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Québec – Nature et technologies.
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Abstract: Personnel scheduling consists of determining least-cost employee work schedules to cover the
demand of one or several jobs in each period of a time horizon. During the operations, several minor
disruptions caused, for example, by a late employee may occur and must be addressed in real time by re-
scheduling certain employees. In this paper, we develop a fast re-scheduling heuristic that can be used
to solve the personnel re-scheduling problem in a context where the employees can be assigned to a wide
variety of shifts such as in the retail industry. This heuristic considers five types of decision and is based on
the dual values of the linear relaxation of the personnel scheduling problem. We also propose a procedure
exploiting a multivariate adaptive regression splines method for updating the dual values after each disruption
when several ones occur int he same week. Computational experiments conducted on a set of 1050 instances
derived from real-life datasets involving up to 191 employees show the efficiency of the proposed re-scheduling
heuristic: it can compute optimal solutions for more than 95% of these instances in less than one second on
average. Furthermore, the dual value updating process allows an average reduction of 73% of the optimality
gap for each disruption.

Acknowledgments: The authors are grateful to the personnel of Kronos Canadian Systems Inc. for propos-
ing this problem and corresponding datasets. This work was funded by Kronos Canadian Systems and the
Natural Sciences and Engineering Research Council of Canada. This financial support was greatly appreci-
ated.
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1 Introduction

Personnel scheduling problems are frequent in numerous domains such as retail, transportation, healthcare,

and manufacturing, to name just a few. There exist several problem variants which are defined according to

the environment in which they arise. For instance, in hospitals and factories, employees often work 24 hours

per day, seven days per week and are assigned to a limited number of shifts (e.g., 7am to 3pm, 3pm to 11pm,

and 11pm to 7am). In this case, the demand in employees for each job (task or position) to accomplish is

expressed by shifts. On the other hand, in large retail stores or leisure resorts, demand occurs only during

the opening hours and may highly fluctuate throughout a day and from one day to another. It needs to be

expressed by short time intervals (e.g., 15-minute periods) for each job. To meet these demand fluctuations,

numerous shifts, starting and ending at about any time, can be assigned to the employees. Also, in certain

contexts, an employee is always assigned to the same job in a shift while, in others, he/she can be assigned

to multiple jobs in a shift. Typically, a personnel scheduling problem consists of determining the working

schedules (the exact shifts and jobs) of a set of employees such that the demand for each job and each period

is met as much as possible at minimum costs while satisfying labor rules. Costs include employee salaries and

often various penalties for enforcing the satisfaction of soft constraints or preferences. Solving these problems

is often a challenge that is addressed using an optimization algorithm.

Unfortunately, a personnel schedule is rarely operated as planned. Indeed, it often occurs that an employee

is late for work, must leave earlier than scheduled, or simply does not show up. Such a minor disruption

usually makes the planned schedule infeasible and must be addressed as soon as possible. To deal with a

minor disruption, re-scheduling must be performed, i.e., the planned schedule must be modified to retrieve a

feasible schedule that takes into account the disruption but does not differ much from the planned schedule.

Given that minor disruptions are often known just before the operations and the modified employee schedules

must be announced to the impacted employees as soon as possible, re-optimization must be done in real time.

In this paper, we address the problem of re-optimizing a personnel schedule to address a minor disruption

in real time. We assume that this problem occurs in a context where there are several jobs to cover by skilled

employees, the number of employees required for each job fluctuates throughout the planning horizon, and

the employees can be assigned to a wide variety of possible shifts, starting and ending at various times. In

this case, the disruption can cause a lack of personnel for a job just for a few periods (say, one hour) and can

thus be addressed, for example, by simply extending the shift of an employee to cover these periods. Other

options can be considered to resolve a minor disruption but, in all cases, the number of changes brought to

the planned schedules must be rather limited.

1.1 Literature review

The study of personnel scheduling problems in the operations research literature started at the beginning

of the 1950s with the work of Edie [6] who introduced a heuristic method for solving a shift scheduling

problem for toll booth operators with the objective of minimizing waiting at the toll booths. A few months

later, Dantzig [5] proposed to model this problem as a set covering problem and solve it using integer linear

programming techniques. Since then, numerous papers have been published on many personnel scheduling

problems. Exhaustive surveys on these works were written by Ernst et al. [7], Burke et al. [2], and Van den

Bergh et al. [16].

Literature on personnel re-scheduling is rather scarce. Most works have tackled the nurse re-rostering

problem that considers a very limited number of possible shifts (three shifts per day in most cases) and,

often, demand by shifts. In this case, a minor disruption corresponds to the absence of a nurse for one or

several consecutive shifts and can be resolved by re-assigning the nurses to the shifts for one or several days,

or resorting to part-time or on-call nurses. Exact branch-and-bound and branch-and-price algorithms for

solving variants of this problem were proposed by Moz and Pato [12, 13] and Bard and Purnomo [1]. These

algorithms require too large computational times to be applicable in real time. Heuristic algorithms were

also developed by Moz and Pato [12, 14], Pato and Moz [15], Maenhout and Vanhoucke [11], and Kitada and
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Morizawa [10]. Even if some of these algorithms yield fast computational times, they are suited for the nurse

re-rostering context which differs from the context addressed in this paper.

Personnel re-scheduling has also been studied in other sectors such as transportation (see Clausen

et al. [4] and Cacchiani et al. [3] for surveys in air and rail transportation, respectively). Because the

crews travel during their working days and may even overnight outside of their homes in some cases, these

problems differ substantially from the one considered in this study and, therefore, the proposed models and

solution approaches are not suitable.

To the best of our knowledge, no works have been published on personnel re-scheduling problems arising

in retail stores or similar settings, beside the recent master’s dissertation of Froger [9]. This dissertation

focuses on large disruptions, such as when a relatively large variation of the demand is expected to occur

on one or several days due, for instance, to bad weather or an unanticipated sale. The author developed an

integer linear program that considers variables associated with the planned employee shifts and additional

shifts that are derived from the planned shifts according to parameterized modification rules. Different rules

and parameter values are tested. In all cases, the resulting model can be solved by a commercial mixed

integer programming solver in less than two minutes for instances involving up to 50 employees. This work

has similarities with our study. The initial personnel scheduling problem is the same and the modifications

that can be brought to the planned shifts are the same. On the other hand, the sizes of the disruptions differ

and the time available to address a disruption is much less in our case (a few seconds versus a few minutes).

Consequently, the solution approach proposed by Froger [9] cannot be used for tackling a minor disruption

in real time.

1.2 Contributions

The previous literature review shows that personnel re-scheduling following a minor disruption in a retail store

or a similar environment (where demand is highly fluctuating, numerous shifts are feasible, planned shifts can

be modified in various ways, and fast computational times are required) has not been addressed yet. This

paper aims at fulfilling this gap. First, we develop an efficient heuristic for re-optimizing a personnel schedule

in real time once a minor disruption becomes known. This fast heuristic can compute for a single disruption

one or several solutions. It is based on the dual solution of the linear relaxation of the model used to compute

the planned schedule. Second, we exploit a non-parametric regression method for estimating the evolution of

some dual values when the planned schedule is subject to multiple disruptions which yield a sequence of re-

optimizations. Third, through extensive computational experiments performed on various instances derived

from real-world datasets involving between 15 and 195 employees, we show that the proposed heuristic finds

in less than two seconds an optimal solution in more than 95% of the test cases. Additional computational

results obtained when resolving a sequence of minor disruptions occurring on the same planned schedule

indicate that using the proposed regression method for updating the dual values reduces the gap between

the optimal value and the heuristic solution value by an average of 73%.

1.3 Paper structure

This paper is organized as follows. In Section 2, we first state the initial personnel scheduling problem and

then derive from it the personnel re-scheduling problem considered. In Section 3, we describe the proposed

heuristic and the non-parametric regression method used to update dual values. In Section 4, we report and

analyze the results of our computational experiments. Finally, conclusions are drawn in Section 5.

2 Problem description

In this section, we start by stating the personnel scheduling problem solved to establish planned schedules

for the employees. We also model this problem as an integer program that will be used to justify the

proposed heuristic. Finally, we describe the personnel re-scheduling problem by defining the minor disruptions
considered and the type of decisions that can be made to resolve them.
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2.1 The personnel scheduling problem

A few days, a week or, in some cases, a month before the planning horizon (typically, one week or one month),

the personnel manager must disclose the employee working schedules for that horizon, i.e., the days that each

employee will work and, for each working day, the exact shift that he/she will work and on which job. Let

us present a detailed definition of this personnel scheduling problem when the horizon H = {1, 2, ..., 7} is a

set of seven consecutive days numbered from 1 to 7. The model and methodology described below can easily

be adapted for other horizons.

Horizon H is also divided into a set P = {1, . . . , pmax} of consecutive periods of equal length (for example,

15 minutes) numbered from 1 to pmax. Any shift that can be assigned to an employee starts at the beginning

of a period and ends at the end of another period. Let E be the set of available employees and W the set of

jobs to accomplish. In the retail context, a job is a type of a position that serves the customers in real time

such as a cashier in a supermarket or a clerk in the bakery department. An employee assigned to a job can

be replaced at any time by another employee or can interrupt its assignment at any time to go for a break,

move to another job, or end his/her day.

In this paper, we assume that an employee can be assigned to a single job during a shift and that no

breaks need to be scheduled in the shifts. This first assumption is common in practice and is imposed only

for ease of exposition as our heuristic can be easily adapted if it does not hold. The second assumption is also

frequent in practice because the breaks are often assigned during the operations depending on the observed

demand. Typically, to take breaks into account when planning the personnel schedule, the forecasted demand

is increased during certain time intervals.

The main goal of the personnel scheduling problem is to assign the employees to shifts such that enough

employees are on duty for each job in each period so as to offer a service of good quality to the customers.

One of the main input to this problem is, thus, the required number of employees dpw for each job w ∈ W
and period p ∈ P. To fulfill this demand, one must determine for each employee e ∈ E a working schedule

that is composed of shifts taken from sets of potential feasible shifts She , h ∈ H, that can be assigned to e. A

shift s is defined by a starting period bs, an end period fs, a length ls in number of periods (ls = fs− bs + 1),

and a job ws to which the employee is assigned in this shift. It belongs to She if: 1) bs belongs to day h and

is an admissible starting period for employee e; 2) ls falls into a feasible shift length interval (for instance,

between 4 and 10 hours); and 3) employee e is skilled for job ws and available on day h. Like the employee

skills, the set of admissible starting periods and the feasible shift length interval may vary from one employee

to another. The schedule of employee e is feasible if it contains: 1) at least nO days off; 2) at most one shift

per working day; 3) at least nR periods of rest between shifts assigned on two consecutive days; and 4) a

total of at most nP working periods. Note that, for horizons longer than one week, additional conditions on

the distribution of the days off need to be considered and the maximum number of periods may be imposed

for every week, not for the whole horizon.

Given that the demand for each job may fluctuate from one period to the next, it is nearly impossible to

cover this demand exactly with a set of feasible employee schedules. In fact, it is not rare that there is too

much or too many employees assigned to a job in a period. In the former case, we say that each exceeding

employee yields an over-covering. In the latter, each missing employee corresponds to an under-covering.

In practice, the under-coverings are usually covered by temporary or on-call employees who are usually

scheduled just before the operations if really needed. To exploit this possibility at best, the under-coverings

for a job should be bunched together as much as possible so as to be able to cover by shifts for these extra

employees. Consequently, the input to the personnel scheduling problem also includes a set of anonymous

shifts, denoted SA, that can be eventually assigned to these employees, i.e., which are feasible with respect

to their start times and lengths. Beside a starting period bs, an end period fs, and a length ls, an anonymous

shift s ∈ SA is also defined by a job ws. Considering these shifts allows to forbid demand under-covering.

They should, however, be highly penalized. Note that an anonymous shift can be chosen several times in

a solution.
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The personnel scheduling problem involves three types of costs: labor costs, anonymous shift penalties,

and over-covering penalties. The labor costs correspond to the salaries of the employees that are paid for

the time worked. Typically, the most senior employees, those that should be favored to work more, have the

largest hourly rates. Consequently, if the real hourly rates were considered in the model, the senior employees

would be assigned less working hours than the junior ones. To avoid this, one can consider an hourly rate

that is the same for all employees. In our case, to favor an almost even distribution of the working hours

among the employees, we use a step-wise function to compute an adjusted labor cost for each employee, that

is, the hourly rate increases by step with the number of hours worked. This function is defined by a set of

steps KL = {1, . . . ,mL}, where mL is the number of steps, and, for each step k, a number of periods nLk
which define the length of this step and a cost per period cLk such that cLk < cLk+1 for k ∈ KL \ {mL}. Notice

that
∑

k∈KL nLk corresponds to the maximum number of periods that an employee can work in a week.

Next, each anonymous shift s ∈ SA yields a penalty cYs that is proportional to the shift length ls. These

penalties are large enough compared to the other costs to ensure the minimization of the total number of

periods assigned in anonymous shifts. Finally, over-covering penalties are also considered even though the

labor costs ensure that there will be no extra over-covering. In fact, we use again a step-wise function to

compute the over-covering penalty associated with each job in each period. This function allows to distribute

almost evenly the over-covering of a job among the various periods. For instance, if two periods of over-

covering are unavoidable for a job, it is preferable to have them, if possible, on two different periods rather

than at the same period. The over-covering penalty function does not depend on the job and is defined by a

set of steps KV = {1, . . . ,mV }, a number of over-coverings nVk in each step k, and a cost per over-covering cVk
in each step k with cVk < cVk+1 for k ∈ KV \ {mV }.

To model the personnel scheduling problem, we also rely on the following notation. For each period p ∈ P,

job w ∈ W and shift s ∈ SA ∪
⋃

h∈H,e∈E
She , the binary parameter apsw takes value 1 if shift s covers job w in

period p and 0 otherwise. Let M be a sufficiently large constant. The variables are defined as follows.

Xh
es: Binary variable equal to 1 if shift s ∈ She is assigned to employee e ∈ E on day h ∈ H and 0 otherwise;

Oh
e : Binary variable equal to 1 if employee e ∈ E has a day off on day h ∈ H and 0 otherwise;

Lk
e : Integer variable specifying the number of periods worked by employee e ∈ E and that fall on step

k ∈ KL;

Ys: Integer variable indicating the number of times that anonymous shift s ∈ SA is used in the solution;

V kp
w : Integer variable indicating the number of over-coverings for job w ∈ W in period p ∈ P that fall on

step k ∈ KV .

Given this notation, the personnel scheduling problem can be modeled as the following integer program.

Minimize
∑
e∈E

∑
k∈KL

cLkL
k
e +

∑
s∈SA

cYs lsYs +
∑
p∈P

∑
w∈W

∑
k∈KV

cVk V
kp
w (1)

subject to :
∑
s∈Sh

e

Xh
es +Oh

e = 1, ∀e ∈ E , h ∈ H (2)

∑
h∈H

Oh
e ≥ nO, ∀e ∈ E (3)

∑
h∈H

∑
s∈Sh

e

lsX
h
es −

∑
k∈KL

Lk
e = 0, ∀e ∈ E (4)

M Oh+1
e +

∑
s∈Sh+1

e

bsX
h+1
es −

∑
s∈Sh

e

(fs + 1 + nR)Xh
es ≥ 0, ∀e ∈ E , h ∈ H \ {7} (5)

∑
e∈E

∑
h∈H

∑
s∈Sh

e

apswX
h
es +

∑
s∈SA

apswYs −
∑

k∈KV

V kp
w = dpw, ∀p ∈ P, w ∈ W (6)
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Xh
es ∈ {0, 1}, ∀e ∈ E , h ∈ H, s ∈ She (7)

Oh
e ∈ {0, 1}, ∀e ∈ E , h ∈ H (8)

Lk
e ∈ [0, nLk ], integer, ∀e ∈ E , k ∈ KL (9)

Ys ≥ 0, integer, ∀s ∈ SA (10)

V kp
w ∈ [0, nVk ], integer, ∀w ∈ W, p ∈ P, k ∈ KV. (11)

The objective function (1) aims at minimizing the sum of the labor costs, the penalties incurred by the

anonymous shifts, and the over-covering penalties. Constraints (2) ensure that each employee is assigned to

a shift or a day off on each day of the horizon. Constraints (3) impose the assignment of at least nO days

off to each employee. The distribution of the periods work by each employee on the various steps of KL are

computed through constraints (4). Note that the relations between the costs cLk ensure that the cheapest

steps are always used first. Constraints (5) specify that there must be a rest of at least nR periods between

shifts assigned to the same employee on two consecutive days. For each job and each period, constraints (5)

guarantee that the demand is covered by a sufficient number of employees or anonymous shifts. They also

allow to compute the number of over-coverings per step in KV . Finally, the domains of the decision variables

are restricted by (6)–(11).

2.2 The personnel re-scheduling problem

In general, the small disruptions which can make a planned schedule infeasible are numerous. These dis-

ruptions can be triggered, for instance, by the lateness or the absence of an employee, a demand increase

at certain periods of a day, or an unforeseen event that prevents an employee to complete a planned work

shift. In this paper, we focus on the lateness of an employee because the other cases can be treated similarly.

Indeed, in all cases, the personnel schedule must be adjusted to cover a demand for a certain number of

consecutive periods.

In the following, we characterize a minor disruption due to a lateness by:

• the employee ê ∈ E who is late;

• the day ĥ ∈ H when the disruption occurs;

• the planned shift ŝ ∈ S ĥê of employee ê;

• the lateness duration l̂ in periods (l̂ < lŝ);

• the period p̂ ∈ P at which the manager is notified that the employee will be late. We assume that p̂ is

a period prior to bŝ, possibly the period just preceding it.

Hereafter, we call the first l̂ periods of shift ŝ the uncovered demand block.

Each company has its own set D of possible types of decision that can be applied to update its personnel

schedule following a minor disruption (ê, ĥ, ŝ, l̂, p̂). Each type d ∈ D is associated with a set of candidates

Qd(ê, ĥ, ŝ, l̂, p̂). A candidate q ∈ Qd(ê, ĥ, ŝ, l̂, p̂) is a subset Eq of employees (possibly just one) excluding

employee ê whose schedules can be modified on day ĥ to address the disruption without violating any

feasibility constraint. Because the disruption is minor, the modifications must only impact a limited number

of employees and only on day ĥ. Given a candidate, there might exist several combinations of modified

shifts to assign to them in order to resolve the disruption. For ease of exposition, we assume that the best

combination can easily be found. Each decision type d ∈ D incurs a managerial cost γd, which usually

accounts for the time spent implementing the schedule changes. These costs can also be used to represent

the preferences of the manager for certain decision types. The personnel re-scheduling problem consists of

determining the candidate among all decision types that yields the smallest cost increase. This increase is

computed as the difference between the cost of the modified schedule (including the managerial cost) and

that of the planned schedule.
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In this paper, we consider five basic decision types, i.e., D = {d1, . . . , d5}. The proposed methodology

can, however, be adapted to other types. The five studied types are the following.

• d1: Extend the planned shift s ∈ S ĥe of an employee e working on day ĥ to cover the uncovered demand

block. Shift s must end at period p̂ or after but before bŝ.

• d2: Assign a shift s ∈ S ĥe that covers the uncovered demand block to an employee e who has a planned

day off on day ĥ. This is possible only if employee e has sufficient time between p̂ and bŝ to reach work

from home.

• d3: Switch shift ŝ with the planned shift s ∈ S ĥe of an employee e who is planned to start after the

late arrival of employee ê, i.e., such that bs ≥ bŝ + l̂. Here also, this is possible only if employee e has

sufficient time between p̂ and bŝ to arrive at work.

• d4(η): Extend or move forward the planned shifts of at most η employees whose shifts are scheduled to

end between p̂ and bŝ. Figure 1) gives an example where moving forward the shift employee e1 might be

necessary to avoid reaching the maximum working time per week. Parameter η is set by the manager

and limits the number of employees involved in this type of decision. Note that type d4 generalizes

type d1 as d4(1) = d1.

• d5(η): Switch the planned shifts of at most η+ 1 employees (including employee ê) such that employee

ê is re-assigned to a shift s with bs ≥ bŝ + l̂ (see Figure 2). Here again, η imposes a limit on the number

of employees involved in the decision (beside employee ê). This decision type generalizes type d3 as

d5(1) = d3.

3 Heuristic

In this section, we describe the proposed heuristic to solve the personnel re-scheduling problem. This heuristic

is based on dual variable values obtained when solving the personnel scheduling problem. First, we consider

the case where a single minor disruption needs to be addressed. Then, we discuss the case where a sequence

of minor disruptions must be handled without re-optimizing the personnel scheduling problem (to obtain

updated dual values) after each disruption.

p̂

Time in hours : 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

e3 ê

e2

e1

p̂

Time in hours : 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

e3 ê

e2

e1

Figure 1: Example of a decision of type d4(2) for a candidate q = {e1, e2}. The top part shows the planned shifts with the
uncovered demand block in red. In the bottom part, the shift of employee e2 has been extended while that of employee e1 has
been moved forward and extended
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p̂

Time in hours : 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ê

e4

e2e1

e3

p̂

Time in hours : 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

e1

e4

êe3

e2

Figure 2: Example of a decision of type d5(3) for a candidate q = {e1, e2, e3}. The top part shows the planned shifts with the
uncovered demand block in red. The bottom part shows the employee shifts after re-scheduling

3.1 A single disruption

Let us consider a minor disruption defined by (ê, ĥ, ŝ, l̂, p̂). The proposed heuristic is based on an enumeration

of all possible candidates for all applicable decision types. It is described in Algorithm 1. In this algorithm, d∗

and q∗ indicate the best decision type and the best candidate of this type, respectively, yielding an estimated

cost increase of ∆∗. When building the set of candidates for a decision type in Step 4, we check for each

candidate that the modified shift s of an employee e in this candidate belongs to S ĥe and that constraints (3)

and (5) remain satisfied. In Step 6, the computation of the cost increase estimate ∆q
d for a candidate q

depends on the decision type d as discussed below. Note that, for a given disruption, one can restrict in

Step 3, the set of decision types that can be applied. For instance, if the uncovered demand block lasts only

30 minutes, then decision type d2 might not be interesting given that a guaranteed minimum time largely

exceeding 30 minutes might have to be paid. Furthermore, observe that the algorithm can easily be adapted

to output not only the best found decision, but several decisions from which the manager can choose the one

he/she prefers.

Algorithm 1 Re-scheduling heuristic

1: Given a minor disruption (ê, ĥ, ŝ, l̂, p̂)
2: Set ∆∗ :=∞, d∗ := NIL, q∗ := NIL
3: for each decision type d ∈ D do
4: Build the set of candidates Qd(ê, ĥ, ŝ, l̂, p̂)

5: for each candidate q ∈ Qd(ê, ĥ, ŝ, l̂, p̂) do
6: Estimate the cost increase ∆q

d
7: if ∆q

d < ∆∗ then
8: ∆∗ := ∆q

d, d∗ := d, q∗ := q
9: Return (∆∗, d∗, q∗)
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The formulas used to compute the cost increase estimates ∆q
d are derived from the following linear

programming theory. Let us rewrite model (1)–(11) in the following compact form:

(P) min
x

c>x

subject to: Ax = b

x ∈ Nn,

where x is the vector of all n decision variables, c is the vector of the corresponding cost coefficients, A is the

constraint coefficient matrix, and b is the constraint right-hand side vector. Denote by R the linear relaxation

of P . Let B be an optimal basis for R and write A ≡ [B,N ], where B and N are the submatrices associated

with the basic and nonbasic variables, respectively. Vectors x and c are also partitioned accordingly, i.e.,

x> ≡ [x>B , x
>
N ] and c> ≡ [c>B , c

>
N ]. Let be the vector of dual variables. Basis B yields the optimal solution

x∗ with x∗B = B−1b and x∗N = ~0 and is such that c>N − (π∗B)>N ≥ (~0)>, where (π∗B)> = c>BB
−1 is the

corresponding optimal dual solution. The cost of these primal and dual solutions is z∗ = c>Bx
∗
B = (π∗B)>b.

From the linear programming sensitivity analysis theory, we know that basis B may remain optimal for a

perturbed model obtained by slightly modifying the right-hand side vector b, i.e., by replacing b with b+ δb,

where δb is a perturbation vector. In this case, the modified primal solution is given by x̃∗B = B−1(b+ δb) =

x∗B +B−1δb and its cost by z̃∗ = c>Bx̃
∗
B = z∗ + (π∗B)>δb. The cost increase yielded by perturbation vector δb

is, thus, equal to z̃∗ − z∗ = (π∗B)>δb.

For a candidate q of the decision type d, we compute the cost increase estimate as follows:

∆q
d = γd + (π∗B)>δbqd, (12)

where the perturbation vector δbqd is defined according to the shift variables X ĥ
es, e ∈ Eq ∪ {ê}, s ∈ S ĥe ,

switching either from one to zero or from zero to one in the decision associated with candidate q. More

precisely, let Ah
es be the column of matrix A associated with a variable Xh

es. Furthermore, let Zq
d and Z̄q

d

be the sets of the indices (e, s) of the shift variable X ĥ
es switching from one to zero and from zero to one,

respectively. Then,

δbqd =
∑

(e,s)∈Z̄q
d

Aĥ
es −

∑
(e,s)∈Zq

d

Aĥ
es. (13)

We believe that the estimate provided by (12) is good because we have observed that the integrality gap

yielded by model (1)–(11) is very small (see Table 1) and, thus, xB and the optimal solution of P are quite

similar. Furthermore, given that the considered disruption is minor, the norm of δb is small and a large

number of the columns forming the basis B should remain in the optimal basis of the perturbed model.

In the rest of this section, we present the explicit formula (12) for each decision type d ∈ D. We denote

by π
(2)
eh , π

(4)
e , π

(5)
eh , and π

(5)
pw the computed optimal dual values associated with constraints (2), (4)–(5),

respectively. We also define π
(2)
e0 = π

(5)
e0 = 0 for all e ∈ E .

Decision type d1: For a candidate q of this type, shift ŝ for the late employee ê is replaced by a shift obtained

from ŝ by omitting the uncovered demand block. Hence, employee ê works l̂ periods less and starts l̂ periods

later than planned. To cover the uncovered block, the end of the shift s of an employee e is extended by

te = l̂ + bŝ − fs − 1 periods, yielding an additional over-covering for job wŝ in each period from fs + 1 to

bŝ − 1 if bŝ − fs ≥ 2. Consequently, the cost increase estimate is given by

∆q
d1

= γd1 + l̂π
(4)
ê − teπ

(4)
e − l̂π

(5)

ê,ĥ−1
+ teπ

(5)

e,ĥ
+

bŝ−1∑
p=fs+1

π(5)
pwŝ

.
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Decision type d2: For a candidate q of this type, shift ŝ for the employee ê is also replaced by a shorter shift

that omits the uncovered demand block. The uncovered block is then covered by a shift s of an employee e

that was assigned to a day off on day ĥ. This shift starts at period bŝ and lasts l̂ periods. In practice, such a

decision type is admissible only if l̂ is greater or equal to the minimum number of periods in a feasible shift.

For this decision, the cost increase estimate expresses as:

∆q
d2

= γd2
− π(2)

eĥ
+ l̂π

(4)
ê − l̂π

(4)
e − l̂π

(5)

ê,ĥ−1
+ (fŝ + 1 + nR)π

(5)

e,ĥ
− bŝπ(5)

e,ĥ−1
.

Note that, because a day off on day ĥ is planned for employee e, the dual value π
(2)

eĥ
is equal to 0 and the

first term can be omitted.

Decision type d3: For such a decision candidate q, the shift ŝ of employee ê is switched with a shift s of

an employee e. Consequently, the time worked by employee ê (resp. e) decreases by lŝ − ls (resp. ls − lŝ).
On day ĥ, the start and end times of the shifts assigned to employee ê and e are also modified yielding the

following cost increase estimate:

∆q
d3

= γd3
+ (lŝ − ls)π(4)

ê + (ls − lŝ)π(4)
e + (fs − fŝ)π(5)

ê,ĥ
− (bs − bŝ)π(5)

ê,ĥ−1
+ (fŝ − fs)π(5)

e,ĥ
− (bŝ − bs)π(5)

e,ĥ−1
.

Decision type d4(η): A candidate q of type d4(η) is a subset of m employees e1, . . . , em assigned on day

ĥ to shifts s1, . . . , sm, respectively, such that m ≤ η, wsj = wŝ for all j ∈ {1, . . . ,m}, fsj < bsj+1 for all

j ∈ {1, . . . ,m − 1}, fs1 > p̂, and fsm < bŝ. These employees are re-scheduled to new shifts s∗1, . . . , s
∗
m,

respectively. Thus, their work time decreases by lsj − ls∗j , j ∈ {1, . . . ,m} and their shift start and end times

are modified. Furthermore, the new shifts can yield an additional over-covering for job w in some periods.

The set of these periods are denoted PV
q . For this candidate, the cost increase estimate is given by:

∆q
d4

= γd4
+ l̂π

(4)
ê +

m∑
j=1

[
(lsj − ls∗j )π(4)

ej + (fs∗j − fsj )π
(5)

ej ,ĥ
− (bs∗j − bsj )π

(5)

ej ,ĥ−1

]
+
∑

p∈PV
q

π(5)
pwŝ

.

Decision type d5(η): For this type, a candidate q is an ordered subset of m employees e1, . . . , em assigned on

day ĥ to shifts s1, . . . , sm, respectively, such that 2 ≤ m ≤ η, wsj = wŝ for all j ∈ {1, . . . ,m}, bsj ≥ bŝ for all

j ∈ {1, . . . ,m}, and maxj∈{1,...,m} bsj ≥ bŝ + l̂. Setting e0 = ê and s0 = ŝ, shifts s0, . . . , sm−1 are reassigned

to employees e1, . . . , em, respectively, and shift sm to employee e0 (assuming bsm ≥ bŝ + l̂). Therefore, the

estimate of the cost increase for candidate q is equal to:

∆q
d5

= γd5
+

m∑
j=0

[
(lsj − lsj−1

)π(4)
ej + (fsj−1

− fsj )π
(5)

ej ,ĥ
− (bsj−1

− bsj )π
(5)

ej ,ĥ−1

]
,

where j − 1 is assumed to be equal to m when j = 0.

Given that the number of candidates for decision type d5(η) can be large, the problem of finding the best

decision of this type can be formulated as a network flow problem. Let G = (N ,A) be a network, where N
and A are its node and arc sets, respectively. In N , there is a node for e0 = ê and for each employee e that

is scheduled to work a shift s ∈ S ĥe on day ĥ such that ws = wŝ and bs ≥ bŝ. Let nN be the number of these

latter employees that we denote ei, i ∈ {1, . . . , nN}. Their respective shifts are denoted si, i ∈ {1, . . . , nN}.
In A, there exists an arc between every pair of nodes ei and ej if employee ei can be assigned to shift sj .

This arc (ei, ej) represents the re-scheduling of employee ei to the shift sj and bears a cost

cij = (lsi − lsj )π(4)
ei + (fsj − fsi)π

(5)

ei,ĥ
− (bsj − bsi)π

(5)

ei,ĥ−1
.

Figure 3 shows an example of a network G where nN = 4. This network is almost complete: only the arcs

(e0, e1) and (e4, e2) are missing. These arcs may not exist because, for example, shift s1 begins too early for

the late employee e0 and shift s2 ends too late for employee e4 in order to respect the minimum rest time

between days ĥ and ĥ+ 1.
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Figure 3: Exemple of a network (with nN = 4) used for decision type d5(η)

Given a network G, the problem of finding the best decision of type d5(η) consists of finding a least-cost

elementary circuit passing through node e0 and containing at most η arcs. This problem can be solved using

dynamic programming or integer programming. For our tests, we chose integer programming. The computed

optimal circuit indicates the employees involved in the decision and the switching order of their corresponding

shifts. The cost increase estimate is given by the sum of the costs of the arcs forming this circuit plus the

managerial cost γd5
.

In Algorithm 1, decision type d5(η) is, therefore, treated differently than the other types and omitted

from the loop in Step 3. After this loop, the integer linear program based on network G is constructed and

solved using a commercial mixed-integer programming solver. The cost increase estimate is then compared

to the best one found for the other types.

It should be noted that the the minimum rest time constraints (5) are often not binding in practice and

their corresponding dual values π
(5)
e,h are, thus, often equal to 0. To speed up the proposed heuristic, we have

decided to omit the terms involving these dual values in all cost increase estimates presented above.

3.2 A sequence of disruptions

To solve the personnel re-scheduling problem, we proposed in the previous section a heuristic that is based

on the dual values obtained when solving the personnel scheduling problem, that is, when planning the ini-

tial schedule. Typically, more than one minor disruption occurs during a week. Hence, we can apply the

heuristic described in Algorithm 1 for each disruption as they occur. However, when solving the personnel

re-scheduling problem for the second and subsequent disruptions, the dual values derived from the initial

personnel scheduling problem are not accurate anymore given that the schedules of some employees have

changed when resolving the previous disruptions. In fact, the dual values should be updated after each

disruption so that they can reflect the schedule changes. Solving an updated personnel scheduling problem

might not be applicable, for example, when there is not enough time between two disruptions. Furthermore,

this personnel scheduling problem would require additional constraints to enforce the current schedule, yield-

ing a very different dual solution. In this section, we propose a simple procedure to update the dual values

without solving a personnel scheduling problem.
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The formulas used to estimate the cost increase of each candidate of each decision type involve the dual

variables π
(4)
e , e ∈ E , and π

(5)
pw , p ∈ P, w ∈ W. Observe, however, that for a given minor disruption

(ê, ĥ, ŝ, l̂, p̂), not all decisions may yield additional over-coverings and, if this occurs, the additional over-

coverings take place in between periods p̂ and bŝ for task wŝ. Consequently, most probably, only the dual

values π
(5)
pw for a period p ∈ [p̂ + 1, bŝ−1] and task wŝ can be affected by this disruption. Given that most

subsequent disruptions will become known later than bŝ or will involve a task w 6= wŝ, there is no need to

update the dual values π
(5)
pw , p ∈ P, w ∈ W. The proposed procedure, thus, concentrates on the dual values

π
(4)
e , e ∈ E .

A statistical study allowed us to assume that there exists a real function ψ such that, for each employee

e ∈ E , we have π
(4)
e w ψ(Le), where Le =

∑
k∈KL Lk

e is the total time worked by employee e in the current

solution. We propose to find a function ψ̃ to approximate function ψ. Given that the shape of ψ is unknown,

we resort to a nonparametric regression method to determine ψ̃, namely, the Multivariate Adaptive Regression

Splines (MARS) method introduced by Friedman [8] in 1991. To the best of our knowledge, this method

has never been used to update dual values. To approximate a real function f(x1, . . . , xn) of one or several

independent variables, the MARS method assumes that the approximate function f̃ belongs to a vectorial

space generated by a set of basis functions. These basis functions can take the form of a constant, a linear

spline (x 7→ (x−t)+ where t is a constant and the + subscript indicates a zero value for a negative argument),

a quadratic spline (x 7→ (x− t)2
+) and a product of these functions. This vectorial space is larger than the one

used for parametric regression methods, which may explain its efficiency with respect to classical regression

methods. The MARS method determines a model for the approximate function f̃ in two phases. First, it

selects iteratively the basis functions. Second, it eliminates iteratively the components that do not have a

large impact on the estimation error.

In our case, to find an approximate function ψ̃, we consider the set of sample points {(Le, π
(4)
e ) | e ∈ E}

obtained from the linear relaxation of the initial personnel scheduling problem. Then, we apply the MARS

method on this set of points to yield a function ψ̃ such that π
(4)
e w ψ̃(Le) for all e ∈ E . Given this approximate

function, the dual values are updated before resolving each disruption occurring during the same week except

the first one. The decision made to resolve disruption k modifies the schedules of a subset of employees

denoted Ek and incurs a variation of λke in the total number of periods worked by employee e ∈ Ek. Before

resolving each disruption k ≥ 2, the dual value update is performed as follows:

(
π(4)
e

)k
=

{
ψ̃(Le +

∑k−1
i=1 λ

i
e) if e ∈ Ek−1(

π
(4)
e

)k−1
otherwise,

where
(
π

(4)
e

)k−1
, e ∈ E , are the dual values used to solve disruption k − 1 and

(
π

(4)
e

)1
= π

(4)
e , e ∈ E .

4 Computational experiments

To assess the efficiency of the re-scheduling heuristic described in Algorithm 1 and of the procedure updating

the dual values introduced in Section 3.2, we conducted intensive computational experiments. The results

of these experiments are reported in Section 4.2 for the single-disruption case and in Section 4.3 for the

multiple-disruption case. Beforehand, we described in Section 4.1 the datasets used for these tests and how

the disruption scenarios were generated.

All algorithms were implemented in C++ and all integer programs were solved using the CPLEX MIP

solver, version 12.6.1.0. All tests were executed on a Linux machine equipped with an 8-core Intel Core i7

processor clocked at 3.4GHz and a RAM of 16Gb.

4.1 Datasets and disruption scenarios

To perform our tests, we use real-world datasets provided by our industrial partner. The characteristics of

these data sets are given in Table 1, together with the integrality gaps obtained by solving model (1)–(11).
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These gaps are very small and support our assumption that the dual values derived from the linear relaxation

solution carry valuable information with respect to the integer solution. All these data sets consider a one-

week horizon divided into 15-minute periods.

Table 1: Characteristics of the datasets

Dataset No. employees No. jobs Integrality gap (%)

I1 15 5 0
I2 25 5 < 10−3

I3 29 6 0
I4 32 3 < 10−3

I5 49 7 < 10−3

I6 95 7 < 10−3

I7 191 44 < 10−3

For the single-disruption case, our tests focused on one decision type at a time. For each type d ∈ D and

each dataset Ik, k ∈ {1, . . . , 7}, 30 minor disruptions (ê, ĥ, ŝ, l̂, p̂) were generated as follows. First, day ĥ is

selected using a uniform distribution over H. Second, employee ê is drawn from a uniform distribution over

the set of employees working on day ĥ. Shift ŝ corresponds to the shift worked by employee ê on day ĥ.

Third, the length of the lateness l̂ in number of periods is chosen using another uniform distribution in

the interval [2, lŝ − 4]. Fourth, the period p̂ at which the manager learns that employee ê will be late is

drawn from a uniform distribution in the interval starting at the beginning of day ĥ and ending at period

bŝ − 1 if d ∈ {d1, d4(η)}. For the other three decision types, period p̂ does not impact on the optimal

decisions as long as it provides enough time for an employee to reach work from home. Finally, the set of

candidates Qd(ê, ĥ, ŝ, l̂, p̂) is built. If it contains less than three candidates, the disruption is rejected because

the corresponding re-scheduling problem is considered too simple and, after removing employee ê from the

possible choices on day ĥ, the process is repeated from the second step to find a replacing disruption on

day ĥ.

For the multiple-disruption case, we also consider one decision type at a time, i.e., all disruptions will

be resolved using the same decision type. For each type d ∈ D and each dataset Ik, k ∈ {1, . . . , 7}, we

generated 30 sequences of minor disruptions. To determine each sequence, we first draw a number of potential

disruptions nD from a uniform distribution in [2, 50]. Then, for each j ∈ {1, . . . , nD}, we try to generate

a minor disruption as in the single-disruption case described above, except that there is no repetition if

the disruption is rejected, i.e., if the candidate set contains less than three candidates. Every time that a

disruption (ê, ĥ, ŝ, l̂, p̂) is accepted, we force the next disruption to occur later than at period bŝ by removing

from the possible choices all days h < ĥ and, if day ĥ is drawn again, all employees e working a shift s on

day ĥ such that bs ≤ bŝ.

4.2 Computational results for the single-disruption case

As mentioned above, we tested each decision type d ∈ D separately. This allows to see if the cost increase

estimate computed by the re-scheduling heuristic is accurate for each type individually. For each decision

type, 30 disruptions are generated for each dataset, yielding a total of 210 test instances for each type. For

decision type d4(η), we set η = 2 because it is difficult to find more than two employees in a candidate. For

type d5(η), we chose to set η =
∣∣∣Qd3(ê, ĥ, ŝ, l̂, p̂)

∣∣∣ for a disruption (ê, ĥ, ŝ, l̂, p̂), allowing the largest flexibility

in this case. Note that, because we do not compare decisions of different types, the managerial costs γd,

d ∈ D, are irrelevant and have been set to 0.

Consider a decision type d ∈ D and an instance for this type whose disruption is defined by (ê, ĥ, ŝ, l̂, p̂).

Let q∗ ∈ Qd(ê, ĥ, ŝ, l̂, p̂) be a candidate yielding the least cost increase estimate ∆q∗

d for this instance. To

assess the quality of the corresponding decision, we will compare it to the decisions yielded by two other

methods for addressing the same disruption, namely, a greedy and an exact method.
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The greedy method corresponds to a simple procedure that might be used in practice by a manager who

does not rely on an algorithm to resolve a disruption. The candidate qG ∈ Qd(ê, ĥ, ŝ, l̂, p̂) returned by this

method depends on the decision type:

d1: Choose the candidate (an employee) whose shift ends the latest before bŝ. If several candidates end at

the same period, then choose the one with the least working time during the horizon.

d2: Choose the candidate (an employee having a day off) with the least working time during the horizon.

d3: Choose the candidate whose shift begins the earliest after bŝ+ l̂−1, i.e., the last period of the uncovered

demand block.

d4(η): Choose the same candidate as for type d1.

d5(η): Choose the same candidate as for type d3.

The exact method is based on the assumption that the disruption is resolved by modifying shifts on day ĥ

only but the manager may revise the employee schedules for the rest of the horizon at the end of day ĥ.

Indeed, this often occurs in practice because the decision made in real time to address a disruption may

bring an employee in overtime if he/she works the rest of his/her scheduled shifts. The manager may want

to cut this overtime as much as possible. In this case, schedule changes affecting one or several employees are

applied. To fully test the robustness of the decisions proposed by our re-scheduling heuristic, we assume for

our tests that these changes might impact all employees. Consequently, the exact method consists of solving

a personnel scheduling problem (through model (1)–(11)) restricted as follows. All planned shifts scheduled

on a day prior to ĥ are fixed. On day ĥ, all planned shifts starting before period p̂ are also fixed, while the

others are considered except shift ŝ. On day ĥ, we also consider all shifts associated with a candidate in

Qd(ê, ĥ, ŝ, l̂, p̂). Finally, all shifts, planned or not, are considered for the days after day ĥ.

To compare fairly the decisions proposed by the three methods, we produced two new solutions, one from

each decision imposed by the re-scheduling heuristic and the greedy heuristic. These new solutions were

obtained by fixing the corresponding decision on day ĥ and by re-optimizing the rest of the week as in the

exact method. Let σi, i = R,G,E, be the solutions derived from the re-scheduling heuristic (i = R), the

greedy heuristic (i = G), and the exact method (i = E). Furthermore, for i = R,G,E, let zd(σi) be the cost

of solution σi and ζid be the cost increase between zd(σi) and the cost of the initial planned solution.

Given the large number of results obtained (3 methods, 5 decision types and 210 instances for each

method and type), we present them in an aggregate form which allows to highlight the performance of the

re-scheduling heuristic for each decision type. For each decision type d ∈ D, we compare the values ζRd , ζGd ,

and ζEd for each instance and classify this instance into one of the three following categories. If ζRd = ζEd ,

we say that the decision proposed by re-scheduling heuristic is optimal for this instance. If ζEd < ζRd ≤ ζGd ,

we say that the re-scheduling heuristic obtained a success. Otherwise (ζRd > ζGd ), the result is categorized as

a failure.

The results by decision type and success category are reported in Figure 4, where the last subfigure also

gives the results when aggregating all decision types. For each decision type d ∈ D, the average number of

candidates considered per instance, denoted µd, is also indicated and varies between 4.7 and 6 × 107. The

results are impressive: the re-scheduling heuristic computes an optimal decision for more than 95% of the

instances and yields a failure in less than 2% of the cases. We observed that a large number of failures occur

for instances based on dataset I3. For this dataset, the dual values π
(4)
e , e ∈ E , are more or less the same for

all employees working more than 32 hours per week. Hence, they are not always sufficient to identify the right

decision when several of these employees are part of several candidates. On the other hand, the observed

computational times for the re-scheduling heuristic are sufficiently small to use this heuristic in real time.

Indeed, for the 1050 instances, the average computational time is less than one second. The computational

times for the greedy heuristic are also very small, while the exact method can require computational times

that are much larger for certain instances (more than 10 minutes in some cases).
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To better compare the re-scheduling heuristic with the greedy heuristic, we also computed, for each

decision type d ∈ D, the pourcentage of the instances for which ζRd < ζGd . The results are presented in

Table 2. We observe that, for the decision types d1, d2 and d4, the re-scheduling heuristic outperforms the

greedy heuristic for a relatively small number of instances but not negligible. However, for the other two types

(d3 and d5), the former heuristic clearly dominates the latter. It should be noted that, when the solution

provided by the greedy heuristic is worse than the one computed by the re-scheduling heuristic, it can be of

very poor quality, while the opposite rarely occurs. The results reported in the next section will support this

statement.

Table 2: Pourcentage of instances for which ζRd < ζGd for each decision type d

d1 d2 d3 d4 d5

15.7 11.4 36.7 14.8 47.6

Optimal Success Failure

97.6%

2.4% 0%

Type d1 (µd1 = 5.6)

P
er
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n
ta

g
e

Optimal Success Failure

97.1%

0.5% 2.4%

Type d2 (µd2 = 4.7)

P
er
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n
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g
e

Optimal Success Failure

94.3%

1.9% 3.8%

Type d3 (µd3 = 6.1)

P
er

ce
n
ta

g
e

Optimal Success Failure

94.8%

5.2%
0%

Type d4 (µd4 = 7.9)
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Optimal Success Failure

91.8%
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Figure 4: Success rate by category of success for each decision type
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Finally, in Figure 5, we report additional results to evaluate if the ranking of the decisions performed

by the re-scheduling heuristic based on the cost increase estimate corresponds to the ranking of the costs

obtained after re-optimizing the schedule for the rest of the week. These results focus on the 30 instances

tested for decision type d4(2) and dataset I6 (similar results were observed for the other instances and

datasets). For each of these instances (numbered from 1 to 30 on the horizontal axis), we indicate the costs

z(σR
j ), j = 1, 2, 3, of the three solutions σR

j which are derived from the best three candidates (in this order)

identified by this heuristic. Observe that, for all instances except the third one, the order of the decisions is

preserved, that is, z(σR
j1

) ≤ z(σR
j2

) if j1 < j2. Consequently, the cost increase estimate seems to be positively

correlated with the decision quality.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

29,000

29,100

29,200

29,300

29,400
z(σR

1 )

z(σR
2 )

z(σR
3 )

Figure 5: Cost of the three best solutions derived from the re-scheduling heuristic for decision type d4(2)

4.3 Computational results for the multiple-disruption case

For the multiple-disruption case, we compare three algorithms, namely, the re-scheduling heuristic without

updating the dual values, the re-scheduling heuristic with an update of the dual values after each disruption,

and the greedy heuristic. For each decision type and each instance, the experiment unfolds as follows. For

each disruption (treated in chronological order), the three heuristics and the exact method are applied to

propose a decision each. Three solutions derived from the decisions of the three heuristics are computed as

in the single-disruption case by fixing the decision for the disruption day and by re-optimizing the end of the

week as in the exact method. These solutions and that of the exact method are denoted σi, i = R,U,G,E

(U for re-scheduling with dual value updates). Their costs are denoted by zd(σi), i = R,U,G,E, and we

compute the nonnegative cost difference zd(σi)− zd(σE), i = R,U,G, of each heuristic solution with respect

to the exact solution. Next, the shift modifications on the day of the disruption suggested by the exact

method are implemented before moving on to the next disruption. We denote by Γi
d, i = R,U,G, the sum of

the cost differences incurred over all disruptions by the re-scheduling heuristic without and with dual value

updates and the greedy heuristic, respectively.

Recall that, for each decision type and each dataset, 30 instances were generated. These instances differ

by the sequence of disruptions considered. The results of our experiments are reported in Table 3. For each

dataset and each decision type, this table specifies the average and the maximum number of disruptions per

instance (nDavg and nDmax), the average and the maximum computational time (Tavg and Tmax) in seconds to

resolve one disruption by the re-scheduling heuristic with dual value updates (including the time to update the

dual values), the average sum of the cost differences obtained by the re-scheduling heuristic with and without

dual value updates (ΓR
d and ΓU

d ), and the average sum of the cost differences of the solutions computed by

the greedy heuristic (ΓG
d ).

From these results, we make the following observations. The number of disruptions per instance tends to

increase with the dataset size (number of employees). This is due to the rule that a disruption is accepted only



16 G–2017–27 Les Cahiers du GERAD

Table 3: Results for the multiple-disruption case

Dataset
Decision

nD
avg nD

max
Re-scheduling Greedy

type Tavg (s) Tmax (s) ΓR
d ΓU

d ΓG
d

I1

d1 2.7 4 0.07 0.12 0 0 0
d2 3 3 0.03 0.06 0 0 0
d3 2 2 0.05 0.07 0.3 1 13.9
d4 2.6 4 0.05 0.09 0 0 0
d5 2.3 3 0.05 0.11 5.1 5.7 11.4

I2

d1 2.2 4 0.06 0.09 0 0 0.8
d2 6.1 9 0.02 0.03 22.2 0 0
d3 2.1 4 0.04 0.05 1.4 0.7 44.1
d4 2.2 4 0.04 0.10 0 0 0.8
d5 3.3 5 0.05 0.17 8.5 4.9 38.3

I3

d1 2.4 4 0.19 0.21 0 0 0
d2 7.9 12 0.19 0.21 0 0 0
d3 2.3 5 0.23 0.25 8.6 1.5 2.8
d4 2.1 3 0.21 0.27 3.2 3.6 4.1
d5 5.3 8 0.20 0.30 7 1.2 4

I4

d1 2.5 6 0.10 0.15 0 0 0
d2 5 7 0.05 0.07 4.5 0 1.5
d3 2.7 5 0.07 0.10 0.1 0.1 4.4
d4 4.9 10 0.08 0.19 1.8 0.9 2.8
d5 4.6 8 0.09 0.21 2.3 1.2 6

I5

d1 2.2 4 0.18 0.27 0.2 0.2 0.2
d2 4.7 7 0.15 0.17 3.5 0 0.1
d3 3.5 7 0.21 0.22 4.5 3.0 22.9
d4 2.2 4 0.21 0.29 0.2 0.1 0.2
d5 6.1 11 0.24 0.38 11.9 11.3 33.5

I6

d1 2.4 4 0.29 0.35 1.9 1.1 2.9
d2 17.4 24 0.11 0.13 26.7 8.1 37
d3 6.1 13 0.20 0.23 4.7 2.5 56.6
d4 2.7 5 0.33 0.61 0.7 0 2.9
d5 9.6 15 0.34 0.74 30.7 11.6 56.5

I7

d1 7 14 1.42 1.59 11.8 3.1 18.7
d2 27.1 37 0.51 0.64 65.9 8.0 8.1
d3 8.5 18 1.22 1.29 21.1 4.5 38.7
d4 7.6 14 1.64 2.12 7.0 1.1 20.0
d5 17.9 28 1.54 2.29 33.3 4.1 45.3

if there are at least three candidates to resolve it. Concerning the computational times of the re-scheduling

heuristic with dual value updates, the results show that they are very acceptable, reaching a largest average

time of 1.64 seconds for datasets involving up to 191 employees. Now, comparing the values of ΓR
d and ΓU

d ,

we deduce that updating the dual values can be highly useful in several cases, especially for decision type

d5 for which a decision may impact several employees at the same time and, thus, there is a relatively high

probability that the schedule of the same employee be modified more than once during the week. We also

observe a large impact for decision type d2 where the number of hours worked by the employee who is asked to

work in a day off may change considerably. On the other hand, in certain cases (for instance, dataset I1 and

type d5), updating the dual values may slightly deteriorate the solution quality. This is not surprising given

that we are comparing heuristics. Nevertheless, the improvements obtained for several cases (for instance,

dataset I2 and type d2 or dataset I7 and type d5) are substantial.

Next, let us compare the values of ΓU
d and ΓG

d . In all cases, we get ΓU
d ≤ ΓG

d , showing the superiority of the

re-scheduling heuristic with dual value updates over the greedy heuristic. In certain cases, the value of ΓG
d is

much larger than the value of ΓR
d , indicating that the greedy heuristic can compute bad-quality solutions in

some cases. Note, however, that without updates, the re-scheduling heuristic does not always yield a better

average cost difference ΓR
d than that of the greedy heuristic ΓG

d . Finally, we observe that the average cost

difference with respect to the cost increase of the exact method is relatively small (recall that, for dataset I6,
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the total costs are around 29,100 according to Figure 5). This can be explained by the results obtained for

the single-disruption case which showed that the re-scheduling heuristic returns the optimal decision most

of the times. On average, the sum of the cost differences decreases by 73.3% when updating the dual values

between consecutive disruptions.

5 Conclusion

In this paper, we considered the personnel re-scheduling problem that must be solved in real time after the

occurrence of a minor disruption in a context where the employees can be assigned to a wide variety of

shifts, starting and ending at various times. To solve this problem, we propose a fast re-scheduling heuristic

that can handle five different types of decision. This heuristic is based on the dual values obtained when

solving in the planning phase the linear relaxation of the personnel scheduling problem. The computational

results obtained on 1050 instances derived from real-world datasets involving up to 191 employees showed the

efficiency of this re-scheduling heuristic. It computed in less than one second on average an optimal solution

for more than 95% of these instances. We also developed a procedure for updating the dual values after each

disruption when several disruptions must be dealt with during the same week. Additional computational

results showed the usefulness of this updating procedure which reduced the sum of the gaps between the

optimal value and the heuristic solution value by more than 73% in our tests.

Several research avenues can be pursued after this work, including the following two. First, in certain

companies, the planned personnel schedules are not necessarily computed by solving a mixed integer program.

They are rather determined manually from past schedules. In this case, no dual values are available and

designing an algorithm to determine accurate dual values would be a valuable complement to our work.

Second, the proposed re-scheduling heuristic is myopic in the sense that it considers only the current disruption

without anticipating future disruptions. Developing a stochastic personnel re-scheduling algorithm that

evaluate the expected future costs for each possible decision constitutes a challenging research topic.
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technique Montréal. In French.

[10] Kitada, M., Morizawa, K., 2013. A heuristic method for nurse rerostering problem with a sudden absence for
several consecutive days. International Journal of Emerging Technology and Advanced Engineering 3(11), 353–
361.

[11] Mahenhout, B., Vanhoucke, M., 2011. An evolutionary approach for the nurse rerostering problem. Computers
& Operations Research 38(10), 1400–1411.

[12] Moz, M., Pato, M. V., 2003. An integer multicommodity flow model applied to the rerostering of nurse schedules.
Annals of Operations Research 119(1-4), 285–301.



18 G–2017–27 Les Cahiers du GERAD

[13] Moz, M., Pato, M. V., 2004. Solving the problem of rerostering nurse schedules with hard constraints: New
multicommodity flow models. Annals of Operations Research 128(1–4), 179–197.

[14] Moz, M., Pato, M. V., 2007. A genetic algorithm approach to a nurse rerostering problem. Computers & Oper-
ations Research 34(3), 667–691.

[15] Pato, M. V., Moz, M., 2008. Solving a bi-objective nurse rerostering problem by using a utopic pareto genetic
heuristic. Journal of Heuristics 14(4), 359–374.
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