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nécessaire et un lien vers l’article publié est ajouté.
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kwassi-joseph.dzahini@polymtl.ca

August 2017
Les Cahiers du GERAD
G–2017–68
Copyright c© 2017 GERAD, Dzahini
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Abstract: We propose a lemma that clarifies the proof of Theorem 4.1 on densities of sums in [3]. More
precisely, by denoting by fS+Y the density of an absolutely continuous real-valued random variable S aug-
mented by an independent real-valued Gaussian random variable Y with mean zero and an arbitrarily small
variance, we prove that if fS+Y is bounded almost everywhere by a strictly positive constant C, then almost
everywhere, the density fS is also bounded by the same constant C. Then, using these results, we show how
small ball probability estimates such as

P

(∣∣∣∣∣
n∑
k=1

akξk

∣∣∣∣∣ ≤ ε
)
≤ Cε for all ε > 0,

with ak’s real numbers still hold when ak’s are arbitrary random variables.
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1 Notations

Given a vector x = (x1, . . . , xn) ∈ Rn, we denote by ‖∗‖2 the `2−norm defined as:

‖x‖2 =

 n∑
j=1

|xj |2
 1

2

,

and Sn−1 stands for the unit sphere of this norm, that is

Sn−1 = {x = (x1, . . . , xn) ∈ Rn : ‖x‖2 = 1}.

Let d ∈ N∗ and p ∈ [1,+∞]:

We denote by Lp(Rd) the Lebesgue space of (classes of) measurable functions

u : Rd −→ C

such that:

? If 1 ≤ p < +∞,
∫
Rd |u(x)|p dx < +∞.

? If p = +∞, supess
x∈Rd

|u(x)| := inf{M ≥ 0, |u(x)| ≤M a.e} < +∞,

where, “a.e”: almost everywhere, means that |u(x)| ≤ M except on a subset of Rd with Lebesgue measure

zero.

Let 1 ≤ p < +∞, then

‖u‖Lp(Rd) =

(∫
Rd
|u(x)|p dx

) 1
p

,

and

‖u‖L∞(Rd) = supess
x∈Rd

|u(x)| .

If x ∈ Rd, we denote by xT its transpose.

The scalar product of two column vectors x = (x1, . . . , xd) and y = (y1, . . . , yd) of Rd is denoted by x · y or

〈x, y〉, and defined as

x · y = 〈x, y〉 = xT y =

d∑
k=1

xkyk.

The Fourier transform of a function f ∈ L1(Rd) is denoted by f̂ , and defined for ξ ∈ Rd as:

f̂(ξ) =

∫
Rd
f(x)e−iξ·xdx.

2 Introduction

In [3], to prove Theorem 4.1 about “Densities of sums” which is as follows,

Theorem 1 (Densities of sums) Let X1, . . . , Xn be real-valued independent random variables whose densities

are bounded by K > 0 almost everywhere. Then there exists a strictly positive constant C independent of n

such that for all sequence of (deterministic) real numbers a1, . . . , an satisfying
∑n
j=1 a

2
j = 1, the density of

S =
∑n
j=1 ajXj is bounded by CK almost everywhere.

Mark Rudelson and Roman Vershynin had stated that one “may assume that φXj ∈ L1(R) by adding to

Xj an independent normal random variable with an arbitrarily small variance”, and that “Fourier inversion

formula associated with the Fourier transform yields that the density of S at the origin can be reconstructed

from its Fourier transform”, where φXj denotes the characteristic function of Xj . They then bounded the

density fS(0) of S at the origin (under many other assumptions) to complete their proof. However, one way
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of making this proof simpler and clearer is to define the real-valued random variable Sm = S + a1Ym =

a1(X1 +Ym) +
∑n
j=2 ajXj , where Ym is a centered real-valued Gaussian random variable, independent of Xj

for all 1 ≤ j ≤ n, with variance ε2m satisfying lim
m→+∞

εm = 0, then prove that fSm(0) is bounded and then

show how this last result implies that fS(0) is bounded. This leads us to state the following lemma which is

our main result.

Lemma 1 Let S be a real-valued random variable with density fS and (Yn)n≥1 a sequence of Gaussian random

variables independent of S, with mean zero and variance ε2n for all n ≥ 1, where (εn)n≥1 is a sequence of

positive real numbers tending to zero at infinity. We assume that almost everywhere the random variable

Sn = S + Yn has a density fSn bounded by a strictly positive constant C independent of n. Then almost

everywhere, fS is bounded by C.

In this paper, we first give a complete proof of Lemma 1 in Section 3; then we show in Section 4 how it

implies the main result in Theorem 1 using the same suggested assumptions and approaches of M. Rudelson

and R. Vershynin in [3]. Futhermore, using an approach based on a basic property of conditional expectation,

we also decided to give in Section 5 a rigorous proof of the fact that, small ball probability estimates such as

P

(∣∣∣∣∣
n∑
k=1

akξk

∣∣∣∣∣ ≤ ε
)
≤ Cε for all ε > 0, (1)

with C > 0 independent of n, a = (a1, . . . , an) ∈ Sn−1 a deterministic vector and Xn = (ξ1, . . . , ξn) a

random vector, still hold with the same constant C when a = (a1, . . . , an) is an arbitrary random vector

belonging to the unit sphere of Rn. In fact, such an estimate follows obviously from Theorem 1 when

a ∈ Sn−1 is a deterministic vector and was one of the most important ingredients that helped to solve (when

a ∈ Sn−1 is a random vector) square matrices (with subGaussian entries and bounded density) invertibility

problem in [4].

3 Proof of Lemma 1

In this section we present the proof of Lemma 1 that helped us to make the proof of Theorem 1 clearer.

Proof. Let’s suppose that there exists 0 < δ < C
4 and an interval I = [a, b] with non-empty interior such

that almost everywhere,

for all y ∈ I, fS(y) ≥ C + δ. (2)

Let a < t < b and Fn =
[
t−b
εn
, t−aεn

]
. Using the independence of S and Yn, we have:

fSn(t) =
1√

2πεn

∫
R
fS(t− x)e

− x2

2ε2n dx. (3)

By the change of variable y = x
εn

, we get almost everywhere,

fSn(t) =
1√
2π

∫
R
fS(t− εny)e−

y2

2 dy >
1√
2π

∫
Fn

fS(t− εny)e−
y2

2 dy ≥ (C + δ)Jn, (4)

where for all n ≥ 1,

Jn =
1√
2π

∫
Fn

e−
y2

2 dy. (5)

Since the sequence of intervals (Fn)n≥1 converges to R when n tends to +∞, then according to Lebesgue

Dominated Convergence Theorem,

lim
n→+∞

Jn = 1. (6)
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Hence there exists n0 ∈ N such that for all n ≥ n0, Jn > 1− δ
2C . Thus, almost everywhere,

fSn(t) > (C + δ)

(
1− δ

2C

)
= C +

δ

2
− δ2

2C
> C +

3δ

8
, (7)

which is absurd since fSn(t) ≤ C almost everywhere.

4 Proof of Theorem 1

Now we show how Lemma 1 implies the main result in Theorem 1 using the same suggested assumptions

and approaches of M. Rudelson and R. Vershynin in [3]. For this purpose, we need in addition the following

results:

Definition 1 (Distribution function and non-increasing rearrangement [8]) Let E be a measurable subspace

of Rn and f : E −→ R a measurable function. Let m be the Lebesgue measure of Rn. The distribution function

µf of f is given by:

µf (λ) := m({x ∈ E : |f(x)| > λ}), for all λ ≥ 0, (8)

and its non-increasing rearrangement f∗ is defined by:

f?(t) := inf{λ ≥ 0, µf (λ) ≤ t}, for all t ∈ (0,m(E)). (9)

We have the following properties:

Lemma 2 [6] If f ∈ Lp(E), p ≥ 1, then:

i) ∫
E

|f |pdm = p

∫ m(E)

0

λp−1µf (λ)dλ. (10)

ii)

‖f‖Lp(E) =

(∫
E

|f |p dm
) 1
p

=

(∫ m(E)

0

[f?(t)]pdt

) 1
p

= ‖f?‖Lp((0,m(E))) . (11)

Lemma 3 (Decay of characteristic functions [3]) Let X be a random variable whose density is bounded by
K > 0. Then the non-increasing rearrangement of the characteristic function φX(t) = E

(
eitX

)
of X satisfies:

|φX |?(t) ≤

{
1− c

(
t
K

)2
if 0 < t < 2πK√

2πK
t if t ≥ 2πK,

(12)

where c is a strictly positive constant.

Lemma 4 (The Fourier inversion formula [1]) Let d ∈ N∗ and f ∈ L1(Rd) with f̂ its Fourier transform.

We assume that f̂ ∈ L1(Rd). Then almost everywhere:

f(x) =
1

(2π)d

∫
Rd
f̂(ξ)eiξ·xdξ i.e f̌ =

1

(2π)d
ˆ̂
f, (13)

where f̌(·) = f(−·).

Lemma 5 (Convolution and inequalities [1]) Let p, q ∈ [1,+∞] satisfying 1
p + 1

q = 1 and d ∈ N∗.

i) If f ∈ L1(Rd) and g ∈ Lp(Rd), then f ∗ g(x) exists for almost all x ∈ Rd, f ∗ g ∈ Lp(Rd) and:

‖f ∗ g‖Lp(Rd) ≤ ‖f‖L1(Rd) ‖g‖Lp(Rd) . (14)
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ii) If f ∈ Lp(Rd) and g ∈ Lq(Rd), then f ∗ g(x) exists for almost all x ∈ Rd, f ∗ g ∈ L∞(Rd) and:

‖f ∗ g‖L∞(Rd) ≤ ‖f‖Lp(Rd) ‖g‖Lq(Rd) . (15)

Moreover, f ∗ g is uniformly continuous.

Proof. (Theorem 1) Let X be an absolutely continuous real-valued random variable. We denote by fX its

density with respect to the Lebesgue measure on R. Let β ∈ R∗ and g : R −→ R be a continuous and

bounded function. We have

E (g(βX)) =

∫
R
g(y)× 1

β
fX

(
y

β

)
dy,

then the density of βX is fβX(x) = 1
β fX

(
x
β

)
. Thus, “by replacing Xj with KXj , we can assume that K = 1.

By replacing Xj with (−Xj) when necessary, we can assume that for all 1 ≤ j ≤ n, aj ≥ 0. We can further

assume that aj > 0 by dropping all zero terms from the sum.”

Let’s suppose that there exists 1 ≤ j0 ≤ n such that aj0 >
1
2 . By reodering the numbers aj , we can assume

that j0 = n. We denote by hn the density of
∑n
j=1 ajXj . We have:

hn(x) = hn−1 ∗ fanXn(x) =

∫
R
hn−1(y)× 1

an
fXn

(
x− y
an

)
dy

≤ 2

∫
R
hn−1(y)dy = 2.

Now we assume in the rest of the proof that aj is fixed, and 0 < aj ≤ 1
2 for all 1 ≤ j ≤ n.

The density of S is

fS(x) = hn(x) = fa1X1
∗ fa2X2

∗ fa3X3
∗ · · · ∗ fan−1Xn−1

∗ fanXn(x)

and for all 1 ≤ i ≤ n, ∫
R
f2aiXi(x)dx ≤ 1

ai

∫
R
faiXi(x)dx =

1

ai
< +∞

whence faiXi ∈ L2(R) ∩ L1(R). Thus, it follows from Lemma 5 that fa1X1
∗ fa2X2

∈ L2(R) which implies

(fa1X1 ∗ fa2X2)∗ fa3X3 ∈ L2(R) and step by step we finally get hn−1 ∈ L2(R). It follows again from Lemma 5

that

fS = hn−1 ∗ fanXn ∈ L∞(R)

and moreover fS is uniformly continuous.

For all t ∈ R, let

X̃j = Xj − a2j t and S̃t =

n∑
j=1

X̃j = S − t.

Since fS is continuous, then

fS(t) = fS̃t(0) for all t ∈ R,

thus

‖fS‖L∞(R) ≤ C0 ⇐⇒ ∀t ∈ R
∣∣fS̃t(0)

∣∣ ≤ C0, with C0 > 0,

in other words, by translating Xj when necessary, our problem is reduced to a problem of boundary of the

density of S at the origin.

Let Ym be a real-valued Gaussian random variable with mean zero, independent of Xj for all 1 ≤ j ≤ n and

with variance ε2m satisfying lim
m→+∞

εm = 0. For all 2 ≤ j ≤ n, Let’s denote by φj the characteristic function

of Xj and by φm1 the characteristic function of X1 augmented by the Gaussian random variable Ym, that is

φm1 (t) = E
(
eit(X1+Ym)

)
. Let Sm = S + a1Ym = a1(X1 + Ym) +

∑n
j=2 ajXj .
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∫
R
|φm1 (t)|dt =

∫
R

∣∣E (eitX1eitYm
)∣∣ dt ≤ ∫

R
e−

1
2 t

2ε2mdt <∞,

then φm1 ∈ L1(R). Hence, ∫
R
|φSm(t)|dt ≤

∫
R
|φm1 (a1t)|dt <∞.

Since

φSm(−t) = E
(
e−itSm

)
=

∫
R
e−itξfSm(ξ)dξ = f̂Sm(t),

it follows that f̂Sm ∈ L1(R) whence by Fourier inversion formula (Lemma 4), almost everywhere,

fSm(0) =
1

2π

∫
R
f̂Sm(t)dt =

1

2π

∫
R
φSm(t)dt ≤

∫
R
|φSm(t)|dt := I. (16)

It follows from the independence of X1, . . . , Xn, Ym that:

φSm(t) = E
(
eit(a1(X1+Ym)+

∑n
j=2 ajXj)

)
= E

eia1t(X1+Ym)
n∏
j=2

eiajtXj


= E

(
eia1t(X1+Ym)

) n∏
j=2

E
(
eiajtXj

)
= φm1 (a1t)

n∏
j=2

φj(ajt),

then

I =

∫
R
|φm1 (a1t)|

n∏
j=2

|φj(ajt)|dt.

In the rest of the proof, we set

φ1 := φm1 .

Using the equality
∑n
j=1 a

2
j = 1, and the generalized Hölder inequality [2], we get:

I ≤
n∏
j=1

(∫
R
|φj(ajt)|

1

a2
j dt

)a2j
.

|φj | is then replaced by |φj |? in the above integrals whose values remain the same according to Lemma 2,

followed by the change of variable ajt = u. Hence,

I ≤
n∏
j=1

(
1

aj

∫ +∞

0

[|φj |?(t)]
1

a2
j dt

)a2j
. (17)

Let

Ij :=

∫ +∞

0

[|φj |?(t)]
1

a2
j dt.

Using Lemma 3, we get:

Ij =

∫ 2π

0

[|φj |?(t)]
1

a2
j dt+

∫ +∞

2π

[|φj |?(t)]
1

a2
j dt ≤ I1j + I2j

where

I1j =

∫ 2π

0

(1− ct2)
1

a2
j dt and I2j =

∫ +∞

2π

[√
2π

t

] 1

a2
j

dt.

Using the inequality 1− t ≤ e−t for all t ∈ R we get

I1j ≤
∫ 2π

0

e
− ct2
a2
j dt ≤

∫ +∞

0

exp

− t2

2
(
aj√
2c

)2
 dt =

√
2π × aj√

c
= Caj .
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Since 1
2a2j
≥ 2, the integral

I2j = (2π)
1

2a2
j

∫ +∞

2π

1

t
1

2a2
j

dt

is a convergent Riemann integral satisfying:

I2j = (2π)
1

2a2
j

 1

1− 1
2a2j

[ 1

t
1

2a2
j

−1

]+∞
2π

= (2π)
1

2a2
j × (2π)

1− 1

2a2
j × 1

1
2a2j
− 1

=
2π

1
2a2j
− 1

=
4πa2j

1− 2a2j
≤ 8πa2j .

Thus,

Ij ≤ Caj + 8πa2j ≤ (C + 8π)aj since aj ∈ (0, 1)⇒ a2j < aj

whence Ij ≤ 2Caj for C large enough.

Hence it follows from (17) and the previous inequality that:

I ≤
n∏
j=1

(
1

aj
× 2Caj

)a2j
= (2C)

∑n
j=1 a

2
j = 2C < +∞.

Thus, it follows from (16) that

fSm(0) = fS+a1Ym(0) ≤ I ≤ 2C,

whence, using Lemma 1 we finally get,

fS(0) ≤ 2C,

and the proof is complete.

5 A small ball probability estimate

In [4], after having reduced via Lemma 5.6, the invertibility problem of square random matrices A with

subgaussian entries and bounded density, to a lower bound on the distance between a random vector and

a random subspace, M. Rudelson then reduced bounding the distance to a small ball probability estimate”.

More precisely, given a “random normal” X∗ = (a1, . . . , an) ∈ Sn−1 and the n− th column Xn = (ξ1, . . . , ξn)

of A, he made use of the following estimate:

P (|〈X∗, Xn〉| < t) = P

(∣∣∣∣∣
n∑
k=1

akξk

∣∣∣∣∣ < t

)
≤ Ct for all t > 0, (18)

where C is a strictly positive constant independent of n. In fact, if X∗ had deterministic components ak,

then almost everywhere the density of the real-valued random variable
∑n
k=1 akξk would have been bounded

according to Theorem 1 and (18) would have followed obviously from this same theorem but unfortunately,

this is not the case so one needs to prove rigorously that such an estimate holds when (a1, . . . , an) ∈ Sn−1 is

an arbitrary random vector. We therefore propose a complete proof. More precisely, we show how such an

estimate can be deduced from Theorem 1.

Theorem 2 (Small ball probability) Let ξ1, . . . , ξn be real-valued independent random variables whose den-

sities are bounded by K > 0 almost everywhere. Then there exists a strictly positive (deterministic) constant

C independent of n such that for all arbitrary random vector a = (a1, . . . , an) ∈ Sn−1 independent of

Xn = (ξ1, . . . , ξn),

P (|〈a,Xn〉| < t) = P

(∣∣∣∣∣
n∑
k=1

akξk

∣∣∣∣∣ < t

)
≤ 2CKt for all t > 0. (19)
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Before we prove Theorem 2, we also need in addition to Theorem 1, the following result which constitutes

our main tool.

Lemma 6 (Substitution property of conditional expectation [7]) Let U, V be random maps into (S1,S1)

and (S2,S2) respectively. Let ψ be a measurable real-valued function on (S1 × S2,S1
⊗
S2). If U is G-

mesurable, σ(V ) and G are independent and E (|ψ(U, V )|) < +∞, then one has that

E (ψ(U, V )|G) = h(U) where h(u) := E (ψ(u, V )) . (20)

Proof. (Theorem 2) Let

Sa,ξn =

n∑
k=1

akξk.

We want to estimate the probability

P (|〈a,Xn〉| < t) = P
(∣∣Sa,ξn ∣∣ < t

)
for all t > 0.

Let ψt be the measurable real-valued function on (Rn × Rn,B(Rn)
⊗
B(Rn)) defined by

ψt(a,Xn) = 1|〈a,Xn〉|<t.

Since a |= Xn, then the σ-algebra σ(a) is independent of σ(Xn). ψt satisfies the condition

E (|ψt(a,Xn)|) < +∞

then it follows from Lemma 6 that:

E (ψt(a,Xn)|σ(a)) = E
(
1|〈a,Xn〉|<t|σ(a)

)
= ht(a) (21)

Let (b1, . . . , bn) ∈ Rn be a deterministic vector, one has

ht((b1, . . . , bn)T ) = E
(
1|∑n

k=1 bkξk|<t
)

= P

(∣∣∣∣∣
n∑
k=1

bkξk

∣∣∣∣∣ < t

)
. (22)

Hence, since ∀ω ∈ Ω, a(ω) = (a1(ω), . . . , an(ω)) ∈ Sn−1 is a deterministic vector, it follows from Theorem 1

that, for all ω ∈ Ω,

ht(a(ω)) = P

(∣∣∣∣∣
n∑
k=1

ak(ω)ξk

∣∣∣∣∣ < t

)
=

∫ t

−t
f
S
a(ω),ξ
n

(u)du ≤ 2CKt. (23)

where the term on the right-hand side doesn’t depend on ω, thus it follows from a basic property of conditional

expectation (see point (b) of Theorem 2.7 in [7]) that:

E
(
1|〈a,Xn〉|<t

)
= E

[
E
(
1|〈a,Xn〉|<t|σ(a)

)]
= E (ht(a)) ≤ 2CKt, (24)

that is,

P (|〈a,Xn〉| < t) = P

(∣∣∣∣∣
n∑
k=1

akξk

∣∣∣∣∣ < t

)
≤ 2CKt. (25)
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