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Dépôt légal – Bibliothèque et Archives nationales du Québec, 2017
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Abstract: Management and storage of waste and tailings are critical concerns in open pit mining, especially
when the available space is limited but also to reduce the impact of the activities on the environment. This
paper presents a new SIP model which simultaneously optimize the blocks extraction sequence and the in-pit
disposal of tailings and waste material. The model, which also considers geological uncertainty with a set of
simulations, is tested over a low dip iron ore deposit. The results are convincing in terms of space saving and
impact on the production and thus demonstrate the potential of such an approach.
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Long term planning is of major importance to evaluate the viability of an open pit mine project. Operations research 

with Mixed Integer Programming (MIP) models has been used for decades to optimize the extraction sequence of 

mining blocks with the objective to maximize the discounted cash flow (DCF) and to satisfy the diverse production 

constraints. [1], [2] However, the traditional approach relies on deterministic optimization since it does consider any 

source of uncertainty. Numerous studies [3]–[5] have demonstrated the significant impact of geological uncertainty 

over the mine production forecasted by those models. The geological information comes from sparse drillholes and is 

traditionally interpolated to the all block model with an estimated method (like krigging) to generate a single but 

smoothed representation of the orebody which typically under represents waste and high grades. [6] In order to consider 

the inevitable uncertainty associated with such representation, stochastic conditional simulations, which can be seen 

as a Monte Carlo type technique which represents the local grade and material type variability, provide a set of 

equiprobable representations of the deposit. The information provided by a set of simulations about the local grade 

variability can be used to maximize the DCF and manage the risk associated to the yet undiscovered geology. In 2008, 

Dimitrakopoulos and Ramazan proposed a two stages Stochastic Integer Programming (SIP) model with fixed 

recourses for the open pit mine scheduling problem which successfully managed the risk of the production. [7] While 

the quality of the obtained schedules has improved with such SIP model, the complexity of solving them has also 

increased. To tackle large instances and include more elements of the value chain, metaheuristic methods have been 

developed such as tabu search [8], simulated annealing [9]–[12] or progressive hedging, a scenario-based 

decomposition technique [13]. Those techniques have successfully managed to deal with real large size deposits of 

hundreds of thousands of mining blocks and to give a more realistic forecast of the production. 

 

Besides traditional constraints for the block extraction scheduling (accessibility, tonnage capacities, average grade, 

etc.), tailings and waste material management may be considered. Indeed, the volumes induced are significant and can 

be a great concern if the external space for stockpiles is limited. Moreover, this material also deeply impact the 

environment are needs to be moved again during the rehabilitation phase. An option that can be taken is to store tailings 

and waste material directly into the free spaces inside the pit, during the operations, in a way that it does not affect a 

lot the production. The literature on this topic is rather scant; the only found related work is from Zuckerberg et al. 

[14]. The authors developed an extended version of the mine planning software Blasor of BHP Billiton that they called 

Blasor-InPitDumping (BlasorIPD). For confidentiality reasons, the mathematical model is not given but they explained 

the main ideas of their work, conducted in a deterministic framework. They aggregate blocks and assign them a period 

of extraction. Then processing decisions only are given to subdivisions of those aggregates. When an AGG is 

determined to be sent to the waste, a percentage can be sent to an external stockpile and the rest to a zone inside the 

pit. The material sent back to the pit is associated to a “refill AGG”, a larger aggregate than initial AGG that also 

respects slope constraints. Their method allows to reduce the external space for storage, however, the waste material 

disposal inside the pit can be sparse (can result in a not very practical plan), ore accessibility is not mentioned and the 

aggregation of blocks coupled to smoothing of grades can mislead forecast results (mining selectivity and more waste 

than expected). 

 

The problem addressed in this paper is to simultaneously optimize the block extraction sequence and the disposal 

of tailings and waste material disposal inside the mined-out areas of the pit, considering the geological uncertainty of 

a low dip deposit. The planning will be performed at the block level without predefined cut-off policy (extraction 

sequence and destination policy) with the objective to maximise the discounted cash flow. For the in-pit storage, several 

requirements are considered to satisfy practicability issues. First, to control the locality and accessibility of the in-pit 

storage area, the latter must be unique (i.e., spatially continuous). Once the material is stored, it cannot be shifted, thus 

the area can only grow from on period to another. Of course, once an area (set of strips) is used for storage, the 

remaining ore blocks are sterilized since they cannot be accessed anymore. To prevent transforming such ore blocks 

to waste, a given minimum percentage of ore blocks within a strip is required to be mined prior to considering the strip 

for storage. The volume available for storage within a strip will be considered equal to the volume represented by the 

extracted blocks. The external available space for storage will be determined as being a maximum number of blocks 

which can be stored in external stockpiles. 

 

A new SIP formulation called open pit mine planning stochastic integer program with in-pit tailings disposal will 

be introduced followed by a description of the heuristic solving mechanism. Then the model will be tested in a case 

study to demonstrate its potential for managing tailings and waste while maximizing the discounted cash flow. 



 

 

The formulation is a two-stage stochastic model with fixed recourses [15] to take into account geological uncertainty. 

The in-pit storage will be defined by two extreme strips following the dip for every period and the amount of stored 

material within each strip. 

 

The first stage decision variables concern the blocks extraction period and destination as well as the position and 

volume of the in-pit storage area. The mining schedule is determined by the binary variables 𝑥𝑖,𝑑,𝑝 which are equal to 

1 when a given block 𝑖 ∈ ℬ has been sent to destination 𝑑 ∈ 𝒟 by period 𝑝 ∈ 𝒫 = {1,… , 𝑃} and 0 otherwise. The 

delimitation of the in-pit storage area is given by the binary variables 𝑢𝑘,𝑝 and 𝑙𝑘,𝑝 which take the value 1 if strip 𝑘 ∈

𝒦 = {1,… , 𝐾} is respectively the top and bottom strip of the storage area in period 𝑝, 0 otherwise (note that 𝑘 = 1 

will be qualified as the bottommost strip and 𝑘 = 𝐾 as the topmost strip). The availability (1) or non-availability (0) 

of a strip 𝑘 for storage in period 𝑝 is given by the binary variable 𝑧𝑘,𝑝. Finally, variable 𝑦𝑘,𝑝 ∈ ℝ
+ defines the number 

of tailings blocks stored in strip 𝑘 in period 𝑝. The second stage variables correspond to the impact of geological 

uncertainty, not yet revealed during the first stage decision taking. In geological scenario 𝑠 ∈ 𝒮, the deviation in terms 

of metallurgical characteristic 𝑐 ∈ 𝒞 in period 𝑝 is denoted by the variable 𝑑𝑒𝑣𝑐,𝑝,𝑠
± ∈ ℝ+ (excess +, shortage -).  
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1
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           (EQ 1) 

 

Where: 𝑑𝑝 denotes the discount factor applied in period 𝑝, 𝑣𝑖,𝑑,𝑠 denotes the economic value of block 𝑖 in scenario 

𝑠 (positive or negative) if sent to destination 𝑑, and 𝑝𝑒𝑛𝑐,𝑝
𝑑𝑒𝑣± denotes the penalty cost of deviating from targets of 

characteristic 𝑐 ∈ 𝒞 in period 𝑝 (excess +, shortage -). 

 

In the objective function, Part 1 aims to maximize the expected discounted cash flow generated by the extracted 

blocks while Part 2 penalizes the expected deviations from the production targets. 

 

∀𝑖 ∈ ℬ, ∀𝑑 ∈ 𝒟, ∀𝑝 ∈ 𝒫                                         𝑥𝑖,𝑑,𝑝 − 𝑥𝑖,𝑑,𝑝−1 ≥ 0                                                                             (EQ 2) 

 

∀𝑖 ∈ ℬ, ∀𝑝 ∈ 𝒫                                                             ∑ 𝑥𝑖,𝑑,𝑝
𝑑∈𝒟

≤ 1                                                                                    (EQ 3) 

∀𝑖 ∈ ℬ, ∀𝑗 ∈ Γ𝑖
−, ∀𝑝 ∈ 𝒫                                       ∑ 𝑥𝑖,𝑑,𝑝

𝑑∈𝒟

≤ ∑𝑥𝑗,𝑑,𝑝
𝑑∈𝒟

                                                                           (EQ 4) 

∀𝑐1 ∈ 𝒞1, ∀𝑝 ∈ 𝒫, ∀𝑠 ∈ 𝒮     ∑(𝑞𝑐1,𝑖,𝑠 ∗ (𝑥𝑖,𝑑,𝑝 − 𝑥𝑖,𝑑,𝑝−1))

𝑖∈ℬ

− 𝑑𝑒𝑣𝑐1,𝑝,𝑠
±  

≤
≥
 𝑡𝑎𝑟𝑔𝑒𝑡𝑐1,𝑝

±                                             (EQ 5) 

 

∀𝑐2 ∈ 𝒞2, ∀𝑝 ∈ 𝒫, ∀𝑠 ∈ 𝒮 

∑(𝑞𝑐2,𝑖,𝑠 ∗ 𝑡𝑖,𝑠 ∗ (𝑥𝑖,𝑑,𝑝 − 𝑥𝑖,𝑑,𝑝−1))

𝑖∈ℬ
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≥
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± ∗∑(𝑡𝑖,𝑠 ∗ (𝑥𝑖,𝑑,𝑝 − 𝑥𝑖,𝑑,𝑝−1))
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        (EQ 6) 



 

∀𝑝 ∈ 𝒫                                                                           

{
 
 

 
 ∑ 𝑢𝑘,𝑝 ≤ 1

𝑘∈𝒦

∑ 𝑙𝑘,𝑝 ≤ 1

𝑘∈𝒦

                                                                                  (EQ 7) 

∀𝑝 ∈ 𝒫                                                                  ∑ 𝑘 ∗ (𝑢𝑘,𝑝 − 𝑙𝑘,𝑝) ≥

𝑘∈𝒦

0                                                                        (EQ 8) 

∀𝑝 ∈ 𝒫\{1}                                                     

{
 
 

 
 ∑ 𝑘 ∗ 𝑢𝑘,𝑝
𝑘∈𝒦

≥ ∑ 𝑘 ∗ 𝑢𝑘,𝑝−1
𝑘∈𝒦

∑𝑘 ∗ 𝑙𝑘,𝑝
𝑘∈𝒦

≤ ∑ 𝑘 ∗ 𝑙𝑘,𝑝−1
𝑘∈𝒦

                                                                 (EQ 9) 

∀𝑘 ∈ 𝒦, ∀𝑝 ∈ 𝒫                                             𝑧𝑘,𝑝 = ∑(𝑢𝑗,𝑝 − 𝑙𝑗+1,𝑝)

𝐾−1

𝑗=𝑘

+ 𝑢𝐾,𝑝                                                              (EQ 10) 

∀𝑘 ∈ 𝒦, ∀𝑝 ∈ 𝒫                                                            𝑦𝑘,𝑝 ≤ 𝑁𝑘 ∗ 𝑧𝑘,𝑝                                                                            (EQ 11) 

∀𝑘 ∈ 𝒦, ∀𝑝 ∈ 𝒫                                               ∑ 𝑦𝑘,𝑝′

𝑝

𝑝′=1

≤ ∑ ∑𝑥𝑖,𝑑,𝑝
𝑑∈𝒟𝑖∈𝒦−1(𝑘)

                                                               (EQ 12) 

∀𝑝 ∈ 𝒫                                                           ∑ 𝑦𝑘,𝑝
𝑘∈𝒦

≤∑∑(𝑥𝑖,𝑑,𝑝 − 𝑥𝑖,𝑑,𝑝−1)

𝑑∈𝒟𝑖∈ℬ

                                                        (EQ 13) 

∀𝑘 ∈ 𝒦, ∀𝑖 ∈ 𝒦−1(𝑘), ∀𝑝 ∈ 𝒫                   ∑(𝑥𝑖,𝑑,𝑝 − 𝑥𝑖,𝑑,𝑝−1)

𝑑∈𝒟

≤ 1 − 𝑧𝑘,𝑝                                                            (EQ 14) 

                                                                            ∑∑𝑥𝑖,𝑑,𝑃
𝑑∈𝒟𝑖∈ℬ

− ∑∑𝑦𝑘,𝑝
𝑝∈𝒫𝑘∈𝒦

≤  𝜋                                                            (EQ 15) 

∀𝑘 ∈ 𝒦, ∀𝑝 ∈ 𝒫                                             𝛾 ∗  𝑁𝑘 ∗ 𝑧𝑘,𝑝 ≤ ∑ ∑𝑥𝑖,𝑑,𝑝
𝑑∈𝒟𝑖∈𝒦−1(𝑘)

                                                          (EQ 16) 

 

Where: Γ𝑖
− denotes the set of direct predecessor blocks of block 𝑖, 𝒞 = 𝒞1 ∪ 𝒞2 such as 𝒞1 denotes the linear 

characteristics (tonnages) and 𝒞2 the nonlinear characteristics (grades), 𝑞𝑐,𝑖,𝑠 denotes the characteristic 𝑐 of block 𝑖 in 

scenario 𝑠, 𝑡𝑎𝑟𝑔𝑒𝑡𝑐,𝑝
±  denotes the upper (+) and lower (-) bounds targets of average characteristic 𝑐 in scenario 𝑠, 𝑡𝑖,𝑠 

denotes the tonnage of block 𝑖 in scenario 𝑠, 𝑁𝑘 denotes the number of blocks in strip 𝑘, 𝒦−1(𝑘) denotes the set of 

blocks that belong to strip 𝑘, 𝜋 denotes the maximum number of blocks that can be stored outside of the pit, the 

parameter 𝛾 denotes the percentage of the total number of blocks of a strip that need to be extracted before considering 

the strip for storage. 

 

Equations 2-6 are typical constraints for long-term stochastic open-pit scheduling. They respectively refer to 

reserve constraints, destination policy, predecessor constraints, average quantity targets and average grade targets. 

More details can be found in the literature [7], [16]. Equations 7-16 are additional specific constraints for the in-pit 

tailings and waste material storage. Equation 7 defines the uniqueness of both the top and bottom strip delimiting the 

in-pit area of storage. Equation 8 enforces the good relative order of the top and bottom strip (i.e., the top strip must 

be located “above” the bottom one). Equation 9 constrains the area of storage to remain similar or to grow only, without 

translation (a strip once considered for storage will remain so for the rest of the life of mine). Equation 10 states that a 

strip is available for storage during a given period if and only if it is located between the top and bottom strip. Equation 

11 allow a strip to receive stored material once this strip is available for storage. Equation 12 limits the number of 

tailings or waste material stored in a strip to the number of blocks that have been previously mined in the same strip 

(available space). Equation 13 states that the number of tailings or waste material blocks stored during one period 

cannot be higher than the number of extracted blocks during this period. Equation 14 claims that once a strip has been 

designated for storage, its remaining blocks cannot be extracted anymore. Equation 15 limits the number for tailings 

blocks stored in an external stockpile to 𝜋. Finally, Equation 16 ensures that a given percentage 𝛾 of the ore blocks 

present in a strip have been extracted before considering the strip for storage. 

 

The open-pit mine scheduling problem is a very complex problem to solve. Geological uncertainty using 

geostatistical simulations in addition to the in-pit material disposal formulation makes the model impossible to solve 

with a traditional mathematical solver like Cplex, even with a reasonably small deposit (a few thousand blocks). The 



 

method chosen in this paper to solve the model is a typical sliding time window heuristic method which can be found 

for instance in Cullenbine et al. [17]. This is an iterative method for which at each iteration all the variables of all the 

periods, except the ones of the “window”, are relaxed (set continuous instead of integer). The solution for the first 

period of the window is saved and the variables fixed before moving the window up by one period and repeat the 

process. Here, the window will be composed of one period only. In addition, to reduce again the complexity of the 

model, the latest periods (i.e., separated from the “window” by at least two periods) are gathered in groups. For 

instance, for the first iteration, the “window” is period 1 (binary variables), periods 2 and 3 are relaxed (continuous 

variables), period 4 and 5 are relaxed and grouped (represented as one period of double capacity), etc. 

 

The model was tested on a low dip iron ore deposit composed of 3177, 100*100*15m3 mining blocks. The schedule 

was performed over 10 periods and considered two possible destinations for every block: the mill or the waste dump 

(external or in-pit). Geological uncertainty was represented by a set of 10 stochastic conditional simulations generated 

by Direct Block Simulation with min/max autocorrelation factor [18] which provide for every block the iron grade 

(Fe%), the silica grade (Sio2%) and the density. The main production constraints concern the concentrate tonnes per 

period, the average Iron grade, and the average Silica grade. Following the definition of the model, the in-pit storage 

is considered by strips toward the dip (West-East), the maximum number of blocks that can be stored outside of the 

pit is set to 𝜋 = 500 and the percentage of ore blocks that must be mined in every strip before storage is set to 𝛾 =
75%. The average grade of the blocks and swelling phenomena motivate the assumption that, on average, an extracted 

block results in 80% of its initial volume as tailings (or waste material) to store. The proposed model contains a total 

of 64 680 binary variables, 680 continuous variables, and 413 000 constraints. It was solved in 6h32min with the 

previously introduced sliding time window with grouped periods heuristic method with the use of the solver Cplex 

v12.4 [19] (processor i7-2600S 2.8GHz and 8GB RAM). To evaluate the quality of the heuristic method, the objective 

value is compared to the one of the relaxed model (upper bound of the optimal solution). The gap (𝑔𝑎𝑝 =
𝑂𝑏𝑗𝑟𝑒𝑙𝑎𝑥𝑒𝑑−𝑂𝑏𝑗ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐

𝑂𝑏𝑗𝑟𝑒𝑙𝑎𝑥𝑒𝑑
) is 1.76%, which demonstrates the good performance of the method. 

 

 

Figure 1 Strips storage availability and number of stored blocks per period (left), mine extraction schedule (right) 
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Figure 2 Dip toward cross section of the schedule (top) and the in-pit storage disposal (bottom) 

Figure 1 shows a top view of the schedule (right) and the storage within the different strips (left). One can note that 

the in-pit storage has started in period 4 (once the external stockpile was full). The first strips used for storage are the 

two bottommost strips (1 and 2), followed by the above ones. As expected, those strips are also the first that have been 

mined, to free space for storage. From period 5, 100% of the storage is performed inside the pit. Figure 2 presents an 

example of a cross section (3rd strip). This strip has been extracted more than 75% within the first 3 periods. With the 

previously defined assumption about the volumes transformations, 57.8 extracted blocks in period 5 and 11.2 blocks 

in period 6 resulted in respectively 46 and 9 tailings or waste material blocks stored in strip 3. 

 

 
 

Figure 3 Risks profiles of the average Silica grade and the concentrate tonnes 

 

 
 

Figure 4 Risk profiles of the cumulative (left) and per period (right) discounted cash flow (relative to the average) 
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Figure 3 presents the risk profiles associated with the average Silica grade and the concentrate tonnes per period. 

One can note that the SIP model has managed to control the geological risk by respecting the constraints not only on 

average but also for each individual scenario. Figure 4 also presents risk profiles but in terms of discounted cash flow. 

The graph on the left shows the cumulative DCF on which, because of low variability, the different scenarios cannot 

be differentiated. The graph on the right, however, shows the DCF per period on which the fluctuations from one 

scenario to another are more perceptible but always contained within 3% of the average. 

 

Finally, during the 10 periods of extraction, 1 177 blocks have been extracted from which 677 resulted in tailings 

or waste material stored inside the pit. This material represents a volume of 81 million m3, equivalent to a stockpile of 

1200m of diameter for 100m of height. Also, the objective value the model was compared the one obtained with an 

infinite external storage capacity (solved with an exact method), equivalent to a simple extraction sequence schedule. 

The gap was 1.77%, this result outlines the low impact over the production of storing material inside the pit, especially 

since the re-handling costs of the rehabilitation phase were not considered.  

 

The open pit mine planning SIP with in-pit tailings disposal model presented in this paper has formulated a practical 

way of storing tailings and waste material inside the pit during the operation, for a low dip deposit. It has managed to 

simultaneously optimize the storage and the block extraction sequence and destination policy so that the first produces 

a very low impact on the production. Considering the option of storing inside the pit reduces considerably the external 

space for the stockpile, saves re-handling costs and limits the impact on the environment and landscape during the 

operations. 
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