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Abstract: In this paper, we evaluate the competitiveness of electric commercial vehicles in medium-duty
mid-haul logistics for a specific case study. This is done combining an aggregated total cost of ownership
analysis with an integrated location-routing model with simultaneous locating of charging stations at stores
and multi-shift, multi-period pickup and delivery routing of vehicles within the logistics network. This allows
for a fair comparison of electric commercial vehicles and internal combustion engine vehicles. Results show
that nearly no operational limitations arise by electrifying the mid-haul logistics fleet for this specific case.
Moreover, electric commercial vehicles show clear advantages in this case with regard to total costs and
emission savings. Based on these positive results, managerial insights are derived for logistics fleet operators.

Keywords: Electric commercial vehicles, medium-duty logistics, real-world case study, sustainable logistics
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1 Introduction

Transportation contributes significantly to climate change at global level as well as to noxious air emissions,

particulate matter, and noise emissions at local level. Therefore, a change towards environmentally friendly

freight distribution is necessary. This can be achieved by implementing sustainable means of transportation.

Within this context, electric commercial vehicles (ECVs) can significantly contribute to greener road trans-

portation as they are considered to be one of the cleanest means of transportation for small and medium-duty

transports: At local level (tank-to-wheel), ECVs produce neither greenhouse gases, nor noxious emissions,

nor particulate matter. If all energy used for charging ECVs is produced from renewable sources, this zero-

emission balance holds even for the so called well-to-wheel perspective. Furthermore, noise emissions can

significantly be reduced by using ECVs instead of internal combustion engine vehicles (ICEVs). Despite

these advantages, the overall market penetration and the share of ECVs in logistics fleets is still negligibly

low. This is mainly due to major disadvantages of electric vehicles: limited driving range, long charging

times and missing charging infrastructure. Also, the offer of small and medium-duty ECVs with sufficient

load capacity is still sparse.

However, pilot projects on implementing ECVs in logistics fleets have been launched several years ago,

and first electric logistics fleets have already been installed. For instance, the Deutsche Post DHL group

(DPDHL) tested a first electric fleet of 12 Renault Kangoo ZE for postal services in German cities as early

as 2011 (DPDHL, 2011). A larger pilot project was launched in 2013 aiming at zero-emission deliveries

for a city region with 310,000 inhabitants. Within this project, custom-build ECVs were used (Pieringer,

2013; DPDHL, 2013, 2014b), and DPDHL eventually bought the company that manufactured the ECVs as

reaction to the project’s success (DPDHL, 2014a). However, these and other projects (e.g., UPS, 2013) focus

on short-haul applications. In short-haul applications, range limitations and charging en route play only a

minor role, since average trip distances remain below 80km and recharging of vehicles once a day (e.g., over

night at the depot) is sufficient. For mid-haul applications (e.g., arising in retail logistics networks), limited

driving ranges, long charging times and missing infrastructure still hold as disadvantages for ECVs. As a

consequence, mid-haul logistics fleet operators still perceive ECVs as less efficient with regard to time and

costs, and thus as less competitive as ICEVs. As a result, even pilot projects on medium-duty ECVs are still

sparse.

In order to push the usage of ECVs in mid-haul logistics, the German government initiated (and partly

funded) the pilot project ELMO ’Elektromobile urbane Wirtschaftsverkehre’ (’electrified commercial trans-

port in urban areas’). In this project, an extensive field test was conducted with different stakeholders,

managed by Fraunhofer IML. The objective was to evaluate the competitiveness of ECVs compared to
ICEVs, and to assess how ECVs can be integrated in existing mid-haul logistics fleets. Herein, several lo-

gistics fleet operators (for instance the retail company TEDi that constitutes our case study) used ECVs

for their delivery processes. During the project period from 2011 to 2015, energy consumption and charging

behavior of twelve mid-range ECVs were tracked. The field test yielded over 3,000 records of transportation

round trips, covered a total mileage of 158,209 kilometers and a total amount of 108,543 kWh of consumed

energy. Besides these data, vast experience was gained on every-day operation as well as on potentials and

limitations of the utilization of mid-haul ECVs. One of the key results of this project was that medium-sized

ECVs are on the verge of breaking even in (urban) mid-haul distribution. However, several topics remained

open in the ELMO project with respect to service areas, network operations and total costs:

Service areas: In ELMO, ECVs were only used within a limited vicinity, and vehicles were charged at the

depot. As a result, limitations in range and infrastructure were vastly neglected. However, specific

accessibility and network operations depending on range, consumption rate and infrastructure devel-

opment have to be evaluated in order to account for real-world service areas with larger vicinities and

mid-haul distances. The question has to be answered if and under which circumstances it is possible

and worthwhile to cover the complete service area of mid-haul logistics fleets by ECVs.

Network operations: In ELMO, the assessment was limited to a small number of vehicles that were oper-

ated on single route patterns. The same route patterns as for ICEVs were chosen, but vehicles were only
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operated within a small vicinity in order to account for limited ranges. Route planning for ECVs was

done relying on expert experiences. Interdependencies with other vehicles that were operated within the

network were vastly neglected. However, simultaneous routing of all vehicles of the fleet is necessary in

order to account for coordination between vehicles. Herein, specific network structures, customer pat-

terns, working shifts, service times and delivery frequencies have to be regarded. Especially, the pickup

and delivery characteristics of retail logistics networks have to be considered. Only if these aspects

are accounted for, the complex planning tasks of real-world applications can be answered. As result,

the question if and how ECVs can be operated on tailored routes regarding location of charging sta-

tions, recharging times and driving ranges remains and must be answered using advanced quantitative

planning algorithms.

Total costs: In the ELMO project, costs were derived for single vehicles. However, this does not allow

to evaluate the impact of an electrification of complete logistics fleets. Thus, a total cost analysis of

the implementation of ECVs within mid-haul logistics fleets is required, based on detailed results for

infrastructure (charging stations) development and vehicle routing. Integrating the results regarding

coverage of (parts of) the service area and of the routing of the vehicles within the network, the

question can be answered if and under which circumstances a (complete or partial) transformation of

a conventional logistics fleet towards ECVs is worthwhile.

The target of our analysis is to overcome the limitations of the pilot project ELMO and to explore the

potential for the complete electrification of mid-haul logistics fleets. To do so, it is necessary to compare

routes and driving patterns of ICEVs and ECVs in order to assess the impact of the electrification of a logistics

fleet. Herein, specific characteristics of the vehicles (e.g., driving range, energy consumption, recharging time)

have to be regarded as these provide the main challenges compared to ICEVs. Also, the locating of charging

stations has to be taken into account, since recharging en route is essential if the complete service area is to

be operated by ECVs. Additionally, specific characteristics of the service area (e.g., spatial demand patterns,

time windows) as well as requirements of retail logistics (delivery frequency, pickup processes, driver shifts)

have to be accounted for, since these determine the future routes of the ECVs.

In order to answer the derived questions, we first analyze related literature on cost assessment and location

of charging stations as well as routing of ECVs (Section 1.1), before detailing the scope and organization of

our study (Section 1.2) in order to set it apart from recent research.

1.1 Related literature

Recent research on ECVs can be divided in two streams focusing on i) aggregated cost analysis (i.e., total

cost of ownership (TCO) calculations) to investigate the competitiveness of ECVs and ii) operational decision

support on routing and charging, especially vehicle routing problems (VRPs) with additional ECV specific

constraints. In the following, we review both streams concisely.

Most approaches that evaluate the competitiveness of ECVs use aggregated TCO calculations in order

to compare the life cycle costs of ECVs and ICEVs. Usually, these analyses are based on very general

suppositions and assumptions for operational parameters (e.g., average total distances instead of specific

routes), which are often discussed using a sensitivity analysis. Lee et al. (2013) provided a TCO calculation

for medium-duty ECVs, taking realistic energy consumption and realistic driving cycles within a range

between 48km and 96km into consideration. Feng and Figliozzi (2013) compared the TCO of ECVs and

ICEVs analyzing different fleet and battery replacement scenarios. Davis and Figliozzi (2013) provided a

TCO analysis taking fuel consumption, approximated routing constraints, battery replacement and real-

world speed profiles into consideration. Taefi et al. (2016) provided a TCO analysis of ECVs focusing on

the cost-optimal balance between a high vehicle utilization and the resulting increase in required battery

replacement due to battery degradation. All of these analyses find that ECVs become the more competitive,

the higher the overall traveled mileage is (e.g., a daily mileage threshold of 129km is stated in Feng and

Figliozzi (2013)). Furthermore, specific driving pattern characteristics like frequent stops, congested streets,

idling motors, and low speed increase the competitiveness of ECVs compared to ICEVs.
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Although these analyses are based on reasonable assumptions, they are not sufficient to alleviate the

skepticism of practitioners, since operational limitations and case specific restrictions are not taken into

account. For example, within the use case of the DPDHL for postal services, ECVs became competitive

for significantly less daily mileages than expected by general TCO assessments. Thus, doubts on results of

aggregated TCO assessments, i.e. over- or underestimations of costs, seem to be justified.

Within the transportation sector, operations research tools are commonly used to make daily planning

tasks more efficient and profitable. In this context, various kinds of VRPs have been proposed to address

the operational planning of pickup and/or delivery networks for conventional logistics fleets. These models

have recently been extended addressing additional constraints for logistics fleets with ECVs, i.e., recharging

operations and limited driving ranges.

Conrad and Figliozzi (2011) presented the recharging VRP (RVRP), considering battery capacity limita-

tions of ECVs and charging opportunities at customer vertices. Erdoǧan and Miller-Hooks (2012) introduced

the first model that considers additional vertices allowing for charging activities for any kind of alternative fuel

vehicle (AFV). Schneider et al. (2014) developed the electric VRP (EVRP) with time windows (EVRP-TW),

the first model that explicitly focuses on ECVs. Later publications then extended the basic EVRP-TW con-

sidering heterogeneous fleets (Goeke and Schneider, 2015; Hiermann et al., 2016), partial recharging (Felipe

et al., 2014; Keskin and Çatay, 2016; Desaulniers et al., 2016; Montoya et al., 2017), charging stations with

different charging rates and costs (Felipe et al., 2014; Montoya et al., 2017), and hours of service regulations

(Schiffer et al., 2017a). First exact solution methods were presented by Desaulniers et al. (2016); Hiermann

et al. (2016); Roberti and Wen (2016). In addition, first publications that consider charging station loca-

tion and vehicle routing decisions simultaneously were published as variants of the location routing problem

(LRP) with intra-route facilities (LRPIFs) (Yang and Sun, 2015; Schiffer and Walther, 2017b,c,a; Schiffer

et al., 2017b). VRP models that account for specific characteristics of retail logistics, like driver shifts, de-

livery over several time periods (e.g., working days of one week) as well as combined pickup and delivery

processes, were considered for ICEVs. In this context, approaches for ECVs as well as LRPIF approaches

are still missing. For an extensive overview of research on electric vehicles, we refer to Pelletier et al. (2016)

for goods distribution, and to Pelletier et al. (2017) for battery behavior.

Most of the presented papers are based on artificial instances and focus on a pure methodological contri-

bution by extending the problem class or presenting a solution method. A competitiveness analysis that is

based on these models is so far missing. Also, none of the papers discussed above analyzes a real-world case

study for ECVs with all requirements.

Concluding, neither aggregated TCO analyses nor mathematical models for the planning of electric logis-

tics fleets are so far able to carry out a fair comparison between ECVs and ICEVs, and as a result to derive

information on feasibility and profitability of the electrification of logistics fleets in mid-haul logistics. Espe-

cially, retail logistics requirements like accounting for pickup and delivery, multiple shifts and a multi-period

planning horizon have not been addressed, neither by existing EVRP nor by respective LRPIF approaches.

1.2 Aims and scope

Against this background, the aim of this paper is to derive the first feasibility study for the usage of ECVs

in mid-haul retail logistics. Based on this study, we provide the first analysis on the competitiveness of

ECVs, which is neither limited to aggregated cost analysis nor to operational planning tasks, nor to artificial

instances.

In order to address these aims, it is no longer sufficient to calculate costs on an aggregated level based on

a number of assumptions or on data from tracking single vehicles. Instead, it has to be analyzed if and how

medium-duty ECVs can be integrated into logistics networks, while fulfilling all real-world requirements on

demand, deliveries and pickups. Herein, the challenge is to minimize operational disadvantages of ECVs with

regard to range limitations and charging times (Stütz et al., 2016). This is only possible if optimal routing

decisions are taken, considering the specific characteristics of ECVs and accounting for all requirements of
the real-world case. Additionally, a cost efficient charging infrastructure must be installed to keep vehicles
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operational, as ECVs are integrated in a network for the first time. Because these decisions are interdependent

(since routing decisions depend on charging station locations, and the locating of charging stations depends

on underlying route patterns, cf. Schiffer and Walther, 2017b), integrated routing and network design aspects

have to be regarded.

Aiming at at a solution approach that covers all requirements stated above, the contribution of this paper

is severalfold: First, we develop a new integrated approach for the assessment of the competitiveness of ECVs.

Herein, we combine a comprehensive TCO analysis with a detailed model on network design and operations

in order to optimize the integration of ECVs in retail logistics fleets. This approach allows for a profound

and as accurate as possible competitiveness analysis of ECVs in retail logistics networks.

Second, we develop a mixed integer program (MIP) that is new in that it is the first model which is able

to account for real-world characteristics of retail fleets, like multiple shifts, delivery frequencies over several

periods, and combined pickup and delivery services. In addition, we present a competitive algorithmic

framework to solve large-sized instances.

Third, we analyze a real-world case with empirical data, assessing the competitiveness of ECVs against

ICEVs for the distribution network of a large retail company in Germany. We discuss results with respect

to the overall costs for ECV as well as ICEV fleets in order to assess the competitiveness of medium-duty

ECVs within mid-haul retail transportation. Furthermore, we investigate the emission savings to quantify

the ecological benefit of an electric logistics fleet. We show the applicability of the model for real-world cases,

and ascertain the reliability and relevance of the derived managerial insights for practitioners.

Fourth, besides specific recommendations for the case study, we derive deeper managerial insights into

the current potential of ECVs in logistics fleets as well as more general recommendations for practitioners,

municipalities and researchers.

The remainder of this paper is structured as follows: First, we introduce our case study in Section 2.

Then, we derive a mixed integer program formulation for our integrated planning approach in Section 3.

Section 4 contains our experimental design and detailed information on the used data. In Section 5, we

present results on the competitiveness of ECVs compared to ICEVs from an economic as well as an ecological

perspective. Based on these results, we discuss managerial insights in Section 6. Section 7 concludes this

paper with it’s main findings and an outlook on future research.

2 Case study

As mentioned above, the operation of ECVs in mid-haul logistics fleets is case specific, i.e., depending on

characteristics of the logistics network and the service area. Therefore, we analyze the competitiveness of

ECVs for one specific use case, i.e. we cooperated with the German retail company ’TEDi’ as one of the

companies that participated in the research project ELMO. TEDi (as well as other retail logistics companies)

is highly interested in using ECVs for distribution, since stores are often located in inner city districts and

thus companies are confronted with noise and emission restrictions and potential (future) bans of ICEVs.

TEDi operates about 1,400 stores all over Europe, selling a broad range of non-food articles (TEDi,

2016). In our studies, we focus on a representative distribution area of the overall network. This area (cf.

Figure 1) is located within Northrine Westfalia, a federal state of Germany. As can be seen in Figure 1, 302

stores are supplied from a central warehouse of about 42,000 square meters, which is located in Dortmund.

The stores are located within a vicinity of 190 kilometers around the central warehouse. This network is

representative for other retail logistics networks with respect to the spatial distribution and the number of

customers. Therefore, we analyze a representative case to evaluate the operation and competitiveness of

ECVs in retail logistics. The company’s logicstics are carried out by the ’TEDi Logistik GmbH & Co. KG’

(from here on referred to as ’TEDi Logistik’), which is a direct subsidiary of TEDi. TEDi Logistiks main

purpose is to supply TEDis stores with new goods, coming on pallets or roller containers from the central

warehouse, and to collect empty pallets and roller containers from each store in order to haul them back to
the central warehouse.
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depot

store

Figure 1: Logistics network structure of TEDi.

Starting from the central warehouse, TEDi Logistik is operating a fleet of medium-duty 12-tonne trucks that

can carry 18 pallets with a payload of about five tonnes. On average (median), each store receives six pallets

per delivery stop (standard deviation=2.06, min=4, max=12). Each truck is driven during two shifts per

day, i.e., early morning and afternoon shift. Thus, the trucks perform two delivery tours per day, since they

drive back to the central warehouse between the first and the second shift in order to allow for a change of

drivers and for reloading of freight. Stores are served once a week within given time windows.

The average weekly demand of each store is taken from 2015 data. In contrast to package or general

cargo companies, the network and demand structure of TEDi does not allow for an assignment of vehicles to

fixed service areas. Instead, specific routing decisions must be taken in order to calculate optimal delivery

plans that allow for a high utilization of vehicles. This holds even more for ECVs, since an integration of

ECVs in the logistics network of TEDi requires optimal routing decisions considering range limitations and

charging times. Additionally, charging en route (i.e., at TEDi stores), and thus the installation of charging

stations within the network has to be considered to enable the ECVs to travel larger distances. Thus, the

competitiveness of ECVs in mid-haul transportation can only be determined if vehicle routing and charging

station location decisions are taken simultaneously.

Within the ELMO project, two 12-tonne medium-duty electric trucks were tested by TEDi within a

catchment area of 70 km around the central warehouse to replenish selected TEDi stores. The vehicles

(model CM1216) were developed by the company EMOSS and introduced in May 2014 (EMOSS, 2016).

Data covering a total mileage of 33,000 km was gathered during the field test in the ELMO project. As

the field test was carried out in Northrine Westfalia, real-world data is available for the operations of the

ECVs with respect to travel times, energy consumption and recharging rates (cf. Section 4). This data

basis provides a unique opportunity to asses the applicability and competitiveness of ECVs in mid-haul retail

logistics.

Using the information on network structure, customer and delivery patterns as well as characteristics of

ECVs, a detailed TCO analysis is carried out in the following in order to determine the feasibility and the

profitability of electrifying the current ICEV fleet of TEDi Logistik. Herein, exogeneous data is needed in

order to determine cost rates (investment per vehicle, maintenance per km), but endogeneous data on cost

drivers (e.g, the number of vehicles and charging stations, travelled distances) has also to be derived.
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3 Methodological background

In this section, we explain our integrated planning approach in order to provide a comprehensive basis that

backs the evaluation of our case study. First, Section 3.1 gives a short introduction into TCO calculations

that are used to asses the total costs for the logistics operator. Second, a MIP is presented that accounts for

the strategic and operational planning tasks that have to be solved to gather the essential data on endogenous

cost drivers for network design and operation. The derived approach is the first that overcomes limitations

of aggregated cost analysis as detailed case specific routing results are used. Also, limitations of operational

planning on artificial instances are overcome as all real-world requirements are considered by a multi-shift,

multi-period pickup and delivery model.

3.1 Total cost of ownership calculation

In order to assess the costs for the described retail logistics case appropriately, a TCO calculation is carried

out. In general, total discounted costs of ownership are calculated as follows:

TCO = Inv + Fix+Oper =

T∑
t=0

Invt
(1 + r)t

+

T∑
t=0

Fixt
(1 + r)t

+

T∑
t=1

Opert
(1 + r)t

. (1)

While Invt represents one-time strategic investments taken in period t (e.g., investments in vehicles and in

charging stations), Fixt denotes periodical (annual) fixed costs (e.g., circulation tax, annual maintenance

of vehicles and charging stations), and Opert denotes distance dependent costs (e.g., energy costs, distance

dependent maintenance). The discount rate (1 + r)−t is defined by the discount factor r.

Detailing the three cost components for our application case, the following dependencies result:

• Invt represent the investment for vehicles and charging stations. The required cost rates are the

purchase price per vehicle (cinv,v) and the installation cost per charging station (cinv,s). Cost rates are

multiplied with the respective cost drivers, i.e., the total number of vehicles (for ICEV operations),

respectively the number of vehicles and charging stations (for ECV operations) utilized within the

logistics network. These cost drivers depend on strategic network decisions.

• Fixt covers annual costs for taxes and maintenance. Again, cost rates result for annual taxes and

maintenance per vehicle (cfix,v) and per charging station (cfix,s), and are multiplied with the total

number of used vehicles and the total number of charging stations respectively.

• Opert represents the operational costs that result from the overall driven distance within the logistics

network and the necessary driver shifts. Thus, we consider a distance dependent cost rate (coper,di) as

well as a driver wage cost rate (coper,dr). Again, these cost rates are multiplied with the total driven

distance or respectively the number of necessary shifts to calculate Opert. Thus, the route schedules

that are used to operate the network have to be determined.

The calculation of these three cost components requires information on specific cost rates as well as on cost

drivers for network design and operation. Information on cost rates can usually be derived from external

sources (e.g., data on vehicle prices derived from manufacturers of ECVs and ICEVs, data on distance-related

consumption rates derived from tracking of vehicles within the ELMO project). However, data on cost drivers

can only be gathered after endogenous decisions have been taken on network design and routing of vehicles

for the specific use case (e.g., the total number of vehicles needed to fulfill network demand, the total driven

distance resulting from routing decisions).

As can be seen, the outcome of the TCO analysis is highly sensitive to these cost drivers as endogenous

parameters depending on i) the fleet size (i.e., the number of vehicles), ii) the network infrastructure (i.e.,

the number of charging stations), and iii) the total driven distance (i.e., derived from the route schedules

used in a weekly turn). Over- or underestimating these endogenous parameters leads to large deviations

of calculated minimum costs and real costs. These deviations may lead to wrong results when comparing

different scenarios (e.g., utilization of ECVs and ICEVs). Therefore, we develop a MIP to determine optimal
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endogenous parameters in Section 3.2. This allows to derive cost drivers for the TCO analysis based on

optimal design and operation of the logistics network.

3.2 Mixed integer program

In general, planning models in which decisions on network infrastructure as well as on vehicle routes are taken

simultaneously belong to the class of LRPIFs (cf. Schiffer and Walther, 2017a). Herein, our problem has to

be developed for the case at hand, since real-world constraints have to be considered that are not standard

in LRPIFs. Summarizing from Section 2, we aim at determining the cost-optimal number of vehicles as well

as the corresponding routes and the location and number of charging stations to deliver goods and collect

pallets in a retail distribution network under the following constraints:

• A homogeneous vehicle fleet is used with each vehicle starting at and returning to the same central

warehouse.

• Each store in the given network has to be visited once in a week of five working days in order to supply

new goods that are transported on pallets.

• Besides supplying goods, empty pallets are collected at each visited store and hauled back to the central

warehouse.

• Each store can only be supplied in a given time window which might vary for each day of the week.

• A vehicle is used for two consecutive shifts. A break at the central warehouse between both shifts allows

to change the driver, un- and reload freight, and recharge the ECVs’ batteries.

To consider these constraints, a new LRPIF variant that covers real-world constraints of retail logistics is

required. Thus, we develop the first LRPIF that accounts for pickup and delivery, multiple driver shifts,

and multiple planning periods in the following. Furthermore, we are the first to show how such a modeling

approach can be combined with a profound TCO objective function to allow for commprehensive competi-

tiveness assessments.

In the following, we present a MIP that defines the planning task which arises out of our application

case. We focus on this planning task for ECVs first. Second, we explain how this MIP can be easily

simplified to assess ICEV operations. The corresponding MIP is defined on a directed and complete Graph

G = (V0,n+1,A) with a set of vertices V0,n+1 and a set of arcs A using the following notation as summarized

in Table 1: Vertices are assigned to different subsets of V0,n+1. If a vertex κ is representing a customer,

κ ∈ C holds. F defines a set of additional potential charging station vertices. To allow for multiple visits to

charging stations, a set of dummy vertices D is used and divided into subsets Dκ, each containing dummy

vertices for each real vertex κ. Indices 0 and n+1 represent the start and end-vertex of the central warehouse.

Thus, sets indexed by 0, by n+ 1, or by 0, n+ 1 include the respective vertices. To provide a concise model

formulation, we define a cut set δ (B) of any arbitrary subset B of V0,n+1 as δ (B) = {(i, j) ∈ A : i ∈ B, j ∈ B}
as the set of all arcs with both endpoints in B. Analogously, δ+ (B) = {(i, j) ∈ A : i ∈ B, j /∈ B} defines all

outgoing arcs of B and δ− (B) = {(i, j) ∈ A : i /∈ B, j ∈ B} defines all ingoing arcs of B respectively. In the

following, we also use these definitions for singleton sets B = {i}. To account for multiple shifts and multiple

periods, we define the set S that contains all shifts and the set P that contains all periods. Instead of using

two additional indices for shifts and periods, we derive a concise model formulation with only one additional

index. Doing so, we use only an additional shift index s and account for periods within the shift set, such

that P ⊂ S. Further, we define a cutset γ (i) that returns the consecutive shift of i. Thus, periods and shifts

can each be identified, although only one index is used. Note that this technique works independent of the

number of consecutive shifts. In the following, all shift dependent variables and parameters are indexed with

s without further explanation.

Each store i ∈ C has a time window that defines the earliest (esi ) and latest (lsi ) time at which service is

allowed to start. At any store i, unloading goods and picking up pallets takes si time units, while τsi denotes

the arrival time at any vertex i. If an arc (i, j) is traversed, tij denotes the required time units and dij denotes

the distance of the respective arc. In order to consider freight constraints, fsi depicts the amount of freight
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Table 1: Decision variables and parameter definitions.

Sets

0 depot vertex departure

n+ 1 depot vertex arrival

C set of customer vertices

F set of potential recharging vertices

Dκ set of dummy vertices for vertex κ ∈ {C ∪ F}
D set of all dummy vertices (

⋃
κ∈{C∪F}Dκ)

V set of all vertices without depot vertices (C ∪ F ∪ D)

P set of periods

S set of shifts

Decision variables

xsij binary: arc (i, j) is traveled

yi binary: recharging station is sited at vertex i

τsi arrival time at vertex i

wi amount of energy charged at vertex i

qsi battery load at vertex i

fsi delivery freight load at vertex i

usi picked up freight load at vertex i

z total number of vehicles

Parameters

esi earliest start time of service allowed at vertex i

lsi latest start time of service allowed at vertex i

si service time at vertex i

pi freight demand at vertex i

vi pick up demand at vertex i

tij driving time from vertex i to vertex j

dij distance along arc (i, j)

hij energy consumption on arc (i, j)

r recharging rate

Q battery capacity

F freight capacity

that is to be supplied at vertex i, while usi denotes the amount of collected pallets at vertex i. Each store i

has a demand pi for the delivery of goods and a demand vi for the pickup of pallets. Each vehicle’s freight

capacity is limited to F . To model constraints on energy consumption, qsi denotes a vehicle’s state of charge

at vertex i, while wi states the amount of energy recharged at vertex i, if a charging station is installed at

this vertex. The recharging time results out of wi multiplied by a recharging rate r. Note that wi is not shift

dependent, since single assignment holds for each vertex. The energy consumption along an arc (i, j) is given

by hij and each vehicle has an overall battery capacity of Q. To trace the routing decision, binary xsij states

whether arc (i, j) is traversed or not and z denotes the overall number of vehicles. Binary yi determines if

a charging station is located at vertex i. With this notation, a multi-shift, multi-period pickup an delivery

MIP can be derived with a case specific TCO objective function (cf. Section 3.1).

We first derive this MIP for ECV operations, which is the more demanding case. Afterwards, we show

how this model can easily be reduced to a model that accounts for ICEV operations. Before detailing the

constraints of our problem, we show how the different cost terms from the TCO calculation in Section 3.1

can be linked to discounted cost rates and the decision variables of our MIP. Because this link between the

TCO calculation and the MIP objective is not intuitive, we discuss it in Appendix A.

Total investment costs are based on discounted cost factors for vehicle investments cinv,v and charging

stations cinv,s and depend on the number of vehicles z and the number of charging stations
∑
yi.

Inv =

T∑
t=0

Invt
(1 + r)t

= cinv,vz + cinv,s
∑
i∈C∪F

yi (2)



Les Cahiers du GERAD G–2017–47 9

Annual fixed costs result analogously considering discounted cost terms for annual fixed vehicle costs cfix,v

and annual fixed charging station costs cfix,s.

Fix =

T∑
t=0

Fixt
(1 + r)t

= cfix,vz + cfix,s
∑
i∈C∪F

yi (3)

Operational costs Opert comprise discounted cost terms related to distance-related costs coper,di multiplied

with the driven distance, and related to driver wages coper,dr
t multiplied with the number of trips that are

taken (4).

Oper =

T∑
t=0

Opert
(1 + r)t

= coper,di
∑

(i,j)∈δ(V0,n+1),s∈S

dijx
s
ij + coper,dr

∑
(i,j)∈δ+(0),s∈S

xsij (4)

With these definitions ((2)–(4)) and the TCO equation (1) from Section 3.1, our MIP results as follows: The

objective minimizes TCO considering investment costs for vehicles and charging stations, annual fixed costs

as well as operational costs for driving (5). Within our cost analysis, we assume that decisions on investments

for network design, i.e. decisions on the number of vehicles and charging stations, are taken at the beginning

of the planning horizon. Salvage values are taken into account at the end of the planning horizon and

annual fixed costs are only considered for vehicles (cf. Appendix A). Decisions on network operation, i.e.

decisions on the number of driver shifts and driven distances, consider a weekly schedule, but hold for the

complete planning horizon. Thus, the objective of the MIP is calculated for the complete planning horizon

(i.e. multiplying cost drivers with discounted 5-year cost factors).

Constraints (6) and (7) account for the maximum number of vehicles over all periods and shifts. Note that

for more than two consecutive shifts constraints (7) must be defined recursively. Constraints (8) enforce any

customer to be visited exactly once and single assignment is relaxed in (9) for non-customer vertices. To create

connected tours, (10) obtains flow conservation for any vehicle. Freight constraints for pickup and delivery

services are given by (11)–(13). Constraints (11) obtain the delivery freight balance, while constraints (12)

contain the pickup freight balance. Constraints (13) secure that the maximum vehicle freight load is not

exceeded at any vertex. With these constraints, Miller-Tucker-Zemlin subtour elimination is used to avoid

circles in tours. Constraints (14)–(16) obtain time window feasibility. While constraints (14) determine

the arrival time at vertex j after departing from a customer vertex i taking service and driving time into

consideration, constraints (15) integrate charging times. Constraints (16) force arrival times to match the

time windows. Constraints related to the energy consumption are added by (17)–(20). Constrains (17) and

(18) model energy consumption along arcs. Note that charging processes are only considered in (18), because
vehicles are assumed to start with a full battery at the depot. Constraints (19) and (20) limit the vehicle’s

state of charge (SOC) to the battery capacity and constraints (21)–(23) integrate charging station location

decisions. While (21) only allow for charging at vertex i if a charging station is located, (22) prevent a

charging station to be located at a vertex at which charging is not necessary. Since we use dummy vertices to

allow for multiple visits to charging stations, location decisions have to be mirrored between real and dummy

vertices by (23). The definition range of binary and integer variables is given in (24).

minimize

TCOECV = (cinv,v + cfix,v)z + cinv,s
∑
i∈C∪F

yi + coper,dr
∑

(i,j)∈δ+(0),s∈S

xsij + coper,di
∑

(i,j)∈δ(V0,n+1),s∈S

dijx
s
ij (5)

subject to

z ≥
∑

j∈Vn+1

xs0j s ∈ P (6)

z ≥
∑

j∈Vn+1

xs0j s ∈ γ (P) (7)
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∑
(i,j)∈δ+(i),s∈S

xsij = 1 i ∈ C (8)

∑
(i,j)∈δ+(i)

xsij ≤ 1 i ∈ {V \ C}, s ∈ S (9)

∑
(j,i)∈δ−(i)

xsji −
∑

(i,j)∈δ+(i)

xsij = 0 i ∈ V, s ∈ S (10)

0 ≤ fsj ≤ fsi − pixsij + F
(
1− xsij

)
(i, j) ∈ δ (V0,n+1) , s ∈ S (11)

0 ≤ usj ≤ usi + vix
s
ij + F

(
1− xsij

)
(i, j) ∈ δ (V0,n+1) , s ∈ S (12)

0 ≤ fsi + usi ≤ F i ∈ V0,n+1, s ∈ S (13)

τsj ≥ τsi + (tij + si)x
s
ij − ls0

(
1− xsij

)
(i, j) ∈ δ+ (C0) , s ∈ S (14)

τsj ≥ τsi + tijx
s
ij + r wi − (ls0 + rQ)

(
1− xsij

)
(i, j) ∈ δ+ (V) , s ∈ S (15)

esi ≤ τsi ≤ lsi i ∈ V0,n+1, s ∈ S (16)

qsj ≤ qs0 − hijxsij +Q
(
1− xsij

)
(i, j) ∈ δ+ (0) , s ∈ S (17)

0 ≤ qsj ≤ qsi + wi − hijxsij +Q
(
1− xsij

)
(i, j) ∈ δ (Vn+1) , s ∈ S (18)

0 ≤ qs0 ≤ Q s ∈ S (19)

0 ≤ qsi + wi ≤ Q i ∈ V, s ∈ S (20)

wi ≤ Qyi i ∈ V (21)

yi ≤ wi i ∈ D (22)

yi ≥ yj i ∈ {V \ D}, j ∈ Di (23)

xsij ∈ {0; 1} (i, j) ∈ δ (V0,n+1) yi ∈ {0; 1} i ∈ V z ∈ N (24)

The proposed MIP can also be used to estimate the TCO for an ICEV fleet. In this case, there is no need

to account for charging stations and range limitations due to battery capacity and energy consumption. Thus,

we use objective (25) instead of objective (5) to assess an ICEV fleet. Furthermore, we neglect constrains (15)

and (17)–(24) in this case.

minimize TCOICEV = (cinv,v + cfix,v)z + coper,dr
∑

(i,j)∈δ+(0),s∈S

xsij + coper,di
∑

(i,j)∈δ(V0,n+1),s∈S

dijx
s
ij (25)

The presented multi-shift, multi-period pickup and delivery problem belongs to the class of LRPIFs,

which are NP hard. Thus, results for large-sized instances cannot be derived with a commercial solver.

Therefore, efficient solution methods are required to be able to solve real-world problems. Herein, we present

an adaptive large neighborhood search (ALNS) metaheuristic that is enhanced by dynamic programming

techniques. This approach has to be enhanced in order to account for multiple shifts and combined pickup

and delivery of the specific logistics network. Using the resulting approach, large instances of this kind of

problem can be solved for the first time. To keep this paper concise, we detail this algorithm in Appendix B

and focus on the application case instead in the following.

4 Design of experiments

In the following, we provide detailed information on the cost data and technical vehicle data used in our ex-

periments in Section 4.1. In Section 4.2, we describe our experimental design to evaluate the competitiveness

of medium-duty ECVs in the mid-haul retail transportation network of TEDi.

4.1 Cost terms and technical data

Real-world data is used for all calculations. Consumption profiles of vehicles are taken from the extensive

field test conducted in ELMO. Driving times are derived from measured speed patterns, i.e., case specific
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real-world driving times and driving speed are determined based on road types and traffic. In addition,

information on the real-world energy consumption of the vehicles is used.

Within the TCO analysis, we derive data for a MAN TGL 12.250 as 12-tonne ICEV, and for the EMOSS

CM1216 as 12-tonne ECV. The purchase price of the MAN TGL is taken from Taefi et al. (2016), while

the purchase price of the EMOSS CM1216 is derived from personal communication with the EMOSS sales

support. For both vehicles, the price is considered without value added taxes. We consider annual vehicle

taxes for the MAN TGL derived from information of the federal ministry of finance, but neglect annual taxes

for the EMOSS CM1216, as ECVs are waived from annual taxes within the European Union for at least five

years (IEA, 2016). Information on the fuel consumption of the MAN TGL 12.250 is taken from Taefi et al.

(2016), while battery capacity and energy consumption for the EMOSS CM1216 are derived from the ELMO

field test.

Table 2 shows all vehicle specific parameters. We consider an average driver wage as stated in Statistisches

Bundesamt (2017) plus an additional employer contribution of 20%. Average prices for diesel are derived

for 2015 from the Eurostat database and the EU’s weekly oil bulletin. Electricity prices are determined as

company tariff for a consumption between 2,000 and 20,000 MWh per year. Prices for charging stations are

actual prices that were paid within the ELMO project for the installation of charging stations. Herein, it

must be noted that prices for the installation of charging stations at TEDi stores are rather low compared

to other ECV applications, since sockets can be directly installed in the walls next to the loading ramps of

the TEDi stores and strong current is already available at the stores in the TEDi case.

The planning horizon is scheduled to 5 years, considering a discount rate of 5% (cf. Taefi et al., 2016).

Since we account for a limited planning horizon and assume steady weekly network operations during the

whole planning horizon, we assume that investment decisions have to be taken at the beginning of the

planning horizon, i.e., Invt ≤ 0, t > 0 holds, since we consider salvage values for the vehicles at the end of

the planning horizon.

To calculate the respective emissions, we use carbon dioxide equivalent conversion factors from Edwards

et al. (2014).

Table 2: Cost data and technical data used within the TCO calculation.

MAN TGL EMOSS CM1216

Purchase price 75,000 e Taefi et al. (2016) 160,000 e EMOSS

Yearly taxes 534 e/a FMoF (2016) 0 e/a IEA (2016)

Driver wage 29,000 e/a Statistisches Bundesamt
(2017)

29,000 e/a Statistisches Bundesamt
(2017)

Battery capacity - - - 160 kWh ELMO

Consumption 0.19 l/km Taefi et al. (2016) 0.73 kWh/km ELMO

Energy price 1.18 e/l European Union (2016c) 0.07 e/kWh European Union
(2016a)

Charging station - - - 4500 e ELMO

CO2 equivalent 2624.89 gCO2,eq/kWh Edwards et al. (2014) 507.97 gCO2,eq/kWh Edwards et al. (2014)

The table shows all necessary cost terms and parameters used within the TCO calculations.

4.2 Experimental design

To evaluate the competitiveness of ECVs against ICEVs, we conduct an integrated TCO based on a network

design and operational analysis as described in Section 3 for both vehicle types. As depicted in Section 3,

the planning tasks to estimate the overall costs vary with respect to the considered vehicle type. For both

fleets, the number of vehicles and the overall driven distance have to be calculated. Additionally, the number

of charging stations has to be determined for the ECV fleet. Thus, we calculate the overall costs according

to the MIP objective function given in Section 3 for ECVs and ICEVs.
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In the following, we present the experimental design describing how different levels of electrification are

modeled within our competitiveness analysis.

In the field test, ECVs have only been used and proven to be operational within a vicinity of 70 km

around the central warehouse. However, the aim is to determine if and to what extend an electrification

of the mid-haul logistics fleet of TEDi is feasible and worthwhile. Therefore, we analyze increasing levels

of electrification of the fleet. Herein, we assume that stores within a certain vicinity around the central

warehouse are operated by ECVs. Using a step-width of 10km, we thus derive 12 scenarios, considering

stores of catchment areas between a radius of 80km and 190km around the central warehouse. The resulting

instances contain between 144 and 302 stores (cf. Table 3). For each scenario, we calculate the TCO for the

exclusive operation by ICEVs and by ECVs in order to assess competitiveness of these two vehicle types.

For larger catchment areas, recharging en route has to be enabled by installing charging stations. Based on

statements from TEDi, we assume that charging stations can be located at stores and that service times can

be used for charging.

Additionally, we perform a sensitivity analysis in order to analyze the impact of central cost terms on

the overall TCO results. First, we assume that investments for charging stations are higher than in the

TEDi case. As already mentioned, installation of charging stations at TEDi stores is rather inexpensive

as strong current is already available and sockets can be installed besides the loading ramps. However, the

installation of charging stations may be much more expensive, e.g., if strong current wires have to be installed

or if inductive charging is aimed at. Thus, we additionally analyze the impact of an investment of 30,000e
instead of the 4,500e that were required within the TEDi case. Second, discounts of 10% and 20% on the

current ECVs price for the EMOSS CM1216 are regarded as vehicle prices might drop in the future, e.g.,

with decreasing battery prices.

Since the overall political target is to reduce local and global emissions within the transportation sector,

there is increasing pressure on logistics fleet operators to implement emission reduction measures. As stated

in Section 1, utilizing ECVs for mid-haul delivery might be an option to reduce the ecological impact of

the transportation sector. Therefore, we determine the ecological performance as overall (i.e., well-to-wheel)

CO2 emissions that can be reduced by using ECVs. Thus, we calculate energy respective fuel consumption

and finally emissions based on the calculated overall traveled distance. As a result, we are able to quantify

the ecological impact of using ECVs instead of ICEVs. Note, that we do not minimize emissions. We could

also substitute the objective of the ECVs respectively the ICEVs optimization model, thus minimizing total

emissions instead of total costs. However, our focus is on an economic analysis, and thus we only calculate

emissions subsequently.

Table 3: Number of customers per instance.

Scenario I II III IV V VI VII VIII IX X XI XII

cat. area [km] 80 90 100 110 120 130 140 150 160 170 180 190

no. stores 144 171 190 211 236 252 267 278 283 295 301 302

The table shows the radius of the catchment area around the central warehouse (cat. area) and the
corresponding number of considered stores (no. stores) for each scenario.

5 Computational results

Results were calculated assuming that a homogenous ICEV respectively ECV fleet covers each of the 12

scenarios given in Table 3. In the following, we present these results with a focus on i) the network structure

and operation (Section 5.1), ii) the resulting TCO and the respective cost structure (Section 5.2), and iii) the

emission savings that can be achieved by using ECVs (Section 5.3). In the following, we limit the illustration

of results to figures and include detailed tables in Appendix C.



Les Cahiers du GERAD G–2017–47 13

5.1 Network structure and operation

Figure 2 illustrates results for the operation of the network for each of the 12 scenarios. For each scenario

(i.e., the coverage radius), it shows the number of served stores (nstore) and the number of charging stations

(nstat) needed for operating the network with ECVs. In addition, it details the weekly distance driven

(DICEV, DECV), the weekly number of driver shifts (ndriver,ICEV, ndriver,ECV), the average distance driven

per tour (D
ICEV

, D
ECV

), and the total number of vehicles (nICEV, nECV) needed for operating the network.

While continuous lines represent the results for the ICEV fleet, the dashed lines represent the results for the

ECV fleet.

As can be seen, all depicted quantities increase monotonously with an increasing coverage radius around

the central warehouse from scenario I to XII for ICEVs as well as ECVs. The total distance driven increases

proportionally to the number of stores, while the average distance driven per tour, the weekly number of

driver shifts, and the total number of trucks needed for operating the network each increase with a lower

gradient. While no charging stations are necessary to operate the ECVs up to a vicinity of 100km, the

number of installed stations increases monotonously between a vicinity of 100km and 180km and remains

equal for a vicinity of 180km and 190km.
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Figure 2: Results for the network operation structure for ICEVs and ECVs with respect to the coverage radius.

Comparing the operation of ICEVs and ECVs, Figure 2 shows that results for the ICEV fleet and results

for the ECV fleet nearly match with respect to the number of vehicles and the number of driver shifts. The

weekly and average driven distances match for all but the 180km scenario in which the distances are slightly

lower for ICEV. Thus, nearly no operational disadvantages arise from using ECV within the TEDi network,

despite of range limitations.

Note that the monotonously increasing results and the matching of the ECV and the ICEV curves also

indicate that the metaheuristic presented in Appendix B yields very robust and stable results.
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5.2 TCO and cost structure

In the following, we detail results with respect to the TCO of ICEVs and ECVs and the resulting cost

structure.

Figure 3 shows an in-depth analysis of the overall costs, their single components and the respective cost

savings for the coverage of different vicinities around the central warehouse using ICEVs and ECVs. As

can be seen, vehicle costs Invv are significantly higher for ECVs than for ICEVs although the number of

used vehicles is equal. Furthermore, additional costs Invs arise for the installation of charging stations for

networks with ECVs for vicinities larger than 100km. Annual costs for vehicle taxes Fixv arise for ICEVs

only (cf. Section 4.1), but are negligibly low. Operational driver costs Operdriver are equal for ICEVs and

ECVs, since the number of driver shifts needed to operate the network is equal. The main advantage of

ECVs lies in operational distance dependent costs Operdist, which are significantly lower for ECVs than for

ICEVs. In the TEDi case, these savings in operational costs more than compensate for the higher investment

costs of ECVs. This results in cost savings ∆TCO of ECVs compared to ICEVs of 2.43%–4.86% (shown

by the dashed orange line that is corresponding to the left hand side axis in Figure 3). While these savings

increase up to a vicinity of 110km, they remain nearly constant for larger vicinities. This shows, that for

larger vicinities, additional charging station costs compensate additional savings in operational driving costs

that result out of higher total traveled distances.
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Figure 3: Overall costs for ICEVs and ECVs with respect to the coverage radius.

Additionally, we perform a sensitivity analysis regarding installation costs of charging stations and pur-

chase prices of ECVs. For charging stations, we assume (much) higher installation costs of 30.000e (instead

of 4500e) as costs that would apply if not only the socket but also the high voltage infrastructure and the
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station chassis would have to be installed. For ECVs, we consider a reduction of purchase prices of 10% and

20% in order to account for potential future price reductions e.g., due to decreasing battery prices or scale

effects. With this sensitivity analyses, we generalize results for retail logistics networks which are less specific

than our investigated case.

Figure 4 shows the TCO for the different coverage radii of the 12 scenarios for ICEVs (TCOICEV) and

for ECVs with 100, 90 and 80% of the current vehicles’ purchase prices, each for the TEDi case with low

investment costs for charging stations (TCOECV100l, TCOECV90l, TCOECV80l) but also for cases with high

investment costs for charging stations (TCOECV100h, TCOECV90h, TCOECV80h). As can be seen, in the

TEDi case (i.e., with low investment costs for charging stations), total costs are lower for ECVs than for

ICEVs for all scenarios. Cost savings of 1.33%-4.90% result regarding the current purchase price of ECVs.

Thus, cost savings of up to 193,000e can be realized within the planning period of 5 years if the logistics

network of TEDi is operated by ECVs instead of ICEVs. Cost savings increase even up to 9.75%, if purchase

prices of ECVs decrease to 80%.

However, this advantage of ECVs disappears, if high investments into charging infrastructure are needed,

e.g., if the installation of high voltage wires at the TEDi stores would be necessary. For this case, the TCO of

ECVs are up to 23.32% higher than the TCO of ICEVs (cf. Table 8). Cost savings only remain for vicinities

of less than 110km for which (nearly) no charging stations are necessary. In this case, decreased vehicle costs

are not sufficient to compensate higher charging station costs.
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Figure 4: Overall costs for ICEVs and ECVs with respect to the coverage radius.

Concluding, cost savings can be realized by the electrification of the logistics fleet in the TEDi case. Herein,

cost savings of ECVs compared to ICEVs increase with increasing vicinity around the central warehouse.

However, this advantage of ECVs disappears if investment costs for charging stations are higher than in the

TEDi case.
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5.3 Emissions

Figure 5 illustrates results on total CO2 emissions for a fleet of ICEVs (EICEV) as well as of ECVs (EECV) for

all scenarios. In addition, it presents emission savings (∆E) due to the usage of ECVs. As can be seen, ECVs

emit around 25% less CO2 emissions than ICEVs within a well-to-wheel system boundary (i.e., regarding all

emissions from the well to the combustion respective to the electricity generation and transmission) for all

scenarios. As the total distance driven by ECVs and ICEVs is (nearly) identical (cf. Figure 2), the CO2-

saving is mainly due to a higher efficiency of ECVs and lower CO2 emission factors for electricity compared

to Diesel.
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Figure 5: Emissions and emission savings with respect to the coverage radius.

6 Managerial insights

Analyzing the results from Sections 5.1–5.3, insights can be drawn for logistics fleet and network operators.

First, we discuss managerial insights for the TEDi case with respect to specific network characteristics and

resulting advantages and disadvantages in Section 6.1. Second, we alleviate these findings to derive general

managerial insights for future design and operation of mid-haul ECV logistics networks in Section 6.2.

6.1 Case specific insights

In the TEDi case, specific characteristics with regard to service area, network structure and costs determine

the benefit of ECVs.

Service areas: Regarding the vicinity around the central warehouse, our analyses show that a complete

coverage of the service area by ECVs is possible and worthwhile in the TEDi case. One main factor

that contributes to this result are the limited distances of optimized routes. Often, distances of less

than 200km with three to four customer stops have to be covered per route and vehicles go back to

the depot at least once a day (cf. Network operations). Thus, the actual range of the specific mid-haul
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ECV EMOSS CM1216 of 200km is higher than the average length of many routes. Therefore, only

few charging stations have to be installed and few recharging processes have to be integrated in the

network operation. Thus, the coverage of the complete service area is possible with limited strategic

and operative expenditures.

Network operations: In the TEDi case, vehicles go back to the warehouse between shifts for reloading

freight and for changing drivers. Additionally, vehicles regularly return to the depot in order to pick

up palletized goods, often after only a few service stops. Thus, vehicles can be fully charged at the

depot at least once a day. Even if vehicles are charged at the TEDi stores, service times can be used

for recharging. As a consequence, operational disadvantages of ECVs due to range limitations and

charging demand are low for this specific application case. This is also backed by the fact that the

number of vehicles and the average distances of routes do not differ between ICEVs and ECVs. Thus,

ECVs are competitive to ICEVs with regard to network operation for this specific case.

TCO: In the TEDi case, extra costs for ECVs, e.g., higher purchase costs for vehicles and installation costs

for charging stations, are at least compensated by lower operational distance based costs. Thus, it is

worthwhile to invest in an electrification of the retail logistcs fleet in the TEDi case. However, this is

mainly due to two reasons. First, investment costs for charging stations are low as only sockets have

to be installed at the ramps of the TEDi stores and heavy current infrastructure is already available.

Thus, costs for installation of charging stations are much lower than in other ECV applications. As

we show in our sensitivity analysis, cost advantages of ECVs disappear if investment costs for charging

stations are higher than in the TEDi case. Second, the number of needed vehicles and weekly driver

shifts is equal for ICEVs and ECVs. Thus, increases in vehicle costs are only due to the price difference

between the vehicle types. In the TEDi case, these can be compensated by lower operational costs. If

more vehicles would be needed, this might not be the case.

As can be seen, ECVs are advantageous in the TEDi case, and the benefit of an electrified mid-haul

logistics fleet can be constituted to specific network characteristics. Our industry partner had not expected

the results for ECVs to be this positive. Although first positive evaluations were available from the ELMO

project, these results were not sufficient to convince the company that the electrification of the mid-haul

logistics fleet would be feasible and worthwhile without further analysis. This shows the importance of

detailed analysis in the course of the electrification of mid-haul logistics fleets.

6.2 Generalized managerial insights

Alleviating the results from Section 5 and the findings from Section 6.1, the following key findings can be

drawn for mid-haul ECV networks in general.

A detailed network analysis at an operational level is necessary to estimate the competitiveness of
ECVs appropriately: Route patterns as well as considered cost structures and charging options might vary

significantly with respect to the analyzed network. Thus, an aggregated cost analysis is not sufficient to

assess the competitiveness of ECVs. Instead, a detailed analysis is necessary to assess each application case

individually. Herein, operational routing decisions as well as strategic network design aspects must be taken

into account. This shows the necessity for an integrated model for network design and operation using VRP

and LRP components. This approach avoids over- or underestimation of ECVs in logistics networks by an

individual case-specific assessment of the competitiveness of ECVs compared to ICEVs. This might on the

one hand help to identify other logistics networks that could be operated by ECVs, but on the other hand also

prevent fleet operators from overrating ECVs. In practice, fleet operators often decide based on one monetary

key performance indicator (cf. Section 5.2). Thus, the proposed solution approach adds a significant benefit

to provide decision support for practitioners.

Operational planning components affect strategic network structure decisions: Especially if intermediate

stops are necessary, the integrated models that are presented in this paper show results on a beneficial network

structure (i.e., the number of vehicles and charging stations needed to operate the network) and the resulting

network operation (i.e., the total distance driven and routes chosen to fulfill the demand at all stores). Thus,
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network operators might profit from more efficient network structure design and operation, especially within

large and complex networks where manual routing and strategic design is no longer possible.

For certain mid-haul application cases, ECVs are already on the verge of breaking even: In the TEDi

case, results revealed that ECVs had nearly no operational disadvantages compared to ICEVs. Thus, the

utilization of ECVs within mid-haul logistics networks might be worthwhile, even under contemporary cost

and technical conditions. As the example of the TEDi case shows, specific network characteristics might work

in favor for the competitiveness of ECVs. Thus, analysing logistics networks with similar characteristics might

reveal comparable results. However, results might change if essential parameters or conditions change, e.g.,

if high investments for charging stations are required.

Additional (ecological) advantages can be realized: The utilization of ECVs contributes to a reduction of

CO2 emissions as well as of local hazardous emissions (NOx, particulate matter) and noise. This can especially

be important in the future as increasing pressure is put on the logistics sector to decrease emissions. The

relevance might even increase if advanced legal measures, like access restrictions for ICEVs, are enforced.

Such restrictions are already established in 500 European cities. Over 200 of them are based on vehicle

emissions (cf. European Union, 2016b). Therefore, logistics companies are increasingly aiming at low and

zero-emission strategies in retail logistics networks.

7 Conclusion and outlook

Within this paper, we evaluate the competitiveness of ECVs in medium-duty retail logistics for a specific case

study of a large retail company delivering non-food goods from a central depot to 302 stores in Northrhine-

Westfalia, a federal state of Germany. A TCO analysis combined with a new LRPIF variant that considers

pickup and delivery, multiple periods, and multiple driver shifts provides the methodological basis for our

studies. Doing so, we consider case specific logistics requirements, the limited driving range, and the need

for charging ECVs en route in mid-haul logistics. Thus, a fair assessment of advantages and disadvantages

of an electrification of the logistics fleet is possible. In addition, a parallelized hybrid of ALNS and dynamic

programming is developed to solve large-sized instances.

The results show that for the analyzed application case, the electrification of the retail logistics network is

worthwhile regarding economic, but also ecological objectives. For the investigated application case, nearly

no operational limitations result when using ECVs instead of ICEVs. The number of vehicles needed to

operate the network, the total distance driven and the average tour duration are nearly identical to ICEVs.

This holds even for a complete electrification of the logistics fleet delivering goods and collecting pallets

within a vicinity of up to 190 km around the central depot. The reason for this positive assessment of ECVs

is to be seen in several network characteristics that work in favor of ECVs, e.g., the return of the vehicles to

the depot at least once a day as well as the limited vicinity of stores around the depot. Although positive

results of the utilization of single vehicles within a limited vicinity of the network was known to the network

operator, the benefit of the complete electrification of the mid-haul fleet was not expected. Thus, integrated

planning approaches that consider operational as well as network design aspects were necessary in order to

show these advantages. However, results show that with changing conditions, e.g., higher investment costs

for charging stations, ECVs are no longer competitive.

Even if this case study shows that ECVs are already economically advantageous for the considered ap-

plication case, open research questions remain within this context: First, despite the positive evaluation for

this case study, advantages and disadvantages of an electrification of mid-haul fleets should be analyzed for

logistics networks with other characteristics, since solutions for the network design as well as routing decisions

are sensitive to network characteristics. Such an analysis for a large set of different network structures would

allow to derive general factors of success for the utilization of ECVs in mid-haul logistics.

Second, even for companies that focus mainly on economic objectives, emission savings might be a very

important asset for electrification of logistics fleets in the future. There are political targets aiming at saving
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more than 40% of total CO2 emissions in the transportation sector until 2020 (cf. European Commission,

2014). Hence, many (larger) logistics companies already aim at significant short and long-term emission

reductions (cf. Green Freight Europe, 2014). Within this context, low-emission zones, which are already

realized in several cities resulting in high penalty costs or even a ban of ICEVs in certain areas, can be

considered. It has to be analyzed how these developments might increase the benefit of using ECVs instead

of ICEVs even further.

Third, the future development of technological parameters (e.g., battery capacity, charging times) should

be focused on, too.

Appendices

A Cost function

In the following, we detail the link between the TCO cost components and the MIP objective for investment

costs Inv, annually fixed costs Fix, and operational costs Oper, for a planning period T .

Investment costs
In general, the total investment costs for a planning period with t = 0, ..., T time steps result from considering

the investment costs Invt over the planning horizon (26). Recall from Section 3.1 that investments arise for

vehicles (Invv
t ) as well as for charging stations (Invs

t), so that in general Invt = Invv
t +Invs

t holds. Investment

costs can be calculated multiplying the investment costs per vehicle (cinv,v
t ) with the number of vehicles (z)

and the investment costs per charging station (cinv,s
t ) with the number of charging stations (y). Since we

assume continuous operation of the network (i.e. repetition of the optimized delivery processes of one week

over the whole planning horizon), the decision on the number of vehicles and the number of charging stations

is taken in t = 0. Thus, investment costs may arise only in t = 0 (cinv,v
0 ≥ 0, cinv,s

0 ≥ 0). Salvage values are

taken into account at the end of the planning horizon T (cinv,v
T ≤ 0, cinv,s

T ≤ 0). Thus, (27) results due to

distributive law. To keep the notation concise, we use cinv,v and cinv,s as discounted cost factors, and thus

the overall investment costs can be written as in (28), calculating the number of stations by y =
∑
yi.

Inv =

T∑
t=0

Invt
(1 + r)t

=

T∑
t=0

Invv
t

(1 + r)t
+

Invs
t

(1 + r)t
(26)

=

T∑
t=0

cinv,v
t z

(1 + r)t
+

cinv,s
t y

(1 + r)t
= z

T∑
t=0

cinv,v
t

(1 + r)t
+ y

T∑
t=0

cinv,s
t

(1 + r)t
(27)

= cinv,vz + cinv,s
∑
i∈C∪F

yi (28)

Annual fixed costs
In analogy to investment costs, total annual fixed costs Fix can be derived, summing up annual costs for

vehicles (Fixv
t ) and charging stations (Fixs

t) as Fixt = Fixv
t + Fixs

t. Again, we consider cost factors cfix,v

and cfix,s and derive an aggregated representation with discounted cost factors cfix,v and cfix,s. Note that

annual fixed costs for charging stations are assumed to be zero in our case study.

Fix =

T∑
t=0

Fixt
(1 + r)t

=

T∑
t=0

Fixv
t

(1 + r)t
+

Fixs
t

(1 + r)t
(29)

=

T∑
t=0

cfix,v
t z

(1 + r)t
+

cfix,s
t y

(1 + r)t
= z

T∑
t=0

cfix,v
t

(1 + r)t
+ y

T∑
t=0

cfix,s
t

(1 + r)t
(30)

= cfix,vz + cfix,s
∑
i∈C∪F

yi (31)
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Operational costs
Operational costs Oper result out of the daily operation of the fleet. Thus, for each time step t, op-

erational costs result from the sum of distance-related costs (Operdist
t ) and driver costs (Operdriver

t ) as

Opert = Operdist
t +Operdriver

t (32). Operdist
t are calculated multiplying a distance-related cost factor coper,di

t

that reflects the price per driven kilometer with the total distance resulting from the vehicles’ route plans

(
∑
dijx

s
ij), and Operdriver

t are calculated multiplying the cost of a working shift (coper,dr
t ) with the total num-

ber of shifts for operating the vehicles (
∑
xs0j) (33). Because the operation of the retail network is planed

with milk runs (i.e. the optimized delivery processes of one week are repeated over the whole planning hori-

zon), cost terms can be separated from the decision variables due to distributive law (34). Again, discounted

cost rates coper,di and coper,dr are derived (35).

Oper =

T∑
t=0

Opert
(1 + r)t

=

T∑
t=0

Operdist
t

(1 + r)t
+
Operdriver

t

(1 + r)t
(32)

=

T∑
t=0

coper,di
t

∑
dijx

s
ij

(1 + r)t
+
coper,dr
t

∑
xs0j

(1 + r)t
(33)

=
∑

(i,j)∈δ(V0,n+1),s∈S

dijx
s
ij

T∑
t=0

coper,di
t

(1 + r)t
+

∑
(i,j)∈δ+(0),s∈S

xsij

T∑
t=0

coper,dr
t

(1 + r)t
(34)

= coper,dr
∑

(i,j)∈δ(V0,n+1),s∈S

dijx
s
ij + coper,di

∑
(i,j)∈δ+(0),s∈S

xsij (35)

B Solution method

The basic LRPIF is a NP-hard and even simplified variants can only be solved up to 15 customers with

commercial software (cf. Schiffer and Walther, 2017b). Thus, we developed an efficient metaheuristic to solve

the large-sized instances of this case study. In the following, we briefly describe this algorithm.

Figure 6 shows a pseudocode of our algorithm, which is a hybrid of ALNS and dynamic programming

(DP). We use a generalized cost function (cf. Section B.1) to handle infeasible solutions during the search

phase. The core of the algorithm is an ALNS, which has been introduced by Ropke and Pisinger (2006),

extending a large neighborhood search (LNS) (cf. Shaw, 1998) by an adaptive learning mechanism for the

1: while (ι < ηmax) and
(
ι− ιimp < ηmax

noi

)
do

2: if
(
modulo

(
ι, ηlrg

)
= 0
)
then

3: σ′ ← destroyAndRepair(Dl,R, π, σ)
4: else
5: σ′ ← destroyAndRepair(Ds,R, π, σ)

6: if
(
λ (σ′)) < λ (σ∗)

(
1 + δl

))
then

7: σ′ ← localSearch(σ′)
8: if

(
λ (σ′) < λ (σ∗)

(
1 + δd

))
then

9: σ′ ← dynamicProgramming(σ′)

10: if (λ (σ′) < λ (σ)) then
11: σ ← σ′

12: if (λ (σ′) < λ (σ∗)) then
13: σ∗ ← σ′

14: σ′f ← generateFeasibleSolution(σ′)

15: if feasible
(
σ′f
)
and

(
λ
(
σ′f
)
< λ

(
σ∗f
))

then
16: σ∗f ← σ′f
17: ιimp ← ι

18: if (modulo (ι, ηres) = 0) then
19: σ ← σ∗f
20: ι← ι+ 1

Figure 6: Pseudocode overview of the metaheuristic.

operator choice in each search step. Before starting the search, we remove infeasible arcs (cf. Section B.2)
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and create an initial solution (cf. Section B.3). Then, we conduct a destroy and repair step (cf. Section B.4).

If the objective value of the resulting temporary solution (λ (σ′)) is not higher than
(
1 + δl

)
λ (σ∗)), we use

a local search (cf. Section B.5) to further improve the solution. Afterwards, we use a dynamic programming

procedure (cf. Schiffer and Walther, 2017a) to optimally place recharging visits on routes if λ (σ′) is not

higher than
(
1 + δd

)
λ (σ∗). During the search phase, we store feasible and infeasible solutions separately (cf.

Cordeau et al., 2001). Doing so, the temporary solution σ′ is forwarded to the current solution σ and the

so far best found solution σ∗ after each search step, if it leads to improvements. Then, a temporary feasible

solution σ′f is obtained out of σ′ using the method described in Vidal et al. (2014). Again, σ′f is forwarded to

the so far best feasible solution σ∗f , if it leads to an improvement. After ηres iterations, the current solution

is set back to the so far best feasible solution σ∗f to intensify the search. The search stops after ηmax overall

iterations or if no improvement has been found within the last ηmax
noi iterations. Section B.6 gives an overview

of the used algorithmic parameters.

B.1 Generalized cost function

Instead of accepting only feasible solutions during the search, we allow the acceptance of infeasible solutions to

overcome local optima. Thus, we use a generalized cost function as proposed in Schiffer and Walther (2017a)

to evaluate infeasible solutions. This function considers the costs λ′ (σ) of the current solution σ, but also

prices constraint violations by adding penalty terms for freight violations (FR (σ)), time window violations

(TW (σ)) and battery capacity violations (FL (σ)). These penalty terms are each multiplied with an adaptive

weighting factor (α, β, γ). The weighting factors may vary between (αmin, βmin, γmin) and (αmax, βmax, γmax).

After initializing (α = α0, β = β0, γ = γ0), we divide each penalty factor by ω if no respective penalty

occurs in the last ηp iterations of the search. Analogously, if a penalty occurs in the last ηp iterations of

the search, we multiply the respective penalty weight by ω. Doing so, our algorithm is more likely to accept

an infeasible solution if the solution remained feasible over a large number of iterations and less likely to

accept it if penalties remain. Thus, the adaptive mechanism guarantees both, feasible solutions and avoiding

local optima.

λ (σ) = λ′ (σ) + αFR (σ) + βTW (σ) + γFL (σ) (36)

Common bookkeeping of freight on routes is sufficient to calculate freight penalties. However, for time window

and battery capacity violations, calculating penalty terms is rather complex because a trade of between time

window feasibility and recharging arises. In this course, a corridor-based evaluation approach is necessary

to calculate penalty terms in a time-efficient manner. To keep this paper concise, we refer to Schiffer and

Walther (2017a) for the explanation of this evaluation approach. The equations presented there can be used

for this application case without any changes.

B.2 Preprocessing

To reduce the neighborhood size, we remove infeasible arcs from G before starting the search. Infeasible arcs

for freight violations are identified by (37) and (38). Equations (39)–(40) identify arcs that are infeasible due

to time window restrictions (cf. Savelsbergh, 1985). Infeasible arcs due to battery capacity restrictions are

identified by (41).

(i, j) ∈ δ (C) ∧ pi + pj > F (37)

(i, j) ∈ δ (C) ∧ vi + vj > F (38)

(i, j) ∈ δ (V0,n+1) ∧ esi + si + tij > lsj (39)

(i, j) ∈ δ (V0) ∧ esi + si + tij + sj + tjn+1 > ln+1 (40)

(i, j) ∈ δ (V0,n+1) ∧ hij > Q (41)

B.3 Construction algorithm

We use a modified savings algorithm (cf. Clarke and Wright, 1964) to construct an initial solution. This

algorithm works as follows:
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• First, we construct back-and-forth tours for all customers.

• Then, potential merge moves are sorted in decreasing order due to their respective cost-savings.

• The merge move with the highest savings is conducted. This step is repeated until no positive cost

savings remain. In the merge moves, violations of the vehicle’s freight capacity, time windows, and the

vehicle’s battery capacity are allowed. However, infeasible arcs are already considered at this step, such

that merge moves that use infeasible arcs are prohibited.

• Finally, we use the local search procedure (cf. Section B.5) to improve the initial solution once.

B.4 Destroy and repair phase

In each iteration of the ALNS the current solution σ is destroyed using a destroy operator, before a repair

operator is used to create a new solution. Contrary to common destroy and repair phases, we handle changes

in the facility configuration (in this case charging stations) besides removing and inserting customers. To do

so, we use different types of destroy operators: a small destroy operator from set Ds only removes customers,

while a large destroy operator from set Dl changes the facility configuration before removing customers. After

both types of destroy operators, a repair operator from set R reinserts the removed customers to create a

new temporal solution σ′. A large destroy operator is used every ηlrg iterations so that the new facility

configuration can be evaluated with the search steps in between.

We choose the destroy and the repair operator in each search step based on an operator specific probability

that reflects the operator’s success in improving the objective in former search steps. Herein, the probability

for each operator ψj out of n operators results based on a roulette wheel distribution due to the weight πj
of each operator.

P (ψj) =
πj∑n
i=1 πi

(42)

We use exponential smoothing to calculate these weights. Every ηal,l/ηal,s iterations the weights are updated

for large respectively small operators, considering a smoothing factor φ ∈ [0, 1], the number of times an

operator j was chosen in the last learning period χj and the cumulated score the respective operator yielded

in the last learning period πj .

πj = φ
πj
χj

+ (1− φ)πj (43)

During a learning period, we add εf to πj if the operator yields a new best feasible solution, εb if it yields a

new best solution, and εi if it improves the current solution.

As large destroy operators of set Dl, we use an add and a drop operator (Hemmelmayr et al., 2012), as

well as a swap perfect and a swap perfect out operator (Schiffer and Walther, 2017a). The set of small destroy

operators Ds contains a worst remove (Ropke and Pisinger, 2006), a related remove (Pisinger and Ropke,

2007), a route remove (Hemmelmayr et al., 2012), and a modified Shaw remove as well as a station vicinity

remove (Goeke and Schneider, 2015) operator. The set of repair operators R contains a sequential insertion

(Hiermann et al., 2016) and a sequential perturbed insertion (Schiffer and Walther, 2017a) operator.

B.5 Local search

We use a composite neighborhood with a best out of 100 improvement criterion and consider the following

operators: We use a 2-opt* (Potvin and Rousseau, 1995) and an Or-opt (Or, 1976) operator. In addition,

an exchange and a relocate operator (Savelsbergh, 1992) are used in inter and intra-route fashion. To yield

feasible solutions with respect to the vehicle’s battery capacity, we use an additional stationInsertion operator

that inserts recharging stops into routes if necessary.

B.6 Algorithmic setup

We ran all numerical experiments on a desktop computer with an Intel Core i7 3.60 GHz and 16 GB RAM

running Ubuntu 16.04 LTS. Our ALNS is implemented in C++ as a single thread code.
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To identify a suitable parameter setting, we used the method of Ropke and Pisinger (2006). Table 4
shows the final parameter setting for the number of maximum total iterations ηmax, the maximum number of

iterations without improvement ηmax
noi , the number of iterations after which a large destroy step is conducted

ηlrg, the number of iterations after which the current solution is set back to the so far best feasible solution

ηres, the number of iterations after which operator weights are updated for large ηal,l and small ηal,s operators,

the number of iterations after which the penalty weights are updated ηp, the ranges for the local search δl and

the dynamic programming δd corridor, the smoothing factor φ, the penalty correction factor ω, the minimum

(αmin, βmin, γmin) and maximum (αmax, βmax, γmax) as well as initial (α0, β0, γ0) penalty weights, and the

scoring parameters (εf, εb, εi)). Operator specific parameters are used as stated in the respective references.

Table 4: Algorithmic parameters.

ηmax ηmax
noi ηlrg ηres ηal,l ηal,s ηp δl δd φ ω

20000 5000 150 10000 1500 50 50 0.3 0.02 0.8 1.15

(αmin, βmin, γmin) (αmax, βmax, γmax) (α0, β0, γ0) (εf, εb, εi))

100 10000 100 (9,4,1)

The table shows the parameters used in our algorithm.

C Computational results

Tables 5–8 show the detailed results for our discussion in Section 5.

Table 5: Results for all investigated scenarios for the ICEV vehicle fleet.

Scenario I II III IV V VI VII VIII IX X XI XII

Cat. area 80 90 100 110 120 130 140 150 160 170 180 190

nstore 144 171 190 211 236 252 267 278 283 295 301 302

nICEV 5 6 6 7 8 9 9 9 10 10 10 10

ndriver,ICEV 46 54 60 67 76 81 86 89 91 94 96 96

DICEV 5083 6687 8053 9933 12210 13825 15137 16007 16680 18227 19061 19115

D
ICEV

110.5 123.8 134.2 148.3 160.7 170.7 176.0 179.9 183.3 193.9 198.6 199.1

Invv 0.302 0.362 0.362 0.422 0.482 0.543 0.543 0.543 0.603 0.603 0.603 0.603

Fixv 0.012 0.014 0.014 0.016 0.018 0.021 0.021 0.021 0.023 0.023 0.023 0.023

Operdriver 1.150 1.350 1.499 1.674 1.899 2.024 2.149 2.224 2.274 2.349 2.399 2.399

Operdist 0.254 0.335 0.403 0.497 0.611 0.692 0.757 0.801 0.834 0.912 0.954 0.956

TCOICEV 1.717 2.060 2.278 2.610 3.011 3.279 3.470 3.588 3.735 3.887 3.979 3.981

Abbreviations hold as follows: Cat. area [km] - catchment area, nstore - number of served stores, nICEV - number of ICEVs,

ndriver,ICEV - number of weekly driver shifts, DICEV [km] - weekly total distance, D
ICEV

[km] - average tour distance, Invv

[me] - investment costs for vehicles, Fixv [me] - total annually costs for vehicles, Operdriver [me] - total driver costs, Operdist

[me] - total driving costs, TCOICEV [me] - total costs of ownership ICEVs.
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Table 6: Results for all investigated scenarios for the ECV vehicle fleet.

Scenario I II III IV V VI VII VIII IX X XI XII

Cat. area 80 90 100 110 120 130 140 150 160 170 180 190

nstore 144 171 190 211 236 252 267 278 283 295 301 302

nECV 5 6 6 7 8 9 9 9 10 10 10 10

ndriver,ECV 46 54 60 67 76 81 86 89 91 94 96 96

nstat 0 0 0 4 14 17 25 29 32 37 44 44

DECV 5083 6687 8053 9933 12210 13825 15137 16007 16680 18227 19115 19115

D
ECV

110.5 123.8 134.2 148.3 160.7 170.7 176.0 179.9 183.3 193.9 199.1 199.1

Invv 0.487 0.584 0.584 0.681 0.779 0.876 0.876 0.876 0.973 0.973 0.973 0.973

Operdriver 1.150 1.350 1.499 1.674 1.899 2.024 2.149 2.224 2.274 2.349 2.399 2.399

Operdist 0.058 0.076 0.092 0.113 0.139 0.157 0.172 0.182 0.190 0.208 0.218 0.218

Invs 0.000 0.000 0.000 0.018 0.063 0.077 0.113 0.131 0.144 0.167 0.198 0.198

TCOECV100l 1.694 2.010 2.175 2.487 2.880 3.134 3.310 3.413 3.581 3.696 3.788 3.788

TCOECV90l 1.645 1.951 2.117 2.419 2.802 3.047 3.222 3.325 3.484 3.599 3.691 3.691

TCOECV80l 1.597 1.893 2.058 2.351 2.724 2.959 3.135 3.238 3.387 3.502 3.593 3.593

TCOECV100h 1.694 2.010 2.175 2.589 3.237 3.568 3.948 4.152 4.397 4.640 4.910 4.910

TCOECV90h 1.645 1.951 2.117 2.521 3.159 3.480 3.860 4.065 4.300 4.543 4.813 4.813

TCOECV80h 1.597 1.893 2.058 2.453 3.081 3.392 3.772 3.977 4.203 4.445 4.715 4.715

Abbreviations hold as follows: Cat. area [km] - catchment area, nstore - number of served stores, nECV - number of ECVs,

ndriver,ECV - number of weekly driver shifts, DECV [km] - weekly total distance, D
ECV

[km] - average tour distance, Invv [me]

- investment costs for vehicles, Operdriver [me] - total driver costs, Operdist [me] - total driving costs, Invs [me] - investment

costs for stations TCOECV [me] - total costs of ownership ECVs for different scenarios (cf. Section 5.2).

Table 7: Emissions for all investigated scenarios for ICEVs and ECVs.

Scenario I II III IV V VI VII VIII IX X XI XII

EICEV 2534.9 3335.1 4016.5 4954.1 6089.7 6895.1 7549.3 7983.1 8318.7 9090.1 9506.5 9533.1

EECV 1884.8 2479.8 2986.4 3683.5 4527.9 5126.7 5613.2 5935.7 6185.2 6758.8 7088.1 7088.1

∆E -25.65 -25.65 -25.65 -25.65 -25.65 -25.65 -25.65 -25.65 -25.65 -25.65 -25.44 -25.65

Abbreviations hold as follows: EICEV [kgCO2,eq] - emissions operating the network with ICEVs, EECV [kgCO2,eq] - emissions
operating the network with ECVs, ∆E [%] - emission savings, operating the network with ECVs instead of ICEVs.

Table 8: Comparison for all scenarios between the ECV and ICEV results.

Scenario I II III IV V VI VII VIII IX X XI XII

nECV − nICEV 0 0 0 0 0 0 0 0 0 0 0 0

ndriver,ECV − ndriver,ICEV 0 0 0 0 0 0 0 0 0 0 0 0

DECV −DICEV [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00

D
ECV −DICEV

[%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.28 0.00

Invv,ECV − Invv,ICEV [%] 61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36 61.36

Operdriver,ECV −Operdriver,ICEV [%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Operdist,ECV −Operdist,ICEV [%] -77.23 -77.23 -77.23 -77.23 -77.23 -77.23 -77.23 -77.23 -77.23 -77.23 -77.17 -77.23

TCOECV100l − TCOICEV [%] -1.33 -2.43 -4.52 -4.71 -4.35 -4.43 -4.61 -4.89 -4.11 -4.90 -4.79 -4.86

TCOECV90l − TCOICEV [%] -4.16 -5.27 -7.08 -7.32 -6.94 -7.10 -7.13 -7.33 -6.71 -7.41 -7.24 -7.30

TCOECV80l − TCOICEV [%] -7.00 -8.10 -9.64 -9.93 -9.53 -9.77 -9.66 -9.77 -9.32 -9.91 -9.69 -9.75

TCOECV100h − TCOICEV [%] -1.33 -2.43 -4.52 -0.80 7.50 8.79 13.76 15.72 17.74 19.37 23.41 23.32

TCOECV90h − TCOICEV [%] -4.16 -5.27 -7.08 -3.41 4.92 6.12 11.24 13.28 15.14 16.87 20.96 20.88

TCOECV80h − TCOICEV [%] -7.00 -8.10 -9.64 -6.02 2.33 3.45 8.71 10.83 12.53 14.36 18.51 18.43

The table shows the differences between the quantities described in Table 5 and Table 6.



Les Cahiers du GERAD G–2017–47 25

References
Clarke, G., J. W. Wright. 1964. Scheduling of vehicles from a central depot to a number of delivery points. Operations

Research 12(4) 568–581.

Conrad, R. G., M. A. Figliozzi. 2011. The recharging vehicle routing problem. T. Doolen, E. Van Aken, eds.,
Proceedings of the 2011 Industrial Engineering Research Conference. Reno, NV, 1–8.

Cordeau, J.-F., G. Laporte, A. Mercier. 2001. A unified tabu search heuristic for vehicle routing problems with time
windows. Journal of the Operational Research Society 52(8) 928–936.

Davis, B. A., M. A. Figliozzi. 2013. A methodology to evaluate the competitiveness of electric delivery trucks.
Transportation Research Part E: Logistics and Transportation Review 49(1) 8–23.

Desaulniers, G., F. Errico, S. Irnich, M. Schneider. 2016. Exact algorithms for electric vehicle-routing problems with
time windows. Operations Research 64(6) 1388–1405.

DPDHL. 2011. Deutsche Post testet 12 neue Renault-Elektrofahrzeuge. http://www.dpdhl.com/de/

presse/pressemitteilungen/2011/deutsche_post_testet_12_neue_renault_elektrofahrzeuge.html (last ac-
cessed: 07.06.17).

DPDHL. 2013. Deutsche Post DHL Group macht Bonn zur Musterstadt fr CO2-freie Zustellfahrzeuge. http://www.

dpdhl.com/de/presse/veranstaltungen/co2freie_zustellfahrzeuge.html (last accessed: 07.06.17).

DPDHL. 2014a. Deutsche Post DHL bernimmt StreetScooter GmbH. http://www.dpdhl.com/de/presse/

pressemitteilungen/2014/deutsche_post_dhl_uebernimmt_streetscooter_gmbh.html (last accessed: 07.06.17).

DPDHL. 2014b. Electric vehicles in inner city distribution traffic. http://www.haw-hamburg.de/fileadmin/user_

upload/FakLS/07Forschung/FTZ-ALS/Veranstaltungen/Fuelling_the_Climate/Lohmeyer_FTC2014_VOE.pdf

(last accessed: 07.06.17).

Edwards, R., J.-F. Larive, D. Rickeard, W. Weindorf. 2014. Well-to-wheels analysis of future automotive fuel and
powertrains in the european context. JRC Technical Reports.

EMOSS. 2016. Personal comunication. http://www.emoss.biz/electric-truck/12-tonne-electric-truck/.
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Stütz, S., A. Bernsmann, T. Baltzer, N. Hentschel, K. Pommerenke, B. Rogmann, P. Wunderlin. 2016. Elmo
- Elektromobile Urbane Wirtschaftsverkehre. Final Report http://www.iml.fraunhofer.de/content/dam/

iml/de/documents/OE%20320/Infoseiten%20Abteilung%20und%20Gruppen/ELMO-Abschlussbericht_(%C3%

96ffentliche_Fassung).pdf (last accessed: 07.06.17).

Taefi, T., A. Fink, S. Sttz. 2016. Increasing the mileage of battery electric medium-duty vehicles: A recipe for
competitiveness?

TEDi. 2016. Personal communication.

http://www.ieahev.org/by-country/germany-policy-and-legislation/
http://www.ieahev.org/by-country/germany-policy-and-legislation/
http://www.logistik-heute.de/Logistik-News-Logistik-Nachrichten/Markt-News/10480/Deutsche-Post-DHL-wechselt-in-Bonn-und-Umland-komplett-auf-Elektrofahrzeuge-
http://www.logistik-heute.de/Logistik-News-Logistik-Nachrichten/Markt-News/10480/Deutsche-Post-DHL-wechselt-in-Bonn-und-Umland-komplett-auf-Elektrofahrzeuge-
https://www.destatis.de/DE/Publikationen/Thematisch/VerdiensteArbeitskosten/Arbeitnehmerverdienste/BroschuereVerdiensteBlick0160013179004.pdf?__blob=publicationFile
https://www.destatis.de/DE/Publikationen/Thematisch/VerdiensteArbeitskosten/Arbeitnehmerverdienste/BroschuereVerdiensteBlick0160013179004.pdf?__blob=publicationFile
https://www.destatis.de/DE/Publikationen/Thematisch/VerdiensteArbeitskosten/Arbeitnehmerverdienste/BroschuereVerdiensteBlick0160013179004.pdf?__blob=publicationFile
http://www.iml.fraunhofer.de/content/dam/iml/de/documents/OE%20320/Infoseiten%20Abteilung%20und%20Gruppen/ELMO-Abschlussbericht_(%C3%96ffentliche_Fassung).pdf
http://www.iml.fraunhofer.de/content/dam/iml/de/documents/OE%20320/Infoseiten%20Abteilung%20und%20Gruppen/ELMO-Abschlussbericht_(%C3%96ffentliche_Fassung).pdf
http://www.iml.fraunhofer.de/content/dam/iml/de/documents/OE%20320/Infoseiten%20Abteilung%20und%20Gruppen/ELMO-Abschlussbericht_(%C3%96ffentliche_Fassung).pdf


Les Cahiers du GERAD G–2017–47 27

UPS. 2013. UPS to rollout fleet of electric vehicles in California. http://www.pressroom.ups.com/Press+Releases/
Archive/2013/Q1/UPS+to+Rollout+Fleet+of+Electric+Vehicles+in+California (last accessed: 07.06.17).

Vidal, T., T. G. Crainic, M. Gendreau, C. Prins. 2014. A unified solution framework for multi-attribute vehicle
routing problems. European Journal of Operational Research 234(3) 658–673.

Yang, J., H. Sun. 2015. Battery swap station location-routing problem with capacitated electric vehicles. Computers
& Operations Research 55 217–232.

http://www.pressroom.ups.com/Press+Releases/Archive/2013/Q1/UPS+to+Rollout+Fleet+of+Electric+Vehicles+in+California
http://www.pressroom.ups.com/Press+Releases/Archive/2013/Q1/UPS+to+Rollout+Fleet+of+Electric+Vehicles+in+California

	Introduction
	Related literature
	Aims and scope

	Case study
	Methodological background
	abk:tco calculation
	Mixed integer program

	Design of experiments
	Cost terms and technical data
	Experimental design

	Computational results
	Network structure and operation
	abk:tco and cost structure
	Emissions

	Managerial insights
	Case specific insights
	Generalized managerial insights

	Conclusion and outlook
	Cost function
	Solution method
	Generalized cost function
	Preprocessing
	Construction algorithm
	Destroy and repair phase
	Local search
	Algorithmic setup

	Computational results

