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libre accès aux publications des organismes subventionnaires canadiens
et québécois.
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Université du Québec à Montréal, ainsi que du Fonds de recherche du
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c CRM, Montréal (Québec), Canada, H3C 3J7

malek.ben-abdellatif@hec.ca

hatem.ben-ameur@hec.ca

bruno.remillard@hec.ca

June 2017

Les Cahiers du GERAD

G–2017–48

Copyright © 2017 GERAD



ii G–2017–48 Les Cahiers du GERAD

Abstract: An exchangeable bond is a debt that is convertible into shares of a firm’s equity other than
the bond’s issuer. We evaluate an exchangeable bond within a two-dimensional structural model, where the
assets’ value of the bond’s issuer and the underlying equity value are the state variables. Our model, based
on dynamic programming, finite elements, and parallel computing, accommodates arbitrary debt portfolio
including an exchangeable bond, several seniority classes, bankruptcy costs and tax benefits. We conduct a
numerical investigation that highlights the main characteristics of exchangeable bonds and their distinction
from a straight bond.
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1 Introduction

The main aim of this paper is to value exchangeable bonds. Unlike a convertible debt whose the payoff is

associated with the performance of the issuer’s stock, the payoff of an exchangeable debt depends on the

stock of a different firm. Specifically, a firm that issues an exchangeable debt gives bondholders the option

to exchange their bonds for shares of another firm’s equity. The exercise decision is also closely related to

the issuer’s financial situation, in particular its credit risk default.

Exchangeable debt has been offered by firms since the early 1970s. The Association of Convertible Bonds

Management reported that, in 2001, about one third of the European convertible bond market was made of

exchangeable bonds. According to Grimwood and Hodges (2002), this proportion represents 14% of the total

bond market in the US.

Assume a company holds equity shares of another public company and makes the decision to divest of this

intercorporate holding because of negative expectations regarding its future prospects. Divesting strategies

include block sales, secondary distributions or issuing exchangeable debt. As documented in corporate finance

(Barber, 1993), the latter is preferred over the other two alternatives. In fact, announcing a secondary

distribution (Mikkelson and Partch, 1985) or block sales (Holthausen et al., 1987) can provoke a negative

price reaction, which can be avoided by issuing an exchangeable debt. Jones and Mason (1986) discuss also

tax advantages as motivation for exchangeable debt issues.

Many articles address the valuation of ordinary convertible bonds, see, e.g. Ingersoll (1977) and Brennan

and Schwartz (1977), to cite a few. Despite the relevance of exchangeable debts, less attention has been given

to their theoretical valuation. Realdon (2004) proposes a structural valuation model for these bonds and

uses the Hopscotch finite difference method to solve the problem. He considers the case of an exchangeable

bond when the issuer owns the underlying shares and when the issuer does not own these shares. He

explains however that the latter case is not realistic. He also discusses some features and distinctions of the

exchangeable bond. Moreover, Guo and Ren (2009) present a pricing model for exchangeable debt under the

least-squares regression approach proposed by Longstaff and Schwartz (2001).

In this paper, we extend Realdon (2004) by presenting a two-factor structural model and incorporating

the exchangeable debt as part of the debt portfolio of the firm under a setting comparable to Ayadi et al.

(2016). Our model accounts for tax benefits, bankruptcy costs and an arbitrary debt portfolio, allowing our

model to be flexible and able to accommodate any financial structural. The two factors are the value of the

issuer’s assets and the value of the equity shares against which the bond can be exchanged. Our methodology

is based on a two-dimensional dynamic program coupled with bilinear interpolations and parallel computing.

We suppose that the issuer owns the shares of the underlying equity, which are pledged to the bondholders

of the exchangeable bond. This is to ensure that the exchange option is not lost in case of default. We

start the evaluation at maturity of the debt where we can assess the debt in closed form. Next we proceed

backward and evaluate the bond at every payment date. On the one hand, the firm survives in each step if it

can meet its financial commitments to pay coupons and principal amounts to the bondholders. In this case,

bondholders of exchangeable bond will compare what they receive to the value of the underlying shares, and

exercise the exchange option if it is beneficial. If the option is exercised, the firm again reassess its situation:

the total value drops if it no longer owns the underlying shares, and default occurs if senior bondholders

cannot be paid. On the other hand, the firm defaults if it cannot honor its commitments to the bondholders.

Those of the exchangeable bond will then compare their recovered amount to the value of the underlying

shares and exercise, if favorable to them. Upon exercise, the firm can still survive if it can pay the senior

bondholders and avoid default.

The paper is organized as follows: Section 3.2 presents our valuation framework, Section 3.3 describes our

dynamic program, Section 3.4 shows our numerical investigation, and Section 3.5 concludes our paper.
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2 Valuation framework

The issuer credit risk is modeled using a structural model. We consider that the assets’ value Vt moves

according to geometric-Brownian motion

dVt
Vt

= (r − δ1)dt+ σV dW
1
t ,

where r is the constant risk-free rate, δ1 is the payout rate and σV is its volatility. The capital structure of

the issuer contains a portfolio of a straight debt and an exchangeable debt, as well as a common stock. The

straight debt is a senior debt. The firm is committed to making coupon payments to the bondholders which

results in collecting tax benefits. Let P = {t0, t1, . . . , tn, . . . , tN} be a set of payment dates. At each date tn,

the firm is committed to pay dn = den + dēn to its creditors, where den and dēn are the payments due to the

bondholders of the exchangeable bond and to the other bondholders respectively. These payments include

principal as well as coupon payments. The interest payments are noted Cen and C ēn respectively. The last

payment dates for the debts are indicated by T ē ≤ T e = T . The tax benefits at each payment date tn are

denoted by tbn = tben + tbēn where tben = rcCen, tbēn = rcC ēn, and rc ∈ [0, 1] is the corporate tax rate. The

firm also pays bankruptcy costs in case of default proportional to the remaining assets’ value, i.e. wV , where

w ∈ [0, 1] is a constant fraction.

The model assumes that the stockholders determine the time of default by maximizing the firm’s total

value subject to the limited liability constraint. In addition, the bondholders of the exchangeable debt have

the possibility to exchange their bond for a set number of another company’s shares at any date until maturity

and in case of default. These shares move according to geometric-Brownian motion as follows:

dSt
St

= (r − δ2)dt+ σSdW
2
t ,

where δ2 is a continuous dividend rate, σS is the shares’ volatility, and (W 1, W 2) is a bivariate correlated

Brownian motion with

Cor(W 1
t ,W

2
t ) = ρ, for all t > 0.

We suppose that the shares are pledged to the bondholders of the exchangeable bond, which prevents the

exchange option from being lost. We assume the strict priority rule under default. The non-exchangeable

bondholders are paid before the exchangeable bondholders unless the later exercise their right. We also

suppose that the shares underlying the exchangeable bond are protected against bankruptcy costs.

The balance-sheet equality at time tn is then

v + s+ TBn(v, s)−BCn(v, s) = Dē
n(v, s) +De

n(v, s) + En(v, s), (1)

where Vn = v and Sn = s. The functions TBn(v, s) and BCn(v, s) are the value of the tax benefits and the

value of the bankruptcy costs at date tn, respectively. Dē
n(v, s) is the value of the straight bond, De

n(v, s)

is the value of the exchangeable bond, and En(v, s) is the equity value of the issuer at date tn. These

corporate securities are seen as financial derivatives on the firm’s assets value and the exchangeable bond’s

underlying shares.

At each payment/decision date, several scenarios can happen, depending on the exchange option holder’s

decision (holding/exercise) and the firm’s status (survival/default). We indicate by F e+ē the firm under

holding with its overall exchangeable and non-exchangeable debt and by F ē the firm just after exercise with

its remaining non-exchangeable debt. The scenarios at maturity are as follows:
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Case 1: Holding under survival

The holding condition is

s ≤ De
N (v, s) = deN .

The balance-sheet equality of F e+ē is

v + s+ tbN − 0 = deN + dēN + (v + s+ tbN − dN ),

which results in the survival condition

v + s+ tbN − dN > 0.

The value functions are

TBN (v, s) = tbN ,

BCN (v, s) = 0,

Dē
N (v, s) = dēN ,

De
N (v, s) = deN ,

EN (v, s) = v + s+ tbN − dN .

Case 2: Holding under default

The default condition of F e+ē is

v + s+ tbN − dN ≤ 0,

as explained in case 1, while its balance-sheet equality is

v + s+ 0− wv = min((1− w)v + s, dēN ) + max((1− w)v + s− dēN , 0) + 0,

and the value functions are

TBN (v, s) = 0,

BCN (v, s) = wv,

Dē
N (v, s) = min((1− w)v + s, dēN ),

De
N (v, s) = max((1− w)v + s− dēN , 0),

EN (v, s) = 0,

which result in the holding condition

s ≤ De
N (v, s) = max((1− w)v + s− dēN , 0)

All in all, one has

Dē
N (v, s) =dēN ,

De
N (v, s) =(1− w)v + s− dēN ,

The straight bondholders are fully paid and the exchangeable bondholders are partially paid, while exercising

the option is suboptimal.

Case 3: Exercise: F e+ē and F ē survive

The survival condition of F e+ē is

v + s+ tbN − dN > 0,

as explained in case 1, while the exercise condition is

De
N (v, s) = s > deN .
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After exercise, the exchangeable debt no longer belongs to the firm’s debt portfolio. The balance-sheet

equality for the F ē becomes

v + tbēN − 0 = dēN + (v + tbēN − dēN )

The survival condition of F ē is then

v + tbēN − dēN > 0.

The value functions are

TBN (v, s) = tbēN ,

BCN (v, s) = 0,

Dē
N (v, s) = dēN ,

De
N (v, s) = s,

EN (v, s) = v + tbēN − dēN .

Case 4: Exercise: F e+ē survives and F ē defaults

The survival condition of F e+ē is

v + s+ tbN − dN > 0,

as explained in case 1, while the exercise condition is

De
N (v, s) = s > deN .

After exercise, the exchangeable debt no longer belongs to the firm’s debt portfolio. The firm F ē defaults if

v + tbēN − dēN ≤ 0,

as explained in case 3, and its balance-sheet equality becomes

v + 0− wv = (1− w)v + 0.

It’s worth noticing that dēN ≥ v + tbēN ≥ v ≥ (1− w)v. The value functions are

TBN (v, s) = 0,

BCN (v, s) = wv,

Dē
N (v, s) = (1− w)v,

De
N (v, s) = s,

EN (v, s) = 0.

Exchanging the bond provokes default.

Case 5: Exercise: F e+ē defaults and F ē survives

The firm F e+ē would have defaulted if the exchange option has not been exercised. The default condition is

v + s+ tbN − dN ≤ 0.

and the exercise condition is

De
N (v, s) = s > (1− w)v + s− dēN ,

as explained in case 2. After exercise, the exchangeable debt no longer belongs to the firm’s debt portfolio.

The balance-sheet equality of F ē becomes

v + tbēN + 0 = dēN + (v + tbēN − dēN ),

and the survival condition is

v + tbēN − dēN > 0.
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The value functions are

TBN (v, s) = tbēN ,

BCN (v, s) = 0,

Dē
N (v, s) = dēN ,

De
N (v, s) = s,

EN (v, s) = v + tbēN − dēN .

Exercising the exchange option prevents the firm from default.

Case 6: Exercise: F e+ē and F ē default

The default condition of F e+ē is

v + s+ tbN − dN ≤ 0.

and the exercise condition is

De
N = s > (1− w)v + s− dēN ,

as explained in case 2. After exercise, the exchangeable debt no longer belongs to the firm’s debt portfolio.

The firm F ē defaults if

v + tbēN − dēN ≤ 0,

as explained in case 5, and its balance-sheet equality becomes

v + 0− wv = (1− w)v + 0.

The value functions are

TBN (v, s) = 0,

BCN (v, s) = wv,

Dē
N (v, s) = (1− w)v,

De
N (v, s) = s,

EN (v, s) = 0.

At any decision date tn, we apply a similar reasoning. The firm defaults if it cannot meet its financial

commitments. The exchangeable bondholders will exercise the exchange option whenever the value of the

underlying shares is greater than the promised payments in case of survival, or the recovered amount in case

of default. The scenarios at any date tn are as follows:

Case 1: Holding under survival

The holding condition is

s ≤ De
n(v, s) = den + E

[
De
n+1(Vn+1, Sn+1)|Fn

]
.

The survival condition for F e+ē is

E
[
En+1(Vn+1, Sn+1)|Fn

]
+ tbn − dn > 0.

The value functions are

TBn(v, s) = tbn + E
[
TBn+1(Vn+1, Sn+1)|Fn

]
,

BCn(v, s) = E
[
BCn+1(Vn+1, Sn+1)|Fn

]
,

Dē
n(v, s) = dēN + E

[
Dē
n+1(Vn+1, Sn+1)|Fn

]
,

De
n(v, s) = den + E

[
De
n+1(Vn+1, Sn+1)|Fn

]
,

En(v, s) = E
[
En+1(Vn+1, Sn+1)|Fn

]
+ tbn − dn.
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Case 2: Holding under default

The default condition of F e+ē is

E
[
En+1(Vn+1, Sn+1)|Fn

]
+ tbn − dn ≤ 0

The holding condition is

s ≤ De
n(v, s) = (1− w)v + s− dēn − E

[
Dē
n+1(Vn+1, Sn+1)|Fn

]
.

The value functions are

TBn(v, s) = 0,

BCn(v, s) = wv,

Dē
n(v, s) = dēn + E

[
Dē
n+1(Vn+1, Sn+1)|Fn

]
,

De
n(v, s) = (1− w)v + s− dēn − E

[
Dē
n+1(Vn+1, Sn+1)|Fn

]
,

En(v, s) = 0.

Case 3: Exercise: F e+ē and F ē survive

The survival condition of F e+ē is

E
[
En+1(Vn+1, Sn+1)|Fn

]
+ tbn − dn > 0.

while the exercise condition is

De
n(v, s) = s > den + E

[
De
n+1(Vn+1, Sn+1)|Fn

]
.

After exercise, the exchangeable debt no longer belongs to the firm’s debt portfolio. The survival condition

of F ē is

E
[
En+1(Vn+1, Sn+1)|Fn

]
+ tbēn − dēn > 0.

The value functions are

TBn(v, s) = tbēn + E
[
TBn+1(Vn+1, Sn+1)|Fn

]
,

BCn(v, s) = E
[
BCn+1(Vn+1, Sn+1)|Fn

]
,

Dē
n(v, s) = dēn + E

[
Dē
n+1(Vn+1, Sn+1)|Fn

]
,

De
n(v, s) = s,

En(v, s) = E
[
En+1(Vn+1, Sn+1)|Fn

]
+ tbēn − dēn.

Case 4: Exercise: F e+ē survives and F ē defaults

The survival condition of F e+ē is

E
[
En+1(Vn+1, Sn+1)|Fn

]
+ tbn − dn > 0.

while the exercise condition is

De
n(v, s) = s > den + E

[
De
n+1(Vn+1, Sn+1)|Fn

]
.

After exercise, the exchangeable debt no longer belongs to the firm’s debt portfolio. The default condition

of F ē is

E
[
En+1(Vn+1, Sn+1)|Fn

]
+ tbēn − dēn ≤ 0.

The value functions are

TBn(v, s) = 0,

BCn(v, s) = wv,

Dē
n(v, s) = (1− w)v,

De
n(v, s)s,

En(v, s) = 0.

Exchanging the bond provokes default.
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Case 5: Exercise: F e+ē defaults and F ē survives

The firm F e+ē would have defaulted if the exchange option has not been exercised. The default condition of

F e+ē is

E
[
En+1(Vn+1, Sn+1)|Fn

]
+ tbn − dn ≤ 0

The exercise condition is

s = De
n(v, s) > (1− w)v + s− dēn − E

[
Dē
n+1(Vn+1, Sn+1)|Fn

]
.

After exercise, the exchangeable debt no longer belongs to the firm’s debt portfolio. The survival condition

of F ē is

E
[
En+1(Vn+1, Sn+1)|Fn

]
+ tbēn − dēn > 0.

The value functions are

TBn(v, s) = tbēn + E
[
TBn+1(Vn+1, Sn+1)|Fn

]
,

BCn(v, s) = E
[
BCn+1(Vn+1, Sn+1)|Fn

]
,

Dē
n(v, s) = dēn + E

[
Dē
n+1(Vn+1, Sn+1)|Fn

]
,

De
n(v, s) = s,

En(v, s) = E
[
En+1(Vn+1, Sn+1)|Fn

]
+ tbēn − dēn.

Exercising the exchange option prevents the firm from default.

Case 6: Exercise: F e+ē and F ē default

The default condition of F e+ē is

E
[
En+1(Vn+1, Sn+1)|Fn

]
+ tbn − dn ≤ 0

The exercise condition is

s = De
n(v, s) > (1− w)v + s− dēn − E

[
Dē
n+1(Vn+1, Sn+1)|Fn

]
.

After exercise, the exchangeable debt no longer belongs to the firm’s debt portfolio. The default condition

of F ē is

E
[
En+1(Vn+1, Sn+1)|Fn

]
+ tbēn − dēn ≤ 0.

The value functions are

TBn(v, s) = 0,

BCn(v, s) = wv,

Dē
n(v, s) = (1− w)v,

De
n(v, s) = s,

En(v, s) = 0.

This model can be studied under the assumption that the issuer of the exchangeable bond does not own

the equity shares against which the debt can be exchanged. In this case, if the bondholders decide to exercise

the option, the firm has to purchase the shares to deliver them. The exchange option can thus be lost if

the firm is in distress and cannot deliver the shares. Under this hypothesis, the issuer’s default probability

increases and the exchangeable bond is less valuable than the previous case as the bondholders are taking

more risk. This case is treated in Realdon (2004) but we do not consider it because, as explained in the latter,

the issuance of exchangeable bonds when the issuer does not own the underlying shares is discouraged. This

supports the affirmation that the issuer usually owns the shares and issues exchangeable bonds as a divesting

strategy to dispose of the underlying shares in his possession.
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3 Dynamic programming

Let G be a set of grid points {(a1, b1), (a1, b2), . . . , (ap, bq)} such that max(∆ak,∆bl) → 0 and Q[(Vt, rt) ∈
[ap,∞)×R∗+ ∪R∗+× [bq,∞)]→ 0, when p and q →∞. Let a0 = b0 = 0 and ap+1 = bq+1 =∞. The rectangle

[ai, ai+1)× [bj , bj+1) is designated by Rij . Let ∆t = tn+1 − tn a constant.

Dynamic programming acts as follows:

1. At date tN = T , the value functions are known in closed form and are computed as described in

Section 2.

2. At each date tn, suppose that an approximation of each value function is available at a future decision

date tn+1 on G, indicated by f̃n+1(ak, bl), for k = 1, . . . , p and l = 1, . . . , q, where fn represents TBn,

BCn, Dē
n, De

n, or En. Use a bilinear piecewise polynomial and interpolate each value function f̃n+1

from G to the overall state space [0,∞)2 by setting:

f̂n+1(x, y) =

p∑
i=0

q∑
j=0

(
αn+1
ij + βn+1

ij x+ γn+1
ij y + δn+1

ij xy
)
I
(
(x, y) ∈ Rij

)
,

where the local coefficients of each value function fn+1, αn+1
ij , βn+1

ij , γn+1
ij , and δn+1

ij , for i = 0, . . . , p

and j = 0, . . . , q, are the coefficients of the bilinear interpolation.

3. Approximate the expectation of every value function at tn on G:

= E
[
e−r∆tf̂n+1(Vtn+1

, Stn+1
) | (Vtn , Stn) = (ak, bl)

]
= e−r∆t

∑
i,j

(
αn+1
ij T 00

klij + βn+1
ij T 10

klij + γn+1
ij T 01

klij + δn+1
ij T 11

klij

)
,

where the transition tables T 00, T 10, T 01, and T 11 are defined as follows:

T νµklij = E
[
(Vtn+1

)ν(Stn+1
)µI
(
(Vtn+1

, Stn+1
) ∈ Rij

)
|

(Vtn , Stn) = (ak, bl)
]
, for ν and µ ∈ {0, 1}.

For example, T 00
klij represents the transition probability that the Markov process (V, S) moves from

(ak, bl) at tn and visits the rectangle Rij at tn+1. Closed-form solutions for these transition tables are

given in Appendix A.

4. Compute the value functions at tn on G as described in Section 2.

5. Go to step 2 and repeat until n = 0.

This procedure is time consuming as we have a two-dimensional problem. Therefore, it makes sense to try

to use parallel computing to accelerate the procedure. We parallelize our dynamic program by submitting

the computation tasks associated to a given number of grid points to each available CPU. The algorithm

used to parallelize our dynamic program is described in details in Appendix B. This approach allows us to

drastically reduce the computation time to a reasonable level.

We use the supercomputer Briarée managed by Calcul Québec and Compute Canada.1 The code lines

are written in C and compiled with GCC. We use the MPI library to access parallel computing.

4 Numerical investigation

In this section, we examine some characteristics of the exchangeable debt. For comparison purposes, we

consider an exchangeable bond with the same parameters as in Realdon (2004). Considering an ordinary

debt and an exchangeable bond both with a 5 year maturity and principal amount P = 1. The annual

1The operation of this supercomputer is funded by the Canada Foundation for Innovation (CFI), Ministère de l’Économie,
de la Science et de l’Innovation du Québec (MESI) and the Fonds de recherche du Québec - Nature et technologies (FRQ-NT).
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coupon rate is 3% for the ordinary debt and 4.7% for the exchangeable bond. Our numerical investigation

presented here are based on a grid size of 3002. A price calculation takes in average two minutes using

parallel computing.

Figure 1 plots the value of the exchangeable bond as a function of the initial shares’ level S0 and the

initial assets’ value V0. The exchangeable bond value is an increasing function of both variables. In fact, high

values for the firm’s assets represent less risky firms making the exchangeable bond more valuable. We also

notice that the increase in the shares’ value has more significant impact on the exchangeable bond value than

the increase in the firm’s assets value. In fact, as S0 increases, the bondholders are more likely to exercise

the exchange option and the exchangeable bond value increases.
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Figure 1: Exchangeable debt value as a function of the shares’ value and the firm’s assets value. The parameters used are
r = 0.04, δ1 = 0.3, σV = 02, δ2 = 0, σS = 0.3, ρ = 0, w = 0.2, and rc = 0.35.

Figure 2 presents the exchangeable bond value as a function of the initial shares’ value S0 as the volatility

of the firm’s assets σV is changed. The exchangeable bond value decreases when the latter increases since

the firm is more risky. For low values of the shares, the exchangeable bond value is more sensitive to changes

in the firm risk-level; when the shares’ value is low, the exchange option is less likely to be used and the

bondholders are more exposed to the issuer risk.
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Figure 2: Exchangeable debt value as a function of the shares’ value as the assets’s volatility is changed. The parameters used
are r = 0.04, V0 = 1.5, δ1 = 0.3, δ2 = 0, σs = 0.3, ρ = 0, w = 0.2, and rc = 0.35.

Figure 3 illustrates that the exchangeable bond increases in the shares’ volatility σS as the exchange

option becomes more valuable. Figure 4 shows that the exchangeable bond rises when correlation rises. In

fact, as explained by Realdon (2004), for negative values of ρ, high values of the issuer’s assets are most

likely associated to low values of the underlying shares, and vice versa. This situation is most valuable

for the exchangeable bond. As correlation becomes positive, high values of the issuer’s assets are most
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likely associated with high values of the underlying shares, and vice versa. The first scenario is beneficial

to the bondholders, but the second drives down the exchangeable bond value. Besides, increasing the the

proportional bankruptcy costs and the nominal amount of the issuer’s other outstanding debt decrease the

value of the exchangeable bond as it increases the the loss given default.
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Figure 3: Exchangeable debt value as a function of the shares’ value as the shares’ volatility is changed. The parameters used are
r = 0.04, V0 = 1.5, δ1 = 0.3, σV = 0.2, δ2 = 0, ρ = 0, w = 0.2, and rc = 0.35.
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Figure 4: Exchangeable debt value as a function of the shares’ value as the correlation is changed. The parameters used are
r = 0.04, σV = 0.2, δ1 = 0.3, V0 = 1.5, σS = 0.3, δ2 = 0, w = 0.2, and rc = 0.35.

5 Conclusion

In this paper, we propose a valuation framework for a hybrid-form of convertible debt, namely the exchange-

able bond. This structured contract continues to gain popularity in corporate finance but is still less studied

in terms of valuation purposes. Hence, we propose a general structural model for valuing exchangeable

bonds in a setting that accounts for flexible debt structures, presence of bankruptcy costs and tax benefits.

The model is solved using two-dimensional dynamic programming coupled with finite elements and parallel

computing. The relevance of our methodology is that it can accommodate other styles of two-dimensional

structured financial contracts such as reverse convertible bonds.
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Appendix A Transition parameters

The transition parameters T νµklij for ν and µ ∈ {0, 1}, k ∈ {1, . . . , p}, l ∈ {1, . . . , q}, i ∈ {0, . . . , p}, and

j ∈ {0, . . . , q} are calculated as follows:

T 00
klij = E∗

[
I
(
(Vtn+1

, Stn+1
) ∈ Rij

)
| (Vtn , Stn) = (ak, bl)

]
= Q

[
(Vtn+1

, Stn+1
) ∈ Rij | (Vtn , Stn) = (ak, bl)

]
=

∫ xk,i+1

xk,i

∫ yl,j+1

yl,j

φ(z1, z2, ρ)dz1dz2

= Φ(xk,i+1, yl,j+1, ρ)− Φ(xk,i, yl,j+1, ρ)− Φ(xk,i+1, yl,j , ρ) + Φ(xk,i, yl,j , ρ),

where

xk,i =

(
log
(
ai/ak

)
−
(
r − d1 − σ2

V /2
)

∆t

)
/
(
σV
√

∆t
)

yl,j =

(
log
(
bj/bl

)
−
(
r − d2 − σ2

S/2
)

∆t

)
/
(
σS
√

∆t
)
.

The functions φ(·, ·, ρ) and Φ(·, ·, ρ) are respectively the density and the cumulative density functions of the

bivariate standard normal distribution with correlation coefficient ρ. The function Φ(·, ·, ρ) is computed

according to Genz (2004).

T 10
klij = E∗

[
Vtn+1

I
(
(Vtn+1

, Stn+1
) ∈ Rij

)
| (Vtn , Stn) = (ak, bl)

]
=

∫ xk,i+1

xk,i

∫ yl,j+1

yl,j

ak exp
(

(r − d1 − σ2
V /2)∆t+ σV

√
∆tz1

)
φ(z1, z2, ρ)dz1dz2

= w1
k

∫ xk,i+1−σV

√
∆t

xk,i−σV

√
∆t

∫ yl,j+1−ρσV

√
∆t

yl,j−ρσV

√
∆t

φ(u1, u2, ρ)du1du2

= w1
k

[
Φ(xk,i+1 − σV

√
∆t, yl,j+1 − ρσV

√
∆t, ρ)−

Φ(xk,i − σV
√

∆t, yl,j+1 − ρσV
√

∆t, ρ)−

Φ(xk,i+1 − σV
√

∆t, yl,j − ρσV
√

∆t, ρ)+

Φ(xk,i − σV
√

∆t, yl,j − ρσV
√

∆t, ρ)
]
,

where w1
k = ak exp

(
(r − d1 − σ2

V /2)∆t+ σ2
V ∆t/2

)
.

T 01
klij = E∗

[
Stn+1

I
(
(Stn+1

, Stn+1
) ∈ Rij

)
| (Stn , Stn) = (ak, bl)

]
=

∫ xk,i+1

xk,i

∫ yl,j+1

yl,j

bl exp
(

(r − d2 − σ2
S/2)∆t+ σS

√
∆tz2

)
φ(z1, z2, ρ)dz1dz2

= w2
l

∫ xk,i+1−ρσS

√
∆t

xk,i−ρσS

√
∆t

∫ yl,j+1−σS

√
∆t

yl,j−σS

√
∆t

φ(u1, u2, ρ)du1du2

= w2
lˇ

[
Φ(xk,i+1 − ρσS

√
∆t, yl,j+1 − σS

√
∆t, ρ)−

Φ(xk,i − ρσS
√

∆t, yl,j+1 − σS
√

∆t, ρ)−

Φ(xk,i+1 − ρσS
√

∆t, yl,j − σS
√

∆t, ρ)+

Φ(xk,i − ρσS
√

∆t, yl,j − σS
√

∆t, ρ)
]
,
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where w2
l = bl exp

(
(r − d2 − σ2

S/2)∆t+ σ2
S∆t/2

)
.

T 11
klij = E∗

[
Vtn+1Stn+1I

(
(Vtn+1 , Stn+1) ∈ Rij

)
| (Vtn , Stn) = (ak, bl)

]
=

∫ xk,i+1

xk,i

∫ yl,j+1

yl,j

ak exp
(
(r − d1 − σ2

V /2)∆t+ σV
√

∆tz1

)
×

bl exp
(
(r − d2 − σ2

S/2)∆t+ σS
√

∆tz2

)
φ(z1, z2, ρ)dz1dz2

= w1
kw

2
l exp (ρσV σS∆t)×

∫ xk,i+1−(σV +ρσS)
√

∆t

xk,i−(σV +ρσS)
√

∆t

∫ yl,j+1−(ρσV +σS)
√

∆t

yl,j−(ρσV +σS)
√

∆t

φ(u1, u2, ρ)du1du2

= w1
kw

2
l exp (ρσV σS∆t)×[

Φ(xk,i+1 − (σV + ρσS)
√

∆t, yl,j+1 − (ρσV + σS)
√

∆t, ρ)−

Φ(xk,i − (σV + ρσS)
√

∆t, yl,j+1 − (ρσV + σS)
√

∆t, ρ)−

Φ(xk,i+1 − (σV + ρσS)
√

∆t, yl,j − (ρσV + σS)
√

∆t, ρ)+

Φ(xk,i − (σV + ρσS)
√

∆t, yl,j − (ρσV + σS)
√

∆t, ρ)
]
.

Appendix B Parallel computing algorithm

Parallel computing uses multiple central processing units (CPUs) simultaneously to speed-up complex compu-

tations. The Message Passing Interface (MPI) library allows the computing process to exchange information

between the running CPU environments in order to achieve a given job. Each CPU has access to a certain

memory space. MPI requires case-sensitive programming changes from the serial code to its parallel version.

The easiest way to parallelize DP is to submit the computation tasks associated to a given grid point (ak, bl),

for k = 1, . . . , p and l = 1, . . . , q, to a single CPU. Our parallel code acts as follows.

1. This single CPU computes once and locally stores the overall grid points (ai, bj) and each value function

values fN (ai, bj), for i = 1, . . . , p and j = 1, . . . , q.

2. It also computes once and locally stores the 4× (p+ 1)(q + 1) transition parameters T 00
klij , T

10
klij , T

01
klij ,

and T 11
klij , for i = 0, . . . , p and j = 0, . . . , q.

3. It computes and stores at step n + 1 the local coefficients αn+1
ij , βn+1

ij , γn+1
ij , and δn+1

ij , for each value

function fn+1, for i = 0, . . . , p and j = 0, . . . , q.

4. It computes and stores at step n every value function f̃n(ak, bl).

5. The same CPU exports f̃n(ak, bl) to a selected CPU, the so-called master CPU.

6. The master CPU collects f̃n(ak, bl), for k = 1, . . . , p and l = 1, . . . , q, and sends them back to all

running CPUs.

7. Go to step 3 and repeat until n = 0.

Since the number of CPUs available to the analyst is usually less than the grid size pq, we submit the

same number of grid points to each CPU.



Les Cahiers du GERAD G–2017–48 13

References
Ayadi, M. A., Ben-Ameur, H., and Fakhfakh, T. (2016). A dynamic program for valuing corporate securities. European

Journal of Operational Research, 249(2):751–770.

Barber, B. M. (1993). Exchangeable debt. Financial Management, 22(2):48–60.

Brennan, M. J. and Schwartz, E. S. (1977). Convertible bonds: Valuation and optimal strategies for call and conversion.
The Journal of Finance, 32(5):1699–1715.

Genz, A. (2004). Numerical computation of rectangular bivariate and trivariate normal and t probabilities. Statistics
and Computing, 14(3):251–260.

Grimwood, R. and Hodges, S. (2002). The valuation of convertible bonds: a study of alternative pricing models.
Working paper, Warwick Finance Research Institute.

Guo, B. and Ren, R. (2009). Pricing exchangeable bonds based on monte carlo method. In 2009 International
Conference on Management and Service Science.

Holthausen, R. W., Leftwich, R. W., and Mayers, D. (1987). The effect of large block transactions on security prices:
a cross-sectional analysis. Journal of Financial Economics, 19(2):237–267.

Ingersoll, J. E. (1977). A contingent-claims valuation of convertible securities. Journal of Financial Economics,
4(3):289–321.

Jones, E. and Mason, S. (1986). Equity-linked debt. Midland Corporate Finance Journal, pages 47–58.

Longstaff, F. A. and Schwartz, E. S. (2001). Valuing American options by simulation: a simple least-squares approach.
The Review of Financial Studies, 14(1):113–147.

Mikkelson, W. H. and Partch, M. M. (1985). Stock price effects and costs of secondary distributions. Journal of
Financial Economics, 14(2):165–194.

Realdon, M. (2004). Valuation of exchangeable convertible bonds. International Journal of Theoretical and Applied
Finance, 7(06):701–721.


	Introduction
	Valuation framework
	Dynamic programming
	Numerical investigation
	Conclusion
	Transition parameters
	Parallel computing algorithm

