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Abstract: The integral simplex using decomposition (ISUD) algorithm was recently developed to solve
efficiently set partitioning problems containing a number of variables that can all be enumerated a priori.
This primal algorithm generates a sequence of integer solutions with decreasing costs, leading to an optimal or
near-optimal solution depending on the stopping criterion used. In this paper, we develop an integral column
generation (ICG) heuristic that combines ISUD and column generation to solve set partitioning problems
with a very large number of variables. Computational experiments on instances of the public transit vehicle
and crew scheduling problem and of the airline crew pairing problem involving up to 2000 constraints show
that ICG clearly outperforms two popular column generation heuristics (the restricted master heuristic and
the diving heuristic). ICG can yield optimal or near-optimal solutions in less than one hour of computational
time, generating up to 300 integer solutions during the solution process.

Keywords: Discrete optimization, column generation, integral simplex using decomposition, crew scheduling
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1 Introduction

Many complex industrial problems are formulated as a set partitioning problem (SPP). These problems

include, among others, the integrated vehicle and crew scheduling problem arising in public transit (VCSP,

see Haase et al. [10]) and the airline crew pairing problem (CPP, see Desaulniers et al. [6]) which are often

solved by branch-and-price (see Barnhart et al. [3]). The SPP is a combinatorial optimization problem that

can be defined as follows. Let T = {1, . . . ,m} be a set of tasks to accomplish exactly once (e.g., flights to

operate, customers to visit once each, etc.). Let N = {1, . . . , n} be a set of feasible task subsets (e.g., defined

by crew schedules, vehicle routes, etc.). For each task subset j ∈ N , let cj be the least cost to accomplish

these tasks and let aij , i ∈ T , be a binary parameter indicating if task i is in subset j or not. The SPP

consists of selecting subsets in N such that each task in T belongs to exactly one of the selected subset and

the sum of the costs of these subsets is minimized. It can be formulated as the following integer program:

min
x

∑
j∈N

cjxj (1)

s.t.:
∑
j∈N

aijxj = 1, ∀i ∈ T (2)

xj ∈ {0, 1}, ∀j ∈ N, (3)

where xj , j ∈ N , is a binary variable equal to 1 if subset j is selected and 0 otherwise. The objective

function (1) aims at minimizing the total cost. The set partitioning constraints (2) ensure that each task is

included in a single selected subset. Finally, binary requirements on the xj variables are expressed by (3). Note

that additional (non-set-partitioning) constraints can be considered to model other aspects of the problem

at hand such as vehicle availability in vehicle scheduling problems. In this work, we focus on the pure SPP,

i.e., without additional constraints.

In the following, we denote by H the convex hull of the set of the feasible solutions of (1)–(3) and by R

the feasible region of the linear relaxation of (1)–(3). Notice that H and R are convex polytopes if they are

non-empty.

Since 1969, researchers have been attracted by the SPP because its polytope R possesses the quasi-

integrality property. This property, which distinguishes the SPP from most of the other problems, stipulates

that every edge of H is also an edge of R. This implies that every integer solution corresponding to an

extreme point of H is also an extreme point of R and, for every pair of such integer points, there exists on

the boundary of R a path linking them which is composed of edges linking only integer extreme points. The

study of this property has led to the development of several interesting solution algorithms (see Balas and

Padberg [2], Thompson [22], and Saxena [21]), including the Integral Simplex Using Decomposition (ISUD)

algorithm of Zaghrouti et al. [25]. These algorithms will be reviewed in the next section.

This paper continues these works on the SPP. Indeed, we exploit existing theoretical results to propose a

new Integral Column Generation (ICG) algorithm. Starting from a possibly poor-quality solution that might

even be infeasible, this new primal method finds a sequence of improving feasible integer solutions. At the

opposite of the branch-and-price algorithm which only uses dual information to generate new variables, the

ICG algorithm exploits both primal and dual information to do so. On the one hand, the current dual solution

is used to find new columns (task subsets) that can potentially be part of an improved integer solution. On

the other hand, the primal information corresponding to the current integer solution is exploited to find

descent directions yielding better integer solutions. To increase the number of descent directions found at

each iteration of the ICG algorithm, we have chosen to generate a very large number of columns each time

that the column generation subproblem is solved. In a traditional column generation algorithm, this strategy

is avoided as it typically increases substantially the time to re-optimize the restricted master problem (RMP)

and, therefore, the total computational time. However, in the ICG algorithm, it is rather beneficial as it

increases the probability of finding several improved integer solutions. Furthermore, it does not bother the

solution of the RMP because this one is decomposed and the density of the constraint coefficient matrix of

the original problem is reduced as explained in Section 3.
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Although the proposed ICG algorithm could be designed to be exact, our implementation is heuristic.

It has been tested on instances of the VCSP and of the CPP, with up to 2000 and 1740 constraints in the

master problem, respectively. Our computational results show the effectiveness of the proposed algorithm

compared to two popular column generation heuristics often applied for solving large instances of these

problem types. Indeed, we succeed to compute a better quality solution (often optimal or near-optimal) in

much less computational time for most instances. This is achieved by performing a small number of column

generation iterations (at most 12 for the VCSP and 23 for the CPP) and finding a large number of integer

solutions throughout the solution process (around 10 solutions per column generation iteration on average).

This paper is structured as follows. In the next section, we review the literature on the SPP and on

the primal and dual-fractional algorithms that are the most commonly used for solving this problem. In

Section 3, we present the ISUD algorithm and related concepts which are at the basis of the ICG algorithm.

Section 4 describes this new algorithm. Section 5 reports the results of our computational experiments.

Finally, conclusions are drawn in Section 6.

2 Literature review

In the literature on the SPP, there are two main types of solution algorithms, namely, dual-fractional and

primal algorithms. Primal algorithms move from one feasible (integer) solution to another, whereas dual-

fractional algorithms allow infeasible (non-integer) solutions. In this review, we focus in Section 2.1 on a single

family of dual-fractional algorithms, the branch-and-price (BP) algorithms which can handle SPP instances

with a very large number of variables, and in Section 2.2 on two types of primal algorithms, namely, the

integral simplex algorithms and the ISUD algorithm.

2.1 Branch-and-price algorithms

Branch-and-price (see Barnhart et al. [3]) is a popular and efficient solution method for the SPP. It embeds

column generation (CG) in a branch-and-bound framework, where a linear relaxation of SPP is solved using

CG at each node of the search tree. CG is designed to solve linear programs containing a very large number

of variables that are often obtained through Dantzig-Wolfe decomposition (Dantzig and Wolfe [5]). In this

context, the linear program is called the master problem (MP) and the CG algorithm solves at each iteration

the MP restricted to a subset of the variables, called the RMP, and one or several subproblems. In our case,

the MP corresponds to the linear relaxation of (1)–(3) and the subproblem is often modeled as a shortest path

problem with resource constraints (SPPRC, see [12]). Solving the RMP provides a primal solution but also

a dual solution denoted α ∈ Rm. The subproblem aims at finding new columns associated with variables xj
of negative reduced cost cj = cj −

∑
i∈T αiaij that are added to the RMP before starting a new iteration.

If no such columns can be generated, then the CG algorithm stops and the optimal solution of the current

RMP is also optimal for the MP (setting all unknown variables to 0).

It is well known that the standard CG algorithm may be subject to several convergence issues (see

Vanderbeck [24]) which transfer to the branch-and-price algorithm. In the literature, several dual variable

stabilization techniques have been introduced to improve convergence (see, e.g., [15, 24]). In 2005, Elhallaoui

et al. [8] have proposed the dynamic constraint aggregation (DCA) algorithm for solving the SPP. This

algorithm consists of reducing the number of set partitioning constraints by aggregating some of them as

needed. The aggregation is revised during the solution process to ensure the exactness of the DCA algorithm.

The authors report computational results obtained on randomly generated VCSP instances which show that

DCA clearly outperforms standard CG for solving the linear relaxation of the SPP: computational time

reductions of up to 80% were achieved. An improved variant of the DCA algorithm called the multi-phase

DCA (MPDCA) algorithm was also developed by Elhallaoui et al. [9]. This variant allows a further reduction

of degeneracy and of the number of fractional-valued variables in the computed MP solutions. Consequently,

it often finds integer solutions. More recently, to alleviate the drawbacks of the standard CG algorithm,

Bouarab et al. [4] proposed three new decompositions that integrates the improved primal simplex (IPS)

algorithm of Elhallaoui et al. [7] and either CG or DCA. The best decomposition combines IPS and DCA

and reduces the number of non-zero elements in the constraint coefficient matrix. This opens up the possibility
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to consider more columns in the RMP and, thus, to stabilize the dual variables. The computational results

reported by Bouarab et al. [4] show that their IPS/DCA algorithm can be eight times faster than the standard

CG algorithm on the instances tested by Elhallaoui et al. [8, 9]. These results also show that the application

of a clever decomposition in a CG framework is a promising research avenue that is worth exploring to

overcome the convergence issues associated with standard CG.

2.2 Primal algorithms

Here, we review first the integral simplex algorithms without decomposition before discussing the ISUD

algorithm.

2.2.1 Integral simplex algorithms without decomposition

In 1969, Trubin [23] proved that the SPP polytope has the quasi-integrality property: every edge of H is

an edge of R. This property implies that, for every pair of feasible solutions, there exists a path between

them that is composed of edges of R, visits only integer solutions at the edge extremities, and the sequence

of the costs of the visited solutions is decreasing (see Balas and Padberg [1]). These authors also showed

that an optimal solution can be reached in at most m pivots from any initial feasible solution. This result

is, however, impractical because it requires the knowledge of this optimal solution. Based on these results,

Thompson [22] introduced in 2002 the integral simplex algorithm, which proceeds in two phases. The first

phase (local method) consists of performing, as long as possible, non-degenerate pivots to reach a local

optimum. All these pivots are performed on a coefficient (that of the entering variable in the row associated

with the leaving variable) equal to 1. The second phase (global method) builds a tree, where each node

corresponds to a subproblem that is solved using the local method. An optimal solution to SPP is given by

the best solution found in the nodes explored in the tree. Soon after, Saxena [21] proposed an improvement

to Thompson’s algorithm that allows pivoting on a -1 coefficient and relies on anti-cycling rules. The great

advantage of these integral simplex algorithms is that they always have a feasible integer solution at hand.

However, these algorithms suffer from degeneracy and might struggle to find a non-degenerate pivot.

Rönnberg and Larsson [16, 17] have developed combined CG/integral simplex algorithms, called all-

integer column generation algorithms. They first adapted the necessary and sufficient condition on the

columns yielding non-degenerate pivots proposed by Balas and Padberg [1] and derived from it a condition

to identify columns yielding degenerate pivots. Depending on the type of columns to be generated, one of

these conditions is integrated in the column generation subproblem to restrict the set of columns that can be

generated. The local method of the integral simplex algorithm iterates between performing non-degenerate

pivots in the RMP, generating columns yielding non-degenerate pivots, performing degenerate pivots in the

RMP, and generating columns yielding degenerate pivots, until reaching a stopping criterion. Then, the global

method of the integral simplex algorithm which explores a search tree is applied to complete the solution

process. The authors have described academic examples to illustrate the unfolding of this algorithm but

no extensive computational experiments were conducted. Tests on small-sized instances of the generalized

assignment problem show that degeneracy remains an issue.

Note that these algorithms generate sequences of improving integer solutions. To move from one solution

to the next, they perform a (possibly empty) sequence of degenerate pivots followed by a non-degenerate

pivot. The selection of the degenerate pivots in each sequence is somewhat arbitrary and, thus, may yield

long sequences and waste substantial computational time.

2.2.2 The ISUD algorithm

In 2011, Elhallaoui et al. [7] introduced the improved primal simplex (IPS) algorithm for solving efficiently

linear programs subject to high degeneracy. The success of this algorithm has motivated an attempt to

adapt it to an integer program, namely, the SPP. In 2014, Zaghrouti et al. [25] realized this IPS adaptation

by introducing a new algorithm called the ISUD algorithm. As in the IPS algorithm, the ISUD algorithm

relies on a decomposition concept specialized for degenerate problems. Indeed, it decomposes the SPP in

a reduced problem (RP) and a complementary problem (CP) that searches for descent directions that can
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improve the current integer solution. The definitions of RP and CP as well as the ISUD algorithm will be

given in Section 3. Compared to the algorithms described in Section 2.2.1, the ISUD algorithm finds at

each iteration a combination of columns to pivot into the basis. This combination ensures a decrease in the

objective function and is minimal in the sense that, if one of the columns it contains is not pivoted into the

basis, then no improvement can be achieved. The computational experiments performed by Zaghrouti et

al. [25] on instances of the VCSP and of the CPP involving up to 1,600 constraints and 500,000 variables

showed the effectiveness of the ISUD algorithm to find optimal or near-optimal solutions much more rapidly

than the CPLEX mixed-integer programming (MIP) solver for the 90 tested instances. Note, however, that,

in these instances, all columns are known a priori.

To improve the ISUD algorithm, further research has been realized by Rosat et al. [18, 19] and Zaghrouti

et al. [26]. These works focused on a weakness of the ISUD algorithm, namely, solving the CP may sometimes

require some kind of branching to ensure finding a descent direction leading to an integer solution, called

hereafter an integer direction. Rosat et al. [19] have proposed cuts to avoid branching. These cuts are,

however, costly to separate and several of them might be needed to find an integer direction. Alternatively,

Rosat et al. [18] studied the role of the normalization constraint added to the CP to bound it. The left-hand

side of this constraint is defined as a weighted sum of variables. The authors showed the existence of a weight

vector that enables finding only integer directions until reaching optimality. Unfortunately, no procedure for

building this vector is proposed. Finally, Zaghrouti et al. [26] developed a variant of the ISUD algorithm

called the zooming algorithm. When it is not possible to find an integer direction without branching, the

CP provides a non-integer descent direction that can be used to define a neighborhood around the current

integer solution. This neighborhood is of small size and can, thus, be explored efficiently using a MIP solver

to find an integer direction.

From this literature review, we observe that the best primal algorithm for the SPP, namely, the ISUD

algorithm, has not been adapted to the CG context. Consequently, this paper constitutes the first attempt

at combining CG and ISUD to compute efficiently sequences of improving integer solutions for large-scale

SPP instances.

3 Preliminaries

In this section, we provide preliminaries that are needed to understand the proposed ICG algorithm. They

include a description of the ISUD algorithm of Zaghrouti et al. [25]. In the following, we use bold characters

to denote vectors and matrices.

3.1 Description of the ISUD algorithm

Let x be a feasible solution to SPP (1)–(3) and S = {j | xj = 1} the set of the indices of the task subsets

selected in this solution. Let A = (aij)i∈T,j∈N be the constraint coefficient matrix and denote by Aj its

column associated with variable xj , j ∈ N . By breach of terminology, we say that S is the solution x and

that the columns Aj , j ∈ S, are in the solution x or in S. The other columns Aj , j ∈ N \ S, are either

compatible or incompatible with the columns in S according to the following definition.

Definition 1 An arbitrary column in {0, 1}m (not necessarily a column of A) is said to be compatible with

the columns in S (or, simply, compatible with S) if it can be written as a linear combination of these columns.

Let AU =
(
Aj

)
j∈U be a submatrix of A. We denote by A1

U the submatrix of AU composed of its first

|U | linearly independent rows and all its columns and by A2
U the submatrix of AU containing the remaining

rows. Furthermore, let CS be the index set of the columns Aj , j ∈ N , that are compatible with S and let

IS = N \CS be the index set of the incompatible columns. Observe that S ⊆ CS and that A1
CS

contains |S|
rows, namely, one for the first task covered by each column Aj , j ∈ S. As mentioned in the previous section,

the SPP is decomposed in two problems: a RP built from the compatible columns and a CP containing the

incompatible ones.
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The RP is given by:
min
xCS

c>CS
xCS

(4)

s.t.: A1
CS

xCS
= e (5)

xCS
∈ {0, 1}|CS | (6)

where xCS
is the subvector of the variables associated with the columns compatible with S, cCS

is the

subvector of the cost coefficients associated with these variables, and e ∈ {1}|S| is a vector of ones. In

RP, the current solution S is associated with a basis corresponding to the identity matrix. Consequently,

pivoting into the basis any compatible column that has a negative reduced cost results in an improved

integer solution S′ (the entering column replaces two or more columns in the solution). This first pivot is,

thus, non-degenerate. One can then redefine RP with respect to the new solution S′ and search for a new

negative reduced cost column in CS′ that is compatible with S′. This process can be repeated until no such

column is found.

The incompatible columns Aj , j ∈ IS , are used in the CP to find an integer descent direction. This

direction is obtained by finding a linear combination of the incompatible columns that is compatible with S

and composed of disjoint columns according to the following definition.

Definition 2 Let U ⊆ N be a subset of column indices. The columns Aj, j ∈ U , are said to be disjoint if

and only if A>j1Aj2 = 0 for all j1, j2 ∈ U such that j1 6= j2.

Let vj , j ∈ IS , be the weight variables defining the linear combination of the incompatible columns; λl,

l ∈ S, the weight variables defining the linear combination of the columns in the solution S; and wj , j ∈ IS ,

nonnegative weights used in the normalization constraint. Furthermore, denote by FS = {(j1, j2) ∈ IS ×
IS | A>j1Aj2 6= 0} the set of index pairs of non-disjoint incompatible columns. The CP can be formulated

as follows:

zCP = min
v,λ

∑
j∈IS

cjvj −
∑
l∈S

clλl (7)

s.t.:
∑
j∈IS

vjAj −
∑
l∈S

λlAl = 0 (8)

∑
j∈IS

wjvj = 1 (9)

vj ≥ 0, ∀j ∈ IS (10)

vj1vj2 = 0, ∀(j1, j2) ∈ FS . (11)

The objective function (7) searches for a direction that will incur a cost decrease. Constraint (8) ensures that

the linear combination of the incompatible columns is compatible with S. The normalization constraint (9)

simply bounds the feasible region. Nonnegativity constraints on the vj variables are enforced through (10).

Given these nonnegativity requirements and the facts that the elements of A are binary and the columns in S

are disjoint, the λl variables are also nonnegative. Finally, the disjunctive constraints (11) impose the selection

of disjoint columns in the linear combination of the incompatible variables, ensuring an integer direction.

If zCP < 0, then an integer descent direction d =
(
dj
)
j∈N is identified by the positive-valued vj and λl

variables as follows:

dj =

 1 if j ∈ IS and vj > 0
−1 if j ∈ S and λj > 0

0 otherwise.
(12)

Fixing the step length to 1, an improved integer solution is obtained by replacing the columns Al, l ∈ S,

with λl > 0 by the incompatible columns Aj , j ∈ IS , with vj > 0. This corresponds to entering the latter

columns into the basis, while removing the former from it. On the other hand, if zCP ≥ 0, then no integer

descent direction can be found and solution S is, therefore, optimal.
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In practice, constraints (11) are relaxed from the initial CP, yielding the relaxed CP which can then be

solved by a linear programming solver. As empirically shown by Zaghrouti et al. [25], the selected columns in

the linear combination of incompatible columns are often disjoint and the computed solution is thus feasible

with respect to the relaxed constraints (11). When this is not the case, branching can be performed to enforce

these constraints. For example, for each column Aj , j ∈ IS , with vj > 0 in the solution of the relaxed CP,

one can create a child node that imposes vj = 0.

The main steps of the ISUD algorithm described above are summarized in Algorithm 1. The performance

of this algorithm mainly depends on the effectiveness at solving the CP in Step 3. Below, we discuss different

avenues that have been studied to ease its solution.

Algorithm 1 ISUD algorithm

1: Start from an initial solution S
2: Improve the current solution S through the RP
3: Solve the CP
4: if zCP < 0 then
5: Update solution S according to the integer direction found
6: Go to Step 2
7: Return the current solution S

3.2 Compatibility matrices

Observe that the density of the constraint coefficient matrix in the relaxed CP is very similar to that of the

original SPP. To reduce this density, one can perform some variable substitution. Here, we present a first

reformulation (proposed by Zaghrouti et al. [25]) that is obtained by isolating each λl variable in the last

constraint (8) in which it appears before substituting it in the rest of the formulation. These substitutions

yield the following reformulation of the CP:

min
v

(c>IS − c>S (A1
S)−1A1

IS )>v (13)

s.t.: (A2
S(A1

S)−1A1
IS −A2

IS )v = 0 (14)∑
j∈IS

wjvj = 1 (15)

vj ≥ 0, ∀j ∈ IS (16)

vj1vj2 = 0, ∀(j1, j2) ∈ FS , (17)

where, for U ⊂ N , cU is the subvector of the cost coefficient vector in (7) associated with the variables vj ,

j ∈ U . Constraint (14) can be written in the form (M1AIS )>v = 0, where M1 is a compatibility matrix

according to the following definition.

Definition 3 A matrix M is said to be a compatibility matrix if and only if MAj = 0 for all compatible

columns Aj, j ∈ CS, and MAj 6= 0 for all incompatible columns Aj, j ∈ IS.

There exists an infinite number of compatibility matrices that can be used to define the CP. The choice of

this matrix may have a significant impact on the computational times. We have chosen to use the matrix M2

introduced by Bouarab et al. [4] that is specialized for vehicle routing and crew scheduling problems. In these

problems, each column is associated with a route or a crew schedule that performs a subset of tasks in a

given sequence. The M2 matrix allows to measure the deviation of the incompatible columns with respect to

the task sequences defined by the columns in solution S. This matrix is such that, if an incompatible column

Aj , j ∈ IS , does not respect the task ordering in a sequence, M2Aj contains a component equal to -1 each

time that Aj covers a task but not its predecessor and a component equal to 1 each time that Aj covers a

task but not its successor (see Bouarab et al. [4] for details).

3.3 Multi-phase strategy and normalization constraint weights

The usage of matrix M2 is combined with a partial pricing strategy called the multi-phase strategy. Each

time that the CP needs to be solved, a sequence of phases can be invoked. Each phase is defined by a



Les Cahiers du GERAD G–2017–53 7

parameter k (a positive integer) which restricts the CP to a subset IkS ⊆ IS of the incompatible columns such

that IkS ⊆ I`S if k < `. The sequence of phases is predetermined and corresponds to an increasing sequence

k1, k2, ..., kp of values of k with kp =∞ (for instance, k = 2, 3, 4, 5, 6,∞), where phase k = kp =∞ means that

I∞S = IS . Starting in phase k1, the CP restricted to the subset Ik1S is solved. If its optimal value is negative,

the process stops and the computed linear combination of incompatible columns is returned. Otherwise, the

next phase is invoked. The process repeats until obtaining a negative optimal value for the CP or reaching

phase kp =∞.

The definition of a subset IkS used in phase k is based on a distance between an incompatible column

and the vector subspace generated by the columns in the solution. This distance, called the degree of

incompatibility, is defined as follows.

Definition 4 The degree of incompatibility δj of an incompatible column Aj, j ∈ IS, is given by δj = ||MAj ||,
where M is a compatibility matrix.

In phase k of the multi-phase strategy for solving the CP, the index subset of the incompatible columns

considered in the CP is defined by IkS = {j ∈ IS | δj ≤ k}. Bouarab et al. [4] has proven the following result.

Proposition 1 In phase k, each incompatible column Aj, j ∈ IkS, has at most k + 1 non-zero coefficients in

the constraint matrix of the CP if M2 is used as the compatibility matrix.

Consequently, for phases with a low k value, the constraint coefficient matrix has a low density. This helps to

reduce the computational effort for solving the CP and also to produce integer directions without branching.

Finally, it may allow to consider a very large number of incompatible columns in the CP if many are available.

For our tests, we have chosen to set wj = δj for all j ∈ IS . Rosat et al. [18] showed that using these

weights in the normalization constraint (9) favors finding integer directions in the relaxed CP.

3.4 Computation of a complete dual solution

In a column generation context, a dual solution α =
(
αi
)
i∈T ∈ Rm to the MP (i.e., the linear relaxation

of (1)–(3)) is required at each column generation iteration to define the subproblem objective function and

generate new negative reduced cost columns. Such a complete solution is not directly available in ISUD.

However, to build such a solution, we use as in Bouarab et al. [4] the dual variable values π̂ ∈ Rm−|S|
associated with constraints (14) that were computed when solving the last relaxed CP (13)–(16) (i.e., without

constraints (17)). Recall that, for each column index j ∈ S, there are |Tj | − 1 constraints (14) in the CP,

where Tj is the subset of tasks covered by Aj . These constraints are associated with the first |Tj | − 1 tasks

of Tj . We denote by π̂qj , for all j ∈ S and q ∈ {1, . . . , |Tj | − 1}, the component of π̂ associated with the

task q covered by Aj . Similarly, we denote by αqj , for all j ∈ S and q ∈ {1, . . . , |Tj |}, the component of α

associated with the task q covered by Aj . To determine values for the αqj variables, we solve the following

linear system of equations:

|Tj |∑
i=1

αij = cj , ∀j ∈ S, (18)

q∑
i=1

αij = π̂qj , ∀j ∈ S, q ∈ {1, . . . , |Tj | − 1} (19)

which can be decomposed by column index j ∈ S. Conditions (18) ensure that the columns in the current

solution of the SPP have a zero reduced cost and all compatible columns in the RP have, thus, a nonnegative

reduced cost. Furthermore, conditions (19) ensure that the least value among all weighted reduced costs

c̄j/wj = (cj −α>Aj)/wj , j ∈ IS , of the incompatible columns considered in the CP is maximized.

The following definition will be useful for the next section.

Definition 5 A dual solution α ∈ Rm that satisfies conditions (18) is said to correspond to the current

solution S.
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Finally, observe that, if (π̂, σ̂) ∈ Rm−|S|×R is an optimal dual solution to the relaxed CP (13)–(16), then

(α, σ̂) ∈ Rm × R forms an optimal solution to the relaxed CP (7)–(10) when α is computed by solving the

equation system (18)–(19). In these solutions, σ̂ is the dual value associated with constraints (9) and (15),

which is equal to the optimal value of the relaxed CP.

4 Methodology

In this section, we start by describing the ICG algorithm before presenting an acceleration strategy. In the

rest of the text, the words variable and column are used interchangeably.

4.1 The ICG algorithm

The ICG algorithm is based on the three-level decomposition illustrated in Figure 1. The first two levels

correspond to the RMP in a column generation algorithm except that this RMP is an integer linear program,

not a continuous linear program. The RMP is decomposed into a RP and a CP, and solved using the ISUD

algorithm. The third level of the decomposition contains the column generation subproblem which generates

negative reduced cost columns that are added to the pool of columns available for the RMP. In our tests, the

subproblem can be separated into several subproblems. These subproblems are SPPRCs that are solved by

a labeling algorithm.
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Figure 1: The three-level decomposition of the ICG algorithm

A pseudo-code of the ICG algorithm is given in Algorithm 2. It starts by computing an initial primal
solution and an initial dual solution. In Section 5, we will describe how these solutions are computed

for our test problems. It then initializes an iteration counter r, a current upper bound ` on the degree of

incompatibility, and the number consFail of consecutive iterations in which the cost improvement (compared

to the previous iteration) is not considered sufficient. As in the ISUD algorithm, the ICG algorithm applies a

multi-phase strategy when generating the columns. In fact, the subproblem includes an additional constraint

which imposes that the degree of incompatibility of the feasible columns be less than or equal to `. Note

that this multi-phase strategy is independent of the one used in the ISUD algorithm when solving the RMP

(Steps 12 and 17).

The main loop (Steps 3–21) starts by solving the subproblem denoted SP (αr, `) taking into account the

current dual solution αr and the current limit on the degree of incompatibility `. The negative reduced

cost columns generated by the subproblem, if any, are stored in set N ′. If no columns are generated, ` is

increased by one and the subproblem is solved again. This process is repeated until finding negative reduced

cost columns or until ` exceeds a predefined value maxDegree. In the latter case, the algorithm stops and

outputs (in Step 9) the current solution xr as the best solution found. Note that, in practice, we try to

generate a large number of columns at each iteration. Given that a multi-phase strategy is used in ISUD

when solving the RMP, this large number of columns does not hinder the solution process.

When columns are found (N ′ 6= ∅), they are added to the pool of columns N available to the RMP. The

RMP is then solved by the ISUD algorithm which returns the current solution xr, its cost zr and a dual
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Algorithm 2 ICG algorithm

1: Find an initial primal solution x0 and an initial dual solution α0

2: r ← 0; `← 1; consFail← 0
3: while consFail ≤ maxConsFail do
4: repeat
5: N ′ ← Solve SP (αr, `)
6: if N ′ = ∅ then
7: `← ` + 1
8: if ` > maxDegree then
9: Return xr

10: until N ′ 6= ∅
11: N ← N ∪N ′ ; r ← r + 1
12: (zr,xr,αr)← Solve RMP (xr) using ISUD

13: if
(zr−1−zr)

zr−1 < minImp then

14: (zr, x̄r)← Solve MIP (xr)
15: if x̄r 6= xr then
16: xr ← x̄r

17: (zr,xr,αr)← Solve RMP (xr) using ISUD

18: if
(zr−1−zr)

zr−1 < minImp then
19: consFail← consFail + 1; `← ` + 1
20: else
21: consFail← 0
22: Return xr

solution αr corresponding to this current solution. This dual solution is computed as described in Section 3.4.

In the ISUD algorithm, a multi-phase strategy is applied and a relaxed CP (without constraints (17)) is always

solved, i.e., branching is never performed to obtain an integer solution. In practice, the ISUD algorithm often

terminates because the direction found when solving the last relaxed CP is not integer.

If the cost of the solution returned by ISUD does not yield a sufficiently large improvement compared

to the cost achieved at the previous iteration, i.e., if (zr−1−zr)
zr−1 < minImp, where minImp is a predefined

parameter value, then a small-sized mixed integer program, denoted MIP (xr), is solved by a commercial

MIP solver in Step 14. This program is defined as the current RP augmented by all columns in N that

have a relatively small degree of incompatibility (e.g., smaller than 7). Notice that solving this program

can yield an improved solution only if the ISUD algorithm stops with a non-integer direction in Step 12.

Otherwise, solving MIP (xr) is useless and can be omitted. If the computed solution x̄r of MIP (xr) differs

from the current solution xr, then x̄r becomes the current solution and ISUD is applied again in Step 17 to

try to improve this new solution considering all columns in N and not only a subset of it like in MIP (xr).

The cost improvement realized in this iteration is again checked in Step 18. If this improvement is deemed

insufficient, the number of consecutive iterations where the algorithm failed to yield a sufficiently large cost

improvement is incremented by one, as well as the upper bound on the degree of incompatibility `, before

starting a new iteration or ending the whole solution process if consFail becomes equal to maxConsFail, a

predefined parameter value. Otherwise, the number of consecutive failures is reset to zero.

The ICG Algorithm 2 is heuristic for two reasons. First, the stopping criterion may be too restrictive. The

parameters maxDegree and maxConsFail should be set to large unrestrictive values in an exact algorithm.

Second, the disjunctive constraints (17) are always relaxed from the CP and solving it might not return an

integer descent direction even if one exists. Consequently, in an exact algorithm, these constraints should be

considered by the algorithm solving the CP.

Note that the procedure used to compute a complete dual solution α is valid to ensure the exactness of

the ICG algorithm. Indeed, as shown by the next proposition, at least one variable xj has a negative reduced

cost with respect to α if the current solution is not optimal.

Proposition 2 Let α ∈ Rm be a dual solution corresponding to a solution S with cost
∑
j∈S cj. Let S′ be an

improved solution (
∑
j∈S′ cj <

∑
j∈S cj). Then, there exists at least one variable xj, j ∈ S′ \ S, that has a

negative reduced cost cj −
∑
i∈T aijαi with respect to the dual solution α.
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Proof (by contradiction). Assume that all variables xj , j ∈ S′ \S, have a non-negative reduced cost. In this

case, we have

cj ≥
∑
i∈T

aijαi, ∀j ∈ S′ \ S ⇒
∑

j∈S′\S

cj ≥
∑
i∈T

∑
j∈S′\S

aijαi (20)

cj =
∑
i∈T

aijαi, ∀j ∈ S \ S′ ⇒
∑

j∈S\S′
cj =

∑
i∈T

∑
j∈S\S′

aijαi. (21)

Given that the sum of the columns in S′ \ S is compatible with the columns in S \ S′, it ensues that∑
i∈T

∑
j∈S′\S

aijαi =
∑
i∈T

∑
j∈S\S′

aijαi. (22)

From (20)–(22), we deduce that
∑
j∈S′\S cj ≥

∑
j∈S\S′ cj , which contradicts the fact that S′ is a better

solution than S. Hence, there must exist a variable xj , j ∈ S′ \ S, with a negative reduced cost.

The main advantage of the ICG algorithm is to benefit from the strengths of the ISUD algorithm for

solving the RMP, namely, i) to exploit the RMP degeneracy in order to easily find integer descent directions

and ii) to compute at almost every iteration an improved solution even if the CP is not solved at optimality

at each iteration. This allows to compute a sequence of improving integer solutions and stop the algorithm

whenever the quality of the current solution is satisfactory (assuming that a lower bound is previously

computed to assess this quality).

In the ICG algorithm, column generation is applied to generate the variables of the SPP model (1)–(3).

Standard CG uses the dual solution of the current RMP to define the subproblem objective function and

generate negative reduced cost variables that can improve the current objective value, converging towards

a lower bound. During CG, no effort is made to improve the current upper bound on the optimal value of

the SPP. The proposed ICG algorithm is designed to do so. Indeed, instead of using the dual solution of

the current RMP, it relies on a dual solution corresponding to the current integer solution which favors the

generation of columns that can improve the current integer solution.

Finally, note that the columns accumulated while solving the subproblem with different dual solutions

lead to an optimal solution even if these dual solutions are not necessarily of good quality. It is well known

that poor-quality dual solutions have a negative impact on the convergence of standard CG algorithms. Given

that the ICG algorithm can handle a very large number of columns in the RMP through the column pool

and the multi-phase strategy, the quality of the dual solution has less impact on the algorithm convergence

when a large number of columns is generated at each iteration. A possibility (not implemented) to further

restrict the impact of the dual solution quality would be to solve in parallel several subproblems defined with

different dual solutions.

4.2 An acceleration strategy

To speed up the solution process, we propose to generate whenever possible more than one integer descent

direction each time that the CP is solved in Step 3 of Algorithm 1 when called from Steps 12 and 17 of

Algorithm 2. Multiple directions can easily be handled in the RP if they are orthogonal. Therefore, after

finding a first integer descent direction d1 defined according to (12), all variables λ`, ` ∈ S, taking a positive

value in the current solution of the CP is removed from the CP as well as all variables vj , j ∈ IS , such that

λ` A
>
` Aj 6= 0 for at least one ` ∈ S. In this way, any new solution to the CP gives a new direction that is

orthogonal to d1. The updated CP is then solved. If it returns another integer descent direction d2, further

variables are removed from the CP before solving it again, ensuring that only directions orthogonal to d1

and d2 can be generated. This process repeats until no integer descent direction can be found. When all

directions are found, the current integer solution to the RP is updated before starting a new ISUD iteration.

Generating multiple directions when solving a CP reduces the total number of ISUD iterations and, therefore,

the total time to compute the degree of incompatibility of the generated columns and to build the CP at

each iteration. Furthermore, given that variables are removed from the CP when each direction is found, the
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updated CP can be solved more rapidly. Computational results reported in the next section will show the

effectiveness of this strategy that we call the Multi-Direction in the CP (MDCP) strategy.

5 Computational results

In this section, we report computational results obtained by the ICG algorithm on VSCP and CPP instances.

These two problems are modeled as SPPs that are subject to high degeneracy. The ICG algorithm is compared

to two well-known dual-fractional heuristics (see, e.g., Joncour et al. [13]) that are based on CG, namely,

a diving heuristic (DH) and a restricted master heuristic (RMH). DH is a branch-and-price heuristic that

explores a single branch of the search tree. At each node where solving the MP results in a fractional-valued

solution, it fixes to one the variable with the largest fractional value. The process stops when the solution

of the MP is integer. RMH consists of solving by column generation the MP at the root node. Integrality

requirements are then added on the variables contained in the last RMP. This integer RMP is then solved

by a commercial MIP solver.

Based on preliminary experiments, we set the parameter values of the ICG Algorithm 2 as follows:

minImp = 0.0025, maxConsFail = 9, and maxDegree = 7. Furthermore, the multi-phase strategy invoked

in the ISUD Algorithm 1 executed the sequence of phases k ∈ {1, 2, . . . , 5}, stopping thus before proving

optimality.

All our tests were performed on a Linux machine equipped with an Intel Xeon E3-1226 processor clocked

at 3.3GHz. All CPs, RMPs and mixed integer programs are solved by the IBM CPLEX commercial solver

(version 12.4). For both VCSP and CPP, there are multiple column generation subproblems that are SPPRCs.

They are solved by dynamic programming using the Boost library, version 1.54.

5.1 VCSP results

The VCSP is one of the important planning problems faced by transit companies. It consists of assigning

simultaneously buses to bus trips and drivers to tasks which are defined by dividing each bus itinerary into

segments linking consecutive possible driver relief points. In fact, for each bus trip, there is one task for each

segment it contains, one task ensuring that a bus reaches the beginning of the trip and another ensuring that

a bus leaves after the end of the trip. Traditionally, for large-sized instances, the problem has been tackled

in two steps, assigning the buses first and the drivers afterwards. Several exact and heuristic algorithms have

been developed to solve different variants (one or several depots, homogeneous or heterogeneous fleet, various

duty types, etc.) of the integrated problem (see Ibarra-Rojas et al. [11]). We consider the single-depot,

homogenous-fleet variant addressed by Haase et al. [10] who devised the first branch-and-price algorithm for

the VCSP. We use the same model, except for the non-set-partitioning constraints that are omitted. There

is one SPPRC subproblem for each of the two duty types. The networks underlying these subproblems are

described in details in Haase et al. [10].

The random instance generator of Haase et al. [10] was used to generate the test instances. The size of

an instance (number of tasks) is defined by the number of bus itineraries (B) and the number of relief points

considered along each itinerary (R). It is equal to B(R+1). For each pair (B,R), we generated three different

instances using different seed numbers. Notice that, for the same instance number, the instances for a pair

(B1, R1) and those for a pair (B2, R2) with B1 = B2 differ only by the number of relief points considered.

Given that the number of reliefs in the middle of a bus trip tends to be minimized in an optimal solution, the

optimal solutions of these instances are often the same. Nevertheless, the model contains a different number

of constraints and the solution process varies. The set of instances is divided in two classes: small (800 tasks

or less) and large (960 tasks or more).

For these instances, the initial solution x0 was defined in Step 1 of the ICG Algorithm 2 as an artificial

one, where each task associated with a bus trip is covered by an artificial column bearing a large cost. In the

initial dual solution α0, each dual value associated with these tasks was then set to this large value divided

by the number of tasks in the bus trip.
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The computational results of some tests are reported in Tables 1 and 3 for the small and the large VCSP

instances, respectively. For these first tests, the ICG algorithm did not use the MDCP strategy. In these

tables, the first three columns describe the instance, namely, the number of tasks it contains (Tasks), the

pair (B,R) defining it, and the instance number (No). Then, for each tested algorithm, they report the

total computational time in seconds, the optimality gap in percentage between the cost of the best solution

found and the linear relaxation optimal value, the number of column generation iterations (Itr), and the total

number of columns generated (Col). For the RMH and ICG algorithms, the total number of integer solutions

found (IntS) is also indicated. This number is not reported for DH because it is always equal to 1. Finally,

the number of times that a mixed integer program was solved in Step 14 of Algorithm 2 (Mip) and the time

(in seconds) spent solving these programs (MipT) are also specified for the ICG algorithm. Note that the

linear relaxation optimal values are only computed for reporting the optimality gaps. The time required to

compute them is not included in the total time. Note also that, for ICG, the number of columns generated

does not include those that were added to the pool of columns but never considered in the RP or the CP

because their degree of incompatibility remained too high.

Table 1: Results for the small VCSP instances

Instance RMH DH ICG
Tasks (B,R) No. Time† Gap† Itr. Col. IntS Time Gap Itr. Col. Time Gap Itr. Col. IntS Mip MipT

240 (40, 5)
1 0.9 0.0 12 2171 1 1.0 0.0 25 2714 0.7 0.0 6 9984 16 0 0.0
2 0.6 0.0 16 1396 2 0.7 0.0 29 1582 0.3 0.0 5 7583 12 0 0.0
3 1.0 0.0 10 1389 1 0.8 0.0 30 1886 0.6 0.0 6 8806 13 0 0.0

320 (80, 3)
1 1.2 0.0 11 2699 1 3.6 0.0 70 4766 1.1 0.0 6 9935 29 0 0.0
2 1.1 0.0 12 2348 1 1.4 0.0 32 2658 0.7 0.0 7 8561 25 0 0.0
3 1.4 0.0 14 2673 1 3.1 0.0 58 4284 1.2 0.0 7 10101 39 0 0.0

400 (40, 9)
1 6.8 0.0 12 4827 3 11.5 0.0 83 7804 4.5 0.0 6 35250 16 0 0.0
2 5.8 0.0 16 3798 3 8.5 0.0 68 5912 2.8 0.0 5 24032 13 0 0.0
3 30.8 0.0 14 3229 4 7.3 0.0 62 5022 3.8 0.0 5 27710 13 0 0.0

480 (80, 5)
1 5.9 0.0 15 4201 1 13.9 0.0 87 7545 4.5 0.0 7 21431 28 0 0.0
2 5.2 0.0 16 3748 3 11.9 0.0 77 6421 2.6 0.0 6 17657 29 0 0.0
3 6.9 0.0 18 3806 2 11.0 0.0 66 5527 6.1 0.0 8 64839 40 1 0.9

640 (80, 7)
1 16.5 0.0 17 6204 2 38.8 0.0 94 12036 14.5 0.0 6 33824 30 0 0.0
2 15.3 0.0 20 5314 0 39.3 0.0 128 10255 9.7 0.0 6 37871 30 0 0.0
3 38.5 0.0 20 6234 6 27.5 0.0 61 9147 10.9 0.0 6 43899 42 0 0.0

720 (120, 5)
1 3450.5 0.7 21 8377 5 58.5 0.0 114 15918 16.8 0.0 7 44955 63 0 0.0
2 405.9 1.2 20 5675 4 39.8 2.8 102 10461 7.4 0.0 6 28790 40 0 0.0
3 20.9 0.0 21 7674 1 45.7 0.0 114 12671 14.4 0.0 7 36479 62 0 0.0

800 (80, 9)
1 361.7 0.4 18 7470 5 168.2 0.0 214 25273 25.0 0.0 7 56143 29 0 0.0
2 40.2 0.0 22 7972 2 131.0 0.0 166 20918 20.4 0.0 6 47682 30 1 1.2
3 694.7 0.0 19 8079 4 152.9 0.0 174 25632 20.9 0.0 6 65417 40 0 0.0

†: All gaps are in percentage; all times are in seconds.

From Table 1, we observe that ICG finds the optimal solution for all instances in faster computational times

than the other two heuristics. For the largest of these small instances, ICG can be as up to 7.3 times faster

than DH and RMH. This is due to the small number of iterations performed by ICG (at most 7) compared

to DH and the relatively large number of integer solutions found per iteration (on average, close to 5). RMH

and DH also find an optimal solution for most instances. They fail to do so for 3 and 1 instances, respectively.

It, thus, seems that omitting the non-set-partitioning constraints from the VCSP model of Haase et al. [10]

makes the problem much easier to solve. Nevertheless, we observe that, for the largest of these small instances,

the computational time required by RMH may be quite large (almost up to one hour). Finally, notice that,

for these instances, ICG rarely needs to solve a mixed integer program to get a larger improvement of the

objective value at a given iteration. This is also the case for the large VCSP instances as reported below.

One can remark that ICG uses much more columns than RMH and DH. To verify if this observation can

explain the difference in the computational times, we ran additional tests with RMH and DH, increasing the

number of columns generated at each iteration. This increase was achieved by not applying the dominance

rule at the sink node of the networks and selecting a large number of the resulting columns based on their
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reduced cost. The results of these tests are reported in Table 2. They show that, when a larger number

of columns is generated (on average, the number of columns generated for DH is 1.2 times larger than the

number used by ICG), RMH and DH become slower, and thus ICG remains the fastest algorithm. Notice

that, in this case, an optimal solution can be found for all instances by both RMH and DH. In the following,

the results for RMH and DH were obtained by generating a relatively small number of columns per iteration

(as for the results in Table 1).

Table 2: RMH and DH results for small VCSP instances when generating many columns

Instance RMH DH
Tasks (B,R) No Time† Gap† Itr Col IntS Time Gap Itr Col

240 (40, 5)
1 2.6 0.0 9 4767 1 1.7 0.0 12 6131
2 0.6 0.0 10 5141 6 0.6 0.0 10 5141
3 1.2 0.0 6 3600 2 1.0 0.0 8 4664

320 (80, 3)
1 2.7 0.0 15 9000 1 2.8 0.0 15 9000
2 1.6 0.0 10 5713 1 2.8 0.0 15 7828
3 7.8 0.0 10 6000 2 4.7 0.0 14 8039

400 (40, 9)
1 242.7 0.0 15 9000 3 21.8 0.0 45 25210
2 48.4 0.0 17 9901 2 12.2 0.0 39 21240
3 6.4 0.0 15 8296 1 13.3 0.0 35 18391

480 (80, 5)
1 79.2 0.0 23 13470 1 30.8 0.0 51 28390
2 35.1 0.0 17 10200 2 17.5 0.0 38 21916
3 46.8 0.0 16 9600 2 27.8 0.0 46 26658

640 (80, 7)
1 4033.4 0.0 34 20400 3 143.2 0.0 135 77243
2 2077.7 0.0 31 18517 3 70.1 0.0 77 43927
3 4026.0 0.0 25 15000 5 82.1 0.0 77 42651

720 (120, 5)
1 54.5 0.0 40 23782 1 144.8 0.0 160 93565
2 990.8 0.0 34 20228 3 129.0 0.0 99 57308
3 4035.4 0.0 31 18600 3 123.0 0.0 111 60795

800 (80, 9)
1 3070.8 0.0 38 22800 1 363.3 0.0 159 90212
2 4051.2 0.0 38 22800 3 380.4 0.0 111 64339
3 4093.6 0.0 27 16200 2 249.3 0.0 109 64084

†: All gaps are in percentage; all times are in seconds.

For all the large VCSP instances, RMH was not able to find a feasible solution within a 1-hour time limit.

Therefore, we report no results for RMH in Table 3. The results in this table confirm the superiority of ICG

Table 3: Results for the large VCSP instances

Instance DH ICG
Tasks (B,R) No. Time† Gap† Itr. Col. Time Gap Itr. Col. IntS Mip MipT

960 (160, 5)
1 150.43 0.0 158 23978 26.6 0.0 6 48437 92 0 0.0
2 114.51 0.0 143 16778 24.9 0.0 7 50740 67 0 0.0
3 110.00 0.0 123 18964 22.9 0.0 6 38647 75 0 0.0

1200 (200, 5)
1 347.39 0.0 220 34397 44.7 0.0 7 65955 103 0 0.0
2 184.77 0.0 126 20985 52.1 0.0 8 190431 101 1 4.4
3 242.82 0.0 183 27344 42.0 0.0 6 64578 105 0 0.0

1200 (120, 9)
1 1063.96 0.0 411 73736 101.4 0.0 6 121266 65 0 0.0
2 748.59 0.0 334 48252 49.9 0.0 7 264412 40 1 8.5
3 1015.50 0.0 354 53992 84.0 0.0 6 124171 58 0 0.0

1600 (160, 9)
1 2330.98 3.5 419 76463 170.6 0.0 6 140279 89 0 0.0
2 1703.12 0.0 331 31955 150.6 0.0 7 120979 71 0 0.0
3 2831.52 0.0 467 57719 144.2 0.0 7 117910 75 0 0.0

2000 (200, 9)
1 10081.60 0.0 968 296499 263.8 0.0 7 159891 107 0 0.0
2 9345.04 0.0 873 155980 295.3 0.0 7 539911 100 1 20.5
3 9169.62 0.0 990 192090 287.2 0.0 7 160804 112 1 18.3

†: All gaps are in percentage; all times are in seconds.
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over DH. Indeed, one can observe that ICG is always faster and can yield remarkable time reductions of up

to 97% for the largest tested instances (besides finding an optimal solution for all tested instances). The

number of iterations performed by ICG (at most 8) is negligible compared to that achieved by DH (between

123 and 990), indicating that the large number of columns generated at each iteration is fully exploited by

the ISUD algorithm when solving the RMP. This shows that strategies which aim at speeding up the ISUD

algorithm and, in particular, the time required to solve the CP such as the MDCP strategy can be useful

to increase the efficiency of ICG. To support this assertion, we conducted another series of experiments that

consisted of solving the large VCSP instances with the ICG algorithm, but this time, applying the MDCP

strategy. The results of these experiments are reported in Table 4. The last column in this table specifies the

relative gain in computational time obtained by applying the MDCP strategy. We observe that the MDCP

strategy yields substantial time reductions varying between 14.5% and 47.3%.

Table 4: Results of ICG with the MDCP strategy on the large VCSP instances

Instance ICG
Tasks (B,R) No. Time† Gap† Itr. Col. IntS Mip MipT Gain†

960 (160, 5)
1 14.5 0.0 6 51040 92 0 0.0 45.5
2 17.9 0.0 8 146408 49 1 3.0 28.1
3 14.1 0.0 7 42520 74 0 0.0 38.4

1200 (200, 5)
1 38.2 0.0 8 77915 105 0 0.0 14.5
2 31.8 0.0 7 143415 106 1 3.4 39.0
3 26.4 0.0 6 62009 111 0 0.0 37.1

1200 (120, 9)
1 53.4 0.0 6 107706 66 0 0.0 47.3
2 28.2 0.0 6 83243 41 0 0.0 43.5
3 60.1 0.0 6 124428 60 0 0.0 28.5

1600 (160, 9)
1 99.7 0.0 6 160164 92 0 0.0 41.6
2 92.8 0.0 7 123600 72 0 0.0 38.4
3 95.7 0.0 7 134650 77 0 0.0 33.6

2000 (200, 9)
1 216.7 0.0 8 540545 110 1 24.8 17.9
2 201.4 0.0 7 500187 100 1 20.3 31.8
3 170.5 0.0 7 197081 117 0 0.0 40.6

†: All gaps and gains are in percentage; all times are in seconds.

5.2 CPP results

The CPP consists of finding least-cost crew pairings such that each flight of a given schedule is actively

covered by a single pairing. A pairing is a sequence of flights performed by a crew that starts and ends at

the crew base. For some of these flights, the crew may be deadheading, i.e., the crew members travel as

passengers. To be feasible, a pairing must satisfy a variety of safety regulations and labor agreement rules.

The CPP is usually solved by branch-and-price (see Desaulniers et al. [6]) where the pairings are generated

by solving subproblems that can be modeled as SPPRCs. More details on the subproblems can be found in

Saddoune et al. [20].

For our tests, we used five real-life CPP instances (without additional constraints) obtained from the

datasets proposed by Kasirzadeh et al. [14]. Each instance is defined for a single aircraft fleet (D94, D95,

757, 319, or 320) and spans a single week. For the ICG Algorithm 2, an artificial solution was built as an

initial solution x0 in Step 1: each task is covered by a single-task column that bears a very large cost. In the

initial dual solution α0, each dual value was set to this large cost.

Table 5 provides the computational results obtained on the CPP instances by the three heuristics, namely,

RMH, DH, and ICG with the MDCP strategy. Its first two columns identify the instance by its name and

the number of tasks it contains. Then, for each heuristic, it reports the same information as in Table 1.

Notice that, as for the VCSP instances, the number of column generation iterations executed by ICG

is very small compared to DH. This can be explained by the large number of columns generated in each

iteration. These columns are efficiently handled in the RMP through the multi-phase strategy used by the
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ISUD algorithm. Furthermore, the multi-phase strategy applied at the subproblem level is useful to generate

columns with a low incompatibility degree, yielding a low density coefficient matrix in the CP.

Table 5: Results for the CPP instances

Instance RMH DH ICG
No Tasks Time† Gap† Itr Col IntS Time Gap Itr Col Time Gap Itr Col IntS Mip MipT

D94 424 15 0.05 22 17110 1 35 0.20 76 22217 17 0.14 12 32044 21 4 3
D95 1255 32849 1.13 56 100825 9 5411 0.21 914 313989 2164 0.22 20 341246 280 8 811
757 1290 41097 0.03 74 74221 4 18019 0.02 1203 597469 2175 0.01 15 396480 212 1 320
319 1293 60480 0.69 97 81335 8 2944 0.29 1268 306633 1218 0.18 23 283027 278 9 531
320 1740 30666 0.10 110 96188 5 4630 0.10 1269 367025 3806 0.05 20 328827 313 6 987

†: All gaps are in percentage; all times are in seconds.

One remarkable characteristic of the ICG algorithm is the large number of different integer solutions

found throughout the solution process (more than 10 per iteration for the largest instances). This feature is

highly desirable in the industry because it allows to stop the solution process at any time after finding a first

satisfactory solution. To determine the quality of a solution, one may compute a lower bound in parallel.

For the tested instances, this requires less than 50% of the time required by the ICG algorithm.

Finally, we observe that the number of times that a mixed integer program was solved in Step 14 of

Algorithm 2 is small and the time devoted to solving these programs varied between 15% and 44% of the

total time. Despite the large proportion of time that it may consume, this step has proven to be useful to

accelerate the solution process.

Figure 2 depicts the cost of the current solution in function of the computational time for instance 320.

Each point corresponds to a solution found during the solution process. The blue circles represent those

obtained by the ISUD algorithm while the red plus signs represent those produced by solving a mixed integer

program. We can observe a rapid cost decrease at the beginning of the solution process. Like traditional

column generation methods, the cost decrease becomes slow towards the end. Notice that the solutions

obtained by solving a mixed integer program (especially the first one) can sometimes yield a large cost

decrease. We would like to point out that, for all instances, the algorithm succeeded to find a first feasible

integer solution within the first few iterations of the solution process.

Figure 2: Current solution cost in function of the time (instance 320)

To conclude this section, we report in Figure 3 the number of pairings selected in the final solution that

have already been generated at each iteration of the solution process for both DH and ICG. We observe

that much more selected pairings are generated per iteration with ICG. This is not surprising given that

ICG generates much more columns per iteration than DH, but also that the dual solutions used to generate

columns in ICG correspond to the current integer solution and increase the chances of generating columns

that can be part of better solutions.
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Figure 3: Number of pairings from the final solution already generated at each iteration (instance 320)

6 Conclusion

In this paper, we introduced the ICG algorithm which combines column generation and the recent ISUD

algorithm for solving SPPs involving a very large number of variables. This primal algorithm generates a

sequence of integer solutions with decreasing costs until reaching an optimal or near-optimal solution. It

benefits from generating a large number of columns at each column generation iteration and exploits at

each iteration a dual solution that corresponds to the current integer solution and favors the generation of

columns that can be part of improved integer solutions. Our computational experiments on VCSP and CPP

instances involving up to 2000 set partitioning constraints showed that ICG outperforms two popular column

generation heuristics, producing for almost all instances better quality solutions in less computational times.

For the largest VCSP instances, ICG can yield time reductions as large as 97%.

Several research avenues can be explored in the future. One of them consists of speeding up the proposed

ICG algorithm by considering better columns in the CP, either by influencing the generation of the columns

from the subproblems or by better selecting them from the pool of columns. Machine learning tools may

be helpful to achieve this goal. Another important research direction is to generalize the ICG algorithm for

solving SPPs with additional constraints.
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