the effect

of the material in the block on cash flows given the different destinations’ throughputs and lags (e.g. feed

pile-induced).

The net cash flow during a time period t is computed as

CFt = revenuet − processingCostt −AsPenaltyt −miningCostt

The value of revenuet is computed by multiplying the amount of copper produced according to the current

scenario at each destination during period t by the copper price, and summing up the results over all

destinations. The processing cost for each plant is computed as

0.4 ∗ fixedMillCostt + 0.6 ∗ tonnageDependentCostt,

where fixedMillCostt includes the fixed cost per unit of time of operating the mill regardless of the tonnage,

and tonnageDependentCostt is a function of the tonnage processed during time t and includes all the variable

costs. For the heap leaches, only tonnage-dependent costs are considered. The value of AsPenaltyt was set

to US$3 per 0.1% As content above 0.2% for each ton of concentrate processed during time t. This value was

chosen according to Bruckard et al. (2010), who averaged various sources. Finally, miningCostt denotes the

cost of extracting and hauling material during time t. The exact values of processingCostt and miningCostt
were provided by the mining complex and are omitted for confidentiality.

Figure 3 compares the cash flow obtained for the test simulations by the baseline cut-off grade policy and

the neural network policy. The P50 for the neural network policy is 6.5% higher than for the cut-off grade

policy, and the P90 for the neural network policy is higher than the P10 for the cut-off policy.

The difference between the two policies appears to be largely explained by the way they manage to ensure

a constant feed for the plants. The fixedMillCostt component of the total processing cost, which is incurred

irrespective of the tonnage processed during time t, acts as an implicit penalty on feeding the plant below

capacity. In Figure 4, it can be seen that the neural network policy does a better job at providing a consistent

feed for the mill than the cut-off grade policy. Figure 5 suggests that this is because the cut-off grade policy is

more flexible about the way it can adapt the grade of the material being sent to the plants. Indeed, it can be

seen that, for periods corresponding to low plant tonnage under the cut-off grade policy, the neural network

policy typically lowers the head grade to below the 0.52 cut-off. In contrast, in periods where high-grade

material is abundant the head grade is raised, which can reduce the time spent waiting for material to be

crushed and processed and therefore improve shovel productivity.

7 In reinforcement learning terminology, limiting the objective function to a specific time window is called a finite-horizon
formulation.
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Figure 3: Cumulative cash flow comparison between the cut-off grade policy and the neural network policy. The y-axis values
indicate the percentage of the cut-off policy’s value computed using the test simulations.

Figure 4: Daily tonnage processed at the three plants when initial destinations are selected according to cut-off grade policy
(above) and neural network policy (below). The tonnages are compared to the capacities (horizontal black lines).

The example shown in Figure 6 gives further weight to this hypothesis. The example shows two situations

in which the neural network policy selects a different destination from the cut-off grade policy. By considering

inputs other than the grade, the neural network is capable of making more flexible decisions. In the top

situation, where there is not that much material sent to the crushers and the As concentration is lower, it

decides that the block should be sent to one of the plant crushers, despite having lower grade than in the

bottom situation. The cut-off grade policy does not have the flexibility to adapt its decisions to additional

information in this way.
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Figure 5: Average daily grade processed at the three plants when initial destinations are selected according to cut-off grade policy
(above) and neural network policy (below).

Figure 6: Two situations where the neural network decision is different from the cut-off policy decision.

5 Conclusions and future work

This paper showed how to use reinforcement learning in order to compute policies for allocating material in

a mining complex. The reinforcement learning allows new information to determine the policy’s response, by

including that information into the state update process; the policy then returns the decision corresponding

to the updated state.

A key advantage of the reinforcement learning approach is that it can alleviate the need for computation-

ally expensive re-optimization. There are two ways in which this happens. First, because the policy produced

by reinforcement learning is a mapping from states to decisions rather than a sequence of decisions, there is

no re-optimization necessary when new information is obtained. Instead, the policy only needs to compute

the decision corresponding to the new state, which typically requires very little computational overhead. Sec-

ond, if the distribution of the data used in the optimization process is carefully selected (Levine and Koltun,

2013), the same policy can be used for different input distributions – for instance, the same destination policy

can be used for different extraction sequences. This can allow a reinforcement learning policy to be used as

part of global mine complex optimization methods. For example, metaheuristic production scheduling meth-

ods (Lamghari and Dimitrakopoulos, 2012, 2016) could use the costs and revenues obtained when applying
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the optimized policy for computing the objective function associated with a given perturbation, thus better

informing the search for the optimal extraction sequence.

In addition to destination policies, the types of policies proposed here could be used for many parts of

the mining complex, such as extraction (deciding which of the available blocks each shovel should extract

next), fleet allocation, or processing. Allowing these policies to be optimized simultaneously could further

improve coordination and final value, similarly to existing work on global optimization of mining complexes

under uncertainty (Goodfellow, 2014; Montiel, 2014; Goodfellow and Dimitrakopoulos, 2015). Incorporating

very recent advances in reinforcement learning (e.g. Mnih et al. (2016)) could ensure that this is done as

efficiently as possible.

In order to for the outcome of any optimization process to be successfully used in production it is essential

that the models used for the optimization closely match the behaviour of the actual process of interest. This

requires careful assessment and validation of the model’s assumptions and outcomes, which was not performed

in this work but is crucial when moving from experimental development to actual deployment. In addition,

policy parameters that were optimized based on some computational model could continue to be updated

based on real data obtained during deployment.

Another important avenue for future work is to explicitly incorporate particular sensors and data streams

into the decision-making process. This may involve including the sensors directly as part of the state rep-

resentation, or building stochastic models that can get updated based on the new data; recent work by

Benndorf et al. (2014) shows an example of this can be done.
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