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P. Côté, G. Desaulniers

G–2017–63

August 2017
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Abstract: Maintenance activities help prevent costly generator breakdowns but because generators under
maintenance are typically unavailable, the impact of maintenance schedules is significant and their cost must
be accounted for when planning maintenance. In this paper we address the generator maintenance scheduling
problem in hydropower systems. We propose a mixed-integer linear programming model that considers the
time windows of the maintenance activities, as well as the nonlinearities and disjunctions of the hydroelectric
production functions. Because the resulting model is hard to solve, we also propose an extended formulation,
a set reduction approach that uses logical conditions for excluding unnecessary set elements from the model,
and valid inequalities. We performed computational experiments using a variety of instances adapted from
a real hydropower system in Canada, and the extended formulation with set reduction achieved the best
results in terms of computational time and optimality gap.

Keywords: Hydroelectric power generation, integer linear programming, mathematical programming, opti-
mal maintenance scheduling
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1 Introduction

In the power industry, preventive maintenance activities are carried out on a regular basis to prevent expensive

equipment failures and to ensure a continuous operation within acceptable efficiency levels. As generators

under maintenance are typically inactive, the maintenance scheduler should anticipate the impact of the

maintenance plan on the system operation cost. However in hydroelectric systems these costs are difficult

to estimate due to multiple interrelated physical variables. In particular, hydroelectricity production is a

function of both the potential energy (the water head) and the kinetic energy of the water that drives the

turbine-generators of the system. Formally [3],

p = ρgγqhη(q, h), (1)

where p is the power output (MW), ρ the water density (kg/m3), g the gravitational acceleration (m/s2), γ

the conversion factor (10−6), q the turbine water discharge (m3/s), h the net water head (m), and η(q, h) the

turbine-generator efficiency (%). For each turbine the efficiency η is a nonlinear function of the net water head

and the water discharge of the turbine. Therefore, the efficiency factor η introduces further nonlinearities in

the power production of the system. When the maximum discharge of each turbine is reached, water can be

spilled to keep the reservoir within acceptable levels.

As the set of active generators affects the generation capacity as well as the optimal quantities of water

spill and water discharge, the number of active generators has a nonlinear effect on the total power output.

Figure 1 shows the power production as a function of water discharge and stored water in a reservoir for either

four or five active generators. Rio Tinto computes these surfaces by solving a unit commitment problem via

dynamic programming [9].
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Figure 1: The maximum power output as a function of water discharge and stored water varies according to the number of active
generators

Spatial and temporal inter-dependences should also be considered in the hydropower operation. First,

because water discharges can feed downstream turbines in the current or in subsequent time periods, and

second, because future operation costs are determined by present decisions, such as generator outages and

water spills from reservoirs. All the aforementioned elements make the optimal planning of maintenance

outages in hydropower systems a challenging endeavor.

In the electricity industry, the Generator Maintenance Scheduling Problem (GMSP) has been widely

studied, see e.g. [4]. However, specific operating conditions of hydroelectric systems have been scarcely

addressed. Feng et al. [7] represented the uncertainty of the power output with fuzzy variables, but omitted

water storage levels and water head effects. Foong et al. [5] proposed a meta-heuristic for an oversimplified

hydropower operation problem with constant power output in active units. Kuzle et al. [6] introduced

transmission constraints in a simple GMSP where the nonlinearity of the production functions is neglected.

Likewise, Perez-Canto [8] omitted relevant characteristics of hydropower systems, such as temporal and
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spatial interdependencies, and nonlinearities of the power production. Clearly, a finer representation of the

hydropower system’s characteristics is necessary to achieve valid solutions to the GMSP for hydropower

systems in practice.

Particular aspects of hydroelectric systems have been dealt with in works addressing the short-term oper-

ation, without incorporating maintenance scheduling decisions. For the day-ahead scheduling of generators,

Conejo et al. [1] introduced piecewise linearization for representing the effects of the water discharge on

the power production. The water head effect on the power output was estimated by interpolation among

piecewise approximations for different stored water levels. Following a similar approach, Borghetti et al. [2]

proposed a refined linearization for representing the water head effects. Due to the size of the resulting model,

results were only reported for a single-reservoir system. More recently, Seguin et al. [9] approximated the

power output with smoothing splines for the short-term scheduling of hydro units. These splines were fitted

to a maximum power output surface computed by means of dynamic programming for different values of

water discharge and stored water level in a reservoir.

In this paper, we propose a mixed-integer linear programming model for the GMSP in hydropower sys-

tems that accounts for the nonlinearies of hydroelectric operations via a convex hull approximation of the

hydropower production function. Given the difficulty of the resulting optimization problem, we explore three

approaches for strengthening the formulation: extended formulation, set reduction, and valid inequalities.

The set reduction uses logical conditions for excluding superfluous set elements, in order to reduce the vari-

ables and constraints of the model. The possible combinations of these approaches led to eight formulations

that we compared in terms of computational times and optimality gaps on test instances adapted from a real

hydropower system in Canada.

This paper is structured as follows. Section 2 presents our basic mixed integer programming mathematical

model. Section 3 describes the approaches to improve the formulation and the resulting alternative formu-

lations. Section 4 reports our computational experiments for evaluating the different alternatives. Section 5

summarizes our findings and concludes the paper.

2 A basic mixed integer programming formulation

We consider the GMSP for hydropower systems in the general form

min
y∈Y

x∈X (y)

Ψ(y) + Φ(x, y),

where the variables in x represent operational decisions and those in y represent the maintenance decisions.

The set Y of possible maintenance decisions is defined by the time window constraints of the maintenance

activities, the maximum number of simultaneous maintenance outages, and other logical constraints. The

feasible set X (y) for the operation decision variables x is determined by the water balance constraints and

the bounds of the hydropower operation, which are affected by the scheduled outages y. The functions Ψ(y)

and Φ(x, y) denote the maintenance cost and the hydropower operation cost, respectively. Note that Φ(x, y)

is a function of the maintenance schedule y because the power production function is different for each set

of active generators (Figure 1). The interdependency between the maintenance plan and the hydropower

operation makes this a challenging nonlinear, nonconvex and combinatorial optimization problem.

In the next subsections we formulate in turn the hydropower operation, the linear approximation of the

power production function, and the maintenance scheduling.

2.1 The hydropower operation

The hydropower operation problem optimizes the water discharges, water spills and stored water levels to

maximize the total expected value of the electricity production, while respecting the physical constraints of

the system and the target levels of the reservoirs at the end of the planning horizon. The physical constraints

enforce the mass, energy and power balance, as well as the bounds of the variables, such as the water levels
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in reservoirs. At each time period t ∈ T , reservoirs can be fed by lateral inflows Fit from tributary rivers or

snow-melt, or by turbine discharges ugt and water spills vgt from upstream reservoirs g ∈ U(i) (Figure 2).

ugt!
Upstream  
inflows 

vgt!

vit!

uit!

sit!
Fit!

Lateral  
inflows 

Plant  
outflows 

Figure 2: Decision variables, parameters and water balance in a hydropower system: water discharge (u), water spill (v), stored
water (s) and lateral inflows (F ). Adapted from [10]

At each powerhouse and time period, the mass balance (2) imply that the initial water volume si(t−1)

minus the water volume sit at the end of the time period should be equal to the water inflows minus the

total outflows, multiplied by the conversion factor Q. As it is customary, we assume that the outflows are

equal to the total turbine discharge uit and the water spill vit of the reservoir.

sit − si(t−1) = Q

(
Fit +

∑
g∈U(i)

[ugt + vgt]− uit − vit
)
, ∀ t ∈ T , i ∈ I. (2)

To ensure the consistency with the initial and the final water volume of the reservoirs, we define si(t−1) = Si0

and sit = SiT for t = 1 and t = T in (2), respectively. In addition, (3)-(5) define the bounds on the water

discharge, water spill and water volume.

0 ≤ uit ≤ Ūi, ∀i ∈ I, t ∈ T , (3)

0 ≤ vit ≤ V̄i, ∀i ∈ I, t ∈ T , (4)

¯
Si ≤ sit ≤ S̄i, ∀ i ∈ I, t ∈ T . (5)

The energy balance (6) requires that at each time period t, the total energy production plus the energy

purchases equal the load dt plus the energy sales:∑
i∈I

pit + w−t = dt + w+
t , ∀ t ∈ T . (6)

2.2 Linearization of the power production function

For each powerhouse, the power output pit is a nonlinear function Θi of the water discharge uit and the

net water head (which in turn is a nonlinear function of the stored water volume sit and the total water

discharge uit). Since each generator may have a particular efficiency curve, the maximum power output in a

powerhouse depends on the specific set of active generators. However, if the differences among power functions

of individual generators are negligible, the power function in a powerhouse can be characterized by the number

of active generators kit, instead of the explicit set of active generators, that is, pit = Θi(sit, uit, kit). This

assumption significantly reduces the problem complexity, since otherwise a specific power function would be

necessary for each combination of active generators.

Given a set of active generators with their respective efficiency curves, a dynamic programming algorithm

can determine the maximum power output corresponding to each combination of water discharge and stored
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water level [9]. For each number of active generators, a surface can represent the computed maximum

power output (Figure 1). By definition, this set of points is contained in its convex hull, whose half-space

representation can be obtained with a facet enumeration algorithm. Some implementations of this algorithm

are freely available [11, 13].

The resulting polyhedron may contain a large number of hyperplanes, some of which should be dropped

since they define the lower facets of the convex hull with respect to the power output pit. The set can

be additionally reduced by iteratively removing the hyperplane for which the remaining polyhedron has the

smallest approximation error of the power output. This sequential elimination of hyperplanes is repeated until

the target number of hyperplanes or a specified precision is reached. For each powerhouse i and number of

active generators k, the resulting set of hyperplanes H(i, k) provides an outer approximation of the maximum

power output, i.e.,

pit ≤ β0
h + βu

huit + βs
hsit ∀ i ∈ I, t ∈ T , k ∈ K(i, t), h ∈ H(i, k).

At powerhouse i and time period t, if k∗ is the number of active generators, power function constraints for

k 6= k∗ can be relaxed by adding the bounding term (1− zitk)P̄i on the right hand side of (7), i.e.,

pit ≤ β0
h + βu

huit + βs
hsit + (1− zitk)P̄i, ∀ i ∈ I, t ∈ T , k ∈ K(i, t), h ∈ H(i, k), (7)

where P̄i is the generation capacity of powerhouse i and the binary variables zitk indicate if k generators are

active at (i, t). Since only one binary variable zitk takes value 1 for each (i, t) ∈ I × T ,∑
k∈K(i,t)

zitk = 1, ∀ i ∈ I, t ∈ T . (8)

Thus, by (8) and the binary condition on zitk, the power output pit in (7) is bounded only by the hyper-plane

set corresponding to the number of active turbines.

2.3 The maintenance scheduling problem

For each maintenance activity m ∈ M, the interval between the earliest starting time period Em and

the latest starting time period Lm defines the set of time periods T (m) when the activity m can start:

T (m) = {t ∈ T |Em ≤ t ≤ Lm}. We assume that each activity can be completed within the planning

horizon T , i.e., Em ≤ Lm ≤ T −Dm + 1, where Dm denotes the duration of the maintenance task m.

The definition of the binary variables ymt representing the maintenance decisions (see Appendix C) avoids

the definition of time window constraints since the set T (m) encodes the time window parameters of each

activity. Unnecessary ymt variables are excluded from the model because they are defined using T (m)

instead of T .

For the basic maintenance problem we consider only the constraints on: completion of maintenance tasks,

maximum number of generator outages, and mapping the maintenance schedule to the number of active

generators.

The task completion constraints (9) enforce each activity to start at one of the feasible time periods T (m).

Constraints (10) compute for each powerhouse the number of maintenance activities rit in execution at time

period t, among the set of activities M(i) that must be completed at station i.∑
t∈T (m)

ymt = 1, ∀ m ∈M. (9)

∑
m∈M(i)

t′ ∈{T (m) | (t−Dm+1)≤t′≤ t}

ymt′ = rit, ∀ i ∈ I, t ∈ T . (10)

Notice that at time period t an activity m is in execution if it starts between t−Dm + 1 and t. This is the

interval of index t′ on the summation term in (10).
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The maximum number of outages Oit bounds rit:

0 ≤ rit ≤ Oit, ∀ i ∈ I, t ∈ T . (11)

Oit depends on the maintenance resources. In addition, for a feasible operation, Oit cannot exceed the

difference between the number of available generators Ḡit and the minimum number of generators in service

¯
Gi, i.e., Oit ≤ Ḡit −

¯
Gi, ∀ i ∈ I, t ∈ T . Notice that Ḡit is a time varying parameter, since the number

of available generators can be affected by existing generator outages or by previous maintenance scheduling

decisions. On the other hand, the minimum number of generators
¯
Gi is constant in time due to operational

requirements.

Constraints (12) map the number of outages rit into the variables zitk. At each period and powerhouse,

the maximum number of available generators Ḡit equals the sum of the number of outages rit plus the number

of active generators k∗ corresponding to zitk∗ = 1.

rit +
∑

k∈K(i,t)

kzitk = Ḡit, ∀ i ∈ I, t ∈ T . (12)

Constraints (14)–(13) specify the binary decision variables.

zitk ∈ {0, 1}, ∀ i ∈ I, t ∈ T , k ∈ K(i, t), (13)

ymt ∈ {0, 1}, ∀m ∈M, i ∈ T (m). (14)

2.4 The complete basic model

The GMSP minimizes the sum of the maintenance costs plus the net cost of electricity trade calculated

as the sum of the differences between electricity purchases and electricity sales. We refer to the resulting

mixed-integer linear programming (MILP) problem as PB :

minimize
w+,w−,u,v,s,

a,p,y,z

∑
m∈M,
t∈T (m)

Cmtymt +
∑
t∈T

(
B−t w

−
t −B+

t w
+
t

)
, (15)

subject to constraints (2)–(14).

3 Tightening approaches

The formulation in Section 2.4 is difficult to solve for realistic instances. In this section we explore three

approaches for tightening the formulation: extended formulation, set reduction and valid inequalities.

3.1 Extended formulation

The bound (7) can be very weak because it is valid for any operating condition and for any number of active

generators k on the interval (Ḡit,
¯
Gi). However, P̄ik and pitk can be based on the actual number of active

generators k and the specific operating conditions at each time period and powerhouse. Constraints (16)

specify the power bound for each number of active generators, and (17) ensure the equivalence with the original

variables pit and in substitution of (7), constraints (18) define a linear approximation of the power function.

pitk ≤ zikP̄ik, ∀ i ∈ I, t ∈ T , k ∈ K(i, t). (16)∑
k∈K(i,t)

pitk = pit, ∀ i ∈ I, t ∈ T , (17)

pitk ≤ β0
h + βu

huit + βs
hsit, ∀ i ∈ I, t ∈ T , k ∈ K(i, t), h ∈ H(i, k), (18)

Thus we have PE as the MILP with the extended formulation:

minimize (15) subject to (2)–(6), (8)–(14), (16)–(18).
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The bounds P̄ik for (16) can be obtained as the optimal values q∗ik from maximizing the power output

in (18) when the stored water level is maximum:

maximize
q,u

qik s.t. qik ≤ β0
h + βu

huitk + βs
hS̄i, ∀h ∈ H(i, k). (19)

3.2 Set reduction

Next we exploit the time window parameters of the maintenance tasks in order to exclude unnecessary set

elements. As a consequence, fewer constraints and variables are defined, leading to a tighter continuous

relaxation and fewer choices for branching. We aim at reducing the set K(i, t) that determines both the

number of binary variables zitk and the degrees of freedom of the system (8) and (12).

A maintenance activity m beginning at Em and with duration Dm spans the interval T E(m) = { t ∈
T (m) |Em ≤ t < Em + Dm}. Likewise, if activity m starts at Lm, it spans the interval T L(m) = { t ∈
T (m) |Lm ≤ t < Lm +Dm}. The overlap of the two intervals

T O(m) , T E(m)∩T L(m)

= { t ∈ T (m) |Lm ≤ t ≤ Em +Dm},

defines the set of time periods when the activity necessarily will take place. Likewise, the span of a mainte-

nance activity m is the interval T S(m) where the activity can be in execution. Since activity m cannot start

before Em and it can finish no later than Lm +Dm, we define

T S(m) = { t ∈ T (m) |Em ≤ t ≤ Lm +Dm}.

These definitions are illustrated in Figure 3.

Em! Em + Dm!Lm! Lm + Dm!

Appendix 2: Reduction of variables set
Proposition:
For each period t œ T and power plant i œ I, the feasible number of active gen-
erators is contained the set K(i, t) = { k | kmaxit Æ k Æ kminit }, where kmaxit =
Gmax
it ≠ Mmin(i, t) and kminit = max{Gmax

it ≠ Mmax(i, t) , Gmax
it ≠ Oit , G

min
it },

with Mmax(i, t), Mmin(i, t) represeting respectively the maximum and mini-
mum number of maintenance activities in execution during period t at power
plant i.

Proof:
T E(m) = { t œ T (m) |ESm Æ t < ESm +Dm}
T L(m) = { t œ T (m) |LSm Æ t < LSm +Dm}
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3.2 Valid inequalities
From the analysis of the problem structure and its parameters, we derive logical
implications for improving the continuous relaxation of the model. Initially, we
exploit the time windows information with this purpose.
A maintenance task m beginning at the earliest starting time Em and with
duration Dm spans the interval T E(m) = { t œ T (m) |Em Æ t < Em + Dm}.
Likewise, if the activity m starts at the latest starting time Lm, it spans the
interval T L(m) = { t œ T (m) |Lm Æ t < Lm +Dm}.

Let us define the span operator S, which maps two intervalsA = {minA,maxA},
B = {minB ,maxB} into an interval C = {min(minA,minB), max(maxA,maxB)},
i.e., the span between the minimum point and the maximum point of the two
intervals A, B. For this operator we use the notation S(A,B).
The span of T E(m) and T L(m) defines the set of time periods T S(m) when the
activity m can be in execution (Fig. 3). That is,

T S(m) = S(T E(m), T L(m))
= { t œ T (m) |Em Æ Lm +Dm}.

Similarly, the overlap of the intervals

T O(m) = T E(m) flT L(m)
= { t œ T (m) |Lm Æ Em +Dm}

defines the set of time periods when the activity necessarily will take place (Fig.
3).
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Figure 3: Timeline for a maintenance activity m

The number of maintenance activities that can be in execution at powerhouse i during time period t is

the cardinality of the set of tasks whose spans T S(m) intersect at time period t, that is,

R̄it = |{m ∈M(i) | t ∈ T S(m) }|.

Similarly, the set of activities that must be in execution at powerhouse i during time period t is,

¯
Rit = |{m ∈M(i) | t ∈ T O(m) }|.

Naturally, R̄it and
¯
Rit bound the number of outages rit:

¯
Rit ≤ rit ≤ R̄it, ∀ i ∈ I, t ∈ T . (20)

Proposition 1 In formulations PB and PE, the feasible number of active generators k at period t ∈ T and
powerhouse i ∈ I is in the set

K(i, t) =
{
k ∈ Z |

¯
Kit ≤ k ≤ K̄it

}
, (21)
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where

¯
Kit = max{Ḡit −Oit, Ḡit − R̄it}, (22)

K̄it = Ḡit −
¯
Rit. (23)

See Appendix A for a proof of this proposition.

From (21–23) we see that the greater the difference between Ḡit and K̄it, as well as between
¯
Gi and

¯
Kit,

the greater the reduction in the number of variables and constraints with index k ∈ K(i, t).

3.3 Valid inequalities

Finally, we analyze the linear system formed by constraints (8) and (12), which in general is undetermined

and has multiple non-integer solutions. We consider the case when
¯
Rit = 0.

If rit = 0, then from constraints (12),
∑

k∈K(i,t) zitkk = Ḡit, which implies zitk = 1 for k = Ḡit, since

by constraint (8) only one binary variable zitk should be active for each (i, t) ∈ I × T . On the other hand,

if rit ≥ 1, then zitk = 0 for k = Ḡit with (i, t) ∈ I × T . By disaggregating rit into the corresponding ymt

variables (see (10)), these logical implications are equivalent to∑
t′ ∈{T (m) | (t−Dm+1)≤t′≤ t}

ymt′ + zitk ≤ 1, for k = Ḡit, ∀ i ∈ I, m ∈M(i), t ∈ T , (24)

which by the binary condition on zitk and ymt are facet defining inequalities.

Also, rit = 0 implies zitk = 0 ∀ k ∈ {K(i, t) \ Ḡit}:∑
k∈K(i,t) \ Ḡit

zitk ≤ rit, ∀ i ∈ I, t ∈ T . (25)

Next we show that constraints (24)–(25) allow relaxing the integrality of a subset of binary variables zitk
when K̄it = Ḡit and the number of degrees of freedom of the system (8), (12) is sufficiently small.

Proposition 2 In models PB and PE with constraints (24)–(25) if for some (i′, t′) ∈ I × T :

i)
¯
Ri′t′ = 0,

ii) K̄i′t′ −
¯
Ki′t′ ≤ 2,

iii) there exists an integer feasible solution,

then the integrality condition (13) for zi′t′k ∀ k ∈ K(i′, t′) can be relaxed as the variables zi′t′k will be integer

in any feasible solution.

See Appendix B for a proof of this proposition.

4 Computational experiments

In this section we report on our computational experiments to evaluate the eight formulations obtained

starting from the basic model and including/excluding each of the three approaches in Section 3. The eight

combinations are given in Table 2, where 1 indicates that a given approach is used in the corresponding

formulation, and 0 indicates that the approach was not used.

We conducted two sets of experiments to determine the best combination. First, we solved smaller

instances of GMSP and analyzed the computation times to selected a subset of formulations. Second, we

evaluated this subset via experiments with larger instances.

Our test instances were adapted from a cascade 4-powerhouse system with 3100 MW generation capacity

in the Lac Saint-Jean region in Quebec, Canada (see Table 1). For each powerhouse, we approximated
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the hydropower production function with 30 linear inequality constraints (7) and (18). For each instance,

maintenance requirements are specified with the following parameters for each activity: index, powerhouse,

duration, earliest start time period, and latest start time period.

Table 1: Basic attributes of the power system used in the computational experiments

Powerhouse System type
Number of Installed capacity
generators (MW)

1 Reservoir 5 205
2 Run of the river 5 210
3 Reservoir 12 402
4 Run of the river 17 1587

Total 39 2404

The powerhouses are ordered from upstream to downstream.

4.1 Computational results for all formulations

In this first set of experiments, we used two levels for each of the following factors of the instance size: number

of maintenance tasks (8, 10), number of time periods (20, 25), time window length (5, 8), maximum number

of outages in each powerhouse (2, 3), average duration of maintenance tasks (4, 5). For each of the 25 = 32

combinations of these factors, we created two maintenance datasets, for a total of 64 test instances. The size

of the MILP formulations ranged from 94 binary variables, 390 continuous variables and 4263 constraints, to

456 binary variables, 775 continuous variables and 12485 constraints. Because randomly generating instances

for GMSP is prone to infeasibilities, we created new instances with random changes in a subset of parameters

of initial feasible instances. When an infeasible instance was obtained by this procedure, we restored its

feasibility by arbitrarily changing the instance parameters.

We ran the tests in a 24-processor server at 2.7 GHz with 32.9 GB RAM, with 4 cores dedicated for running

the Xpress MIP solver. The models were coded in C++ with the Xpress BCL 8.1.0 callable library [12].

We chose CPU clock time as the basic performance metric, which allows to measure the actual computation

time for solving the problem, without the effect of background processes. Given that the computation

times increase significantly with the size of the instance and also differ between instances of similar size, we

normalized for each instance the logarithmic CPU time according to the standard score

zjb = (tjb − µt
j)/σ

t
j , (26)

where tjb is the logarithmic CPU time for solving instance j ∈ J with formulation b ∈ B, and µt
j , σ

t
j are

respectively the mean and the standard deviation of the logarithmic CPU times of the 8 models for solving

instance j.

We report in Table 2 the mean z̄b and standard deviation σz
b of zjb over the 64 test instances, for each

formulation. The results show that the choice of formulation affects the computation times, as corroborated

with a p-value of 0.005 for a one-way ANOVA, which for a significance level of α = 0.01 indicates a significant

effect of the selected formulation on the logarithmic CPU time.

While formulation 1 had the largest average normalized log CPU time, the smallest time was achieved

by formulation 6 (basic model with set reduction and extended formulation). The latter also had the second

smallest standard deviation. The maximum standard deviation corresponded to the formulation with only

set reduction. Overall, the four formulations 2, 4, 6, and 8 give the best results in Table 2 and Figure 4.

The effect of the choice of formulation also shows in the performance profiles of Figure 5. A performance

profile [14] gives the cumulative relative frequency ρb(τ) with which a formulation solves instances of the

problem within a factor τ of the best possible value of log2(rjb), where rjb = tjb/min
b∈B

tjb, and

ρb(τ) =
1

nj
size{j ∈ J : log2(rjb) ≤ τ}. (27)
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Table 2: Normalized log CPU times per instance, computed from 64 test instances

Formulation
Tightening approaches Norm. log CPU time

Set Valid Extended Average St. dev.
reduc. ineq. formul. z̄b σz

b

1 0 0 0 1.469 0.35
2 0 0 1 -0.849 0.40
3 0 1 0 0.790 0.38
4 0 1 1 -0.685 0.33
5 1 0 0 0.421 0.50
6 1 0 1 -0.880 0.34
7 1 1 0 0.511 0.39
8 1 1 1 -0.776 0.42
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Figure 4: Boxplot of normalized logarithmic CPU times grouped by formulation

In summary, the curves closest to the top left corner correspond to the formulation with the best performance.
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Figure 5: Performance profiles of the tested formulations

Figure 5a shows that the formulations with at least one tightening component perform better than the

basic model (formulation 1). In Figure 5b, the performance profiles of the best 4 formulations indicate

that formulation 6 is a clear winner for τ ≤ 0.8. In less than 10% of the instances, models 2 and 8 are a

competitive choice.
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The extended formulation is common to the 4 best-performing formulations in Figure 5a. The ANOVA

results in Table 3 show that this approach, either alone or in combination with others, has a significant effect

for arbitrarily small significance α levels (p-value = 2.36e-12). On the other hand, although formulation 3

(only valid inequalities) outperformed the basic model in Figure 5a, the effect of the valid inequalities is

not statistically significant (p-value = 0.758). Finally, the effect of set reduction is only significant for

α ≥ 0.2 (p-value = 0.181).

Table 3: p-values based on normalized log CPU time

Approach p-value

Set reduction 0.181
Valid inequalities 0.758
Extended formulation 2.36e-12

4.1.1 Optimality gaps of the best formulations

For this second set of experiments, we work only with formulations 2, 6 and 8. These have the smallest

average CPU times in Table 2, and clearly outperform formulation 4 in Figure 5b. Our focus is on the

optimality gaps that these formulations can achieve for large instances of GMSP.

We tested these formulations on 16 instances with more maintenance tasks than the earlier instances. In

particular, we specified: number of maintenance tasks (15, 20), average duration of maintenance tasks (4, 5)

and time window length (5, 8). For each of the 23 = 8 combinations of the levels of these factors, we created

two datasets, for a total of 16 instances. We also defined a planning horizon with 25 time periods, and

a maximum of 2 outages in each powerhouse. Table 4 reports the optimality gap statistics for the three

formulations after 1,000 and 20,000 seconds of CPU time on each instance.

Table 4: Optimality gap statistics

Formulation

CPU time
20,000 s

CPU time
1,000 s

Mean St. dev. Mean St. Dev

2 0.0144 0.0069 0.0295 0.0235
6 0.0144 0.0071 0.0229 0.0076
8 0.0151 0.0073 0.0273 0.0222

All three formulations reached average optimality gaps below 3 % within 1,000 s. Progress is substantially

slower after that, and at 20,000 s (approx. 1 hour on an 8-core machine) the average optimality gap in all

three formulations is close to 1.5%. Formulation 6 had the best overall performance after 1,000 s, and

formulations 2 and 6 had similar average performance after 20,000 s.

Based on the overall results, we conclude that the most promising approach is the basic model augmented

with the extended formulation, and possibly in combination with the valid inequalities. The resulting small

optimality gaps for realistic instances of GMSP suggest that they are suitable for practical application.

5 Conclusions

We proposed a mixed-integer optimization model for the GMSP in hydropower systems, and three possible

approaches to tighten its continuous relaxation: set reduction, valid inequalities, and extended formulation.

Using a set of 64 realistic test instances, we found that the extended formulation had the most significant effect

in decreasing the computational time, and that the combination of extended formulation and set reduction

achieved the best average performance and small variability in computation time.

We proved that under some conditions, the valid inequalities allow relaxing the integrality condition on

a subset of binary variables of the problem. Although this insight did not exhibit a statistically significant
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effect in our tests, we consider that the mathematical result can be useful for developing heuristic solution

methods for this problem as well as for other problems with similar integer-mapping constraints.

Because the GMSP is solved on a weekly basis, computational times can be higher than the 20,000 seconds

used in this study, possibly leading to smaller optimality gaps, and perhaps optimal solutions for medium-size

real instances. However, future research is necessary to exploit the structure of the problem for solving more

complex real-size instances, such as when the uncertainty of water inflows is considered.

Appendix A Proof of Proposition 1

Proof. From constraints (11) and (20),

rit ≤ min{Oit, R̄it} , ∀ i ∈ I, t ∈ T . (28)

From constraints (12),∑
k∈K(i,t)

kzitk = Ḡit − rit, ∀ i ∈ I, t ∈ T ,

≥ Ḡit −max{rit}, ∀ i ∈ I, t ∈ T ,
= Ḡit −min{Oit, R̄it}, ∀ i ∈ I, t ∈ T , (by Eq. 28)

= max{Ḡit −Oit, Ḡit − R̄it}, ∀ i ∈ I, t ∈ T ,
,

¯
Kit.

Then, by constraints (8) and (12), k ≥
¯
Kit, ∀ k ∈ K(i, t). Similarly, from constraints (12),∑

k∈K(i,t)

kzitk = Ḡit − rit, ∀ i ∈ I, t ∈ T ,

≤ Ḡit −min{rit}, ∀ i ∈ I, t ∈ T ,
= Ḡit −

¯
Rit, ∀ i ∈ I, t ∈ T ,

, K̄it,

which also by constraints (8) and (12) implies k ≤ K̄it, ∀ k ∈ K(i, t).

Appendix B Proof of Proposition 2

Proof. To simplify the notation, we drop the indices (i′, t′) ∈ I × T from K̄i′t′ , R̄i′t′ ,
¯
Ri′t′ , ri′t′ , K(i′, t′)

and zi′t′k. In any feasible solution to PB , PE , variables ymt are binary by (14) and r is integer by (10). By

condition i), all available Ḡ generators can be active, which implies K̄ = Ḡ according to (23). Condition i)

also implies r ≥ 0 by (20). On the other hand, by constraints (12) and Condition ii), r ≤ 2 = R̄. Therefore,

for the analysis of the linear system with constraints (8) and (12), we consider three cases:

1. r = 0: By conditions i) and ii),

K = {Ḡ, Ḡ− 1, Ḡ− 2}. (29)

Then, the linear system (8) and (12) can be written in extensive form as

zḠ + zḠ−1 + zḠ−2 = 1, (30)

ḠzḠ + (Ḡ− 1)zḠ−1 + (Ḡ− 2)zḠ−2 = Ḡ− r. (31)

By (25), r = 0 implies zk = 0 ∀ k < Ḡ. Then, by (8) zḠ = 1. Therefore, the system (30)–(31) has a

unique integer solution.
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2. r = 1: By constraints (10) and (24), r = 1 implies zḠ = 0. Then, the system (30)–(31) reduces to

zḠ−1 + zḠ−2 = 1, (32)

(Ḡ− 1)zḠ−1 + (Ḡ− 2)zḠ−2 = Ḡ− 1, (33)

with a unique integer solution zḠ−1 = 1, zḠ−2 = 0.

3. r = 2: By constraints (10) and (24), r = 2 implies zḠ = 0, and the resulting system of equations

zḠ−1 + zḠ−2 = 1, (34)

(Ḡ− 1)zḠ−1 + (Ḡ− 2)zḠ−2 = Ḡ− 2. (35)

has a unique integer solution zḠ−1 = 0 and zḠ−2 = 1.

Therefore, in models PB , PE with equations (24) and (25) and conditions i)− iii) satisfied for some (i′, t′) ∈
I × T , the system (8) and (12) for (i′, t′) has a unique solution and this solution is integer even if the

integrality condition on the zi′t′k variables is relaxed for (i′, t′) and ∀ k ∈ K(i′, t′).

Appendix C Notation

We denote decision variables and indices with lowercase, and parameters with uppercase.

Primary sets

I Powerhouses
M Maintenance tasks
T Planning time periods, t ∈ T = {1 . . . T}.

Parameters

B+
t Electricity sale price in time period t, [$/MWh].

B−
t Electricity purchase price in time period t, [$/MWh].

Cmt Total cost of maintenance task m started at time period t, [$].
Dm Duration of maintenance task m [day].
Em Earliest start time period of maintenance task m.
Fit Lateral inflows to powerhouse i in period t, [m3/s].
Ḡit Maximum number of available turbines in powerhouse i at time period t, [turbines].

¯
Gi Minimum number of available turbines in powerhouse i [turbines].
Lm Latest start time period of maintenance task m.
Oit Maximum number of turbine outages in powerhouse i at time period t, [turbines].
P̄i Generation capacity in powerhouse i, [MWh/day].
P̄ik Generation capacity in powerhouse i when k turbines are active, [MWh/day].
Q Factor for conversion from flow per second in m3 to flow per day in hm3 [0.0864·s·hm3 ·/(day’·m3)].

R̄it Number of maintenance activities that can be in execution at powerhouse i in time period t.

¯
Rit Number of maintenance activities that must be in execution at powerhouse i in time period t.
S0i Initial volume in reservoir of powerhouse i, [hm3].
S̄i Maximum volume in reservoir of powerhouse i, [hm3].

¯
Si Minimum volume in reservoir i, [hm3].
STi Target volume in reservoir of powerhouse i at the end of period T , [hm3].
Ūi Maximum discharge rate in powerhouse i, [m3/s].
V̄i Maximum water spill in powerhouse i, [m3/s].

Derived sets

T (m) Time periods when maintenance task m can be initiated in order to be completed within T .
M(i) Maintenance tasks m that should be executed in powerhouse i.
M(i, t) Maintenance tasks m that can be in execution in powerhouse i at time period t.
U(i) Powerhouses upstream of powerhouse i (U(i) ⊂ I).
K(i, t) Numbers of generators that can be active at time period t and powerhouse i.
H(i, k) Hyperplanes for approximating the maximum power output of powerhouse i when k turbines are active.
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Parameters with indexes in derived sets

βu
h Coefficient of uit in hyperplane h ∈ H(i, k) for bounding the power output of powerhouse i when k generators are

active [MWh· s/(m3·day)].
βs
h Coefficient of sit in hyperplane h ∈ H(i, k) for bounding the power output of powerhouse i when k generators are

active [MWh/(hm3·day)].
β0
h Independent term of hyperplane h ∈ H(i, k) for bounding the power output of powerhouse i when k generators

are active [MWh/day].

Decision variables

rit Number of maintenance activities in execution at powerhouse i and time period t.
pit Generation of powerhouse i during time period t [MWh/day].
pitk Generation of powerhouse i during time period t when k generators are active [MWh/day].
sit Content of reservoir in powerhouse i at the end of period t [hm3].
vit Water spill of reservoir in powerhouse i at time period t [m3/s].
uit Water discharge of turbines in powerhouse i at time period t [m3/s].

w+
t Sale of electricity at period t [MWh].

w−
t Purchase of electricity at period t [MWh].

ymt Binary variable with value 1 if maintenance task m initiates at time period t, 0 otherwise.
zitk Binary variable with value 1 if k hydro-turbines are active in powerhouse i at time t, 0 otherwise.
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