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Abstract: Facility layout is a well-known operations research problem that arises in various applications. The
multi-row layout is a challenging optimization problem where the task is to determine the optimal placement
of one-dimensional departments on a given number of rows. This paper is concerned with multi-row facility
layout problems in which all the departments have the same length. This is an important special case that
includes most multi-row facility layout applications from the literature. We prove two theoretical results
about the structure of optimal layouts, namely that only spaces of unit length are necessary to obtain an
optimal solution, and that exact expressions exist for the minimum number of such spaces that need to be
added so as to preserve at least one global optimal solution. Using these results we propose a binary linear
optimization model and a binary semidefinite optimization model for the problem, neither of which uses
continuous variables, which has a significant positive computational impact. Our computational experiments
show that our specially tailored approaches can handle much larger instances than other exact methods
applicable to this important problem class.

Keywords: Facilities planning and design, facility layout, mixed integer linear programming, semidefinite
programming, bundle method
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1 Introduction

Facility layout is a well-known operations research problem that arises in various applications. The task is to
determine an optimal placement of departments inside a plant according to a given objective function. This
function usually reflects the transportation costs (for the material flow) as well as the construction cost of an
associated material-handling system.

The exact solution of facility layout problems is generally extremely challenging even for relatively small
instances, see e.g. [9]. For this reason it is common to restrict the shape of the layout or of the associated
path system. For example, in the single-row facility layout problem (SRFLP), all the departments are placed
in a single row, i.e., on one side of a straight path. In this case there always exists an optimal solution such
that there are no spaces between neighboring departments. The SRFLP is well-studied. Currently instances of
the SRFLP with up to 42 departments can be solved to optimality in reasonable time [34]. For further details
on a variety of both exact methods and heuristics for the SRFLP we refer the reader to the surveys [8, 38, 40].

1.1 Multi-row facility layout and related problems

The multi-row facility layout problem (MRFLP) is an extension of the SRFLP in which the departments can be
placed in two or more parallel rows. In contrast to the SRFLP, the optimal layouts for MRFLP may include
spaces between neighboring departments in the same row or at the left margin of the rows.

Given d one-dimensional departments {1,...,d} = [d] with given positive lengths I,...,l, pairwise
non-negative weights w;; indicating the (material) flow between each pair ¢,j of departments, and a set
R :={1,...,m} = [m] of rows available for placing the departments, the objective of the MRFLP is to determine

1. an assignment r: [d] — R of departments to rows, and
2. a function p: [d] — R such that [p(i) — p(j)| > 5(I; + 1;) if 7(i) = r(j), i # j, i.e., horizontal positions
for the centers of the departments within each row without overlap,

so that the total weighted sum of the center-to-center distances between all pairs of departments is minimized.
The MRFLP can thus be formulated as the following optimization problem:

min Y wilp(i) - p(5)]
' i,5€[d]
1<J

st |p(i) —p(i) = 5L+ 1), @5 €ld, (@) =r(j), i # .

Note that the inter-row (vertical) distances between the departments are neglected in the above objective
function, and that each department can be placed next to another department without any clearance
restrictions. If |[R| = 2, then there are two rows of departments with a straight path between them. We denote
this important special case as the double-row facility layout problem (DRFLP). Figure 1 shows an example of a
layout with three rows and seven departments, where r(1) = r(2) = r(3) =1, r(4) =r(5) =2, r(6) =r(7) =3
and p(1) = p(4) =p(6) =1, p(2) =2, p(3) = p(5) = p(7) = 3.

Various applications and extensions of the MRFLP have been studied, see, e.g., [25, 31, 46, 48, 53, 54].
Somewhat surprisingly, the development of exact approaches to the MRFLP has received limited attention
in the literature. Heragu and Kusiak [30] proposed a nonlinear programming model and obtained locally
optimal solutions to the SRFLP and the DRFLP. More recently, Chung and Tanchoco [18] (see also Zhang and
Murray [52]) focused on the double-row problem and proposed a mixed integer linear programming (MILP)
formulation that was tested in conjunction with several heuristics. They solved instances with up to 10
departments within 10 minutes. Amaral [2] proposed an improved MILP formulation that solves instances
with up to 12 departments. Hungerldnder and Anjos [36] put forward a semidefinite programming (SDP)
approach for the general MRFLP that can solve instances with fewer than 12 departments to global optimality.
Recently Fischer et al. [23] were able to solve DRFLP instances with up to 16 departments to optimality by
iteratively using MILPs in an enumerative scheme.
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Figure 1: lllustration of a layout with three rows and seven departments.

Due to the challenging nature of the MRFLP, several simpler (but still NP-hard) variants of the MRFLP
have been considered in the literature. For example, in the space-free multi-row facility layout problem,
spaces between the departments or at the left margin of the rows are forbidden. The special case m = 2 of
space-free row layout is also known as the corridor allocation problem, and Hungerldnder and Anjos [33] used
an SDP approach that provides high-quality global bounds for space-free double-row instances with up to
15 departments and for space-free multi-row instances with up to 5 rows and 11 departments. Amaral [4]
proposed a MILP formulation for the corridor allocation problem that is able to solve space-free instances
with up to 13 departments. Recently Fischer et al. [23] were able to solve space-free double-row instances
with up to 16 departments.

The parallel row ordering problem [5, 23, 33| is again a special case of the space-free MRFLP with the
additional assumption that the assignment r of departments to rows is already given. Exact solutions for
instances with up to 25 departments can be determined by a MILP model in [23]. This MILP is also called
iteratively in the enumeration scheme of the currently best DRFLP solver [23]. An SDP approach [33] allows
deriving good lower and upper bounds for instances with two to five rows and up to 100 departments.

1.2 Multi-row facility layout with departments of equal length

This paper is concerned with the special case of the MRFLP with departments of equal length, denoted (MREFLP),
in which spaces are allowed, the row assignments are not given, and all department lengths are equal. The
MREFLP is also known as the equidistant MRFLP, where we set w.l.o.g. I; = 1, i € [d]. The MREFLP can also be
interpreted as an extension of the classical NP-hard [24] (weighted) linear arrangement problem [20], where at
most m nodes are assigned to one position. Hence the MREFLP is also NP-hard.

The case of SRFLP with departments of equal length (SREFLP) has been studied before, and it turns out
that the best models for the general SRFLP are also the best ones for the SREFLP [35]. This is not the case for
the MREFLP, and we show in this paper that it is possible to exploit the additional problem structure for the
development of tailored approaches.

Amaral [3] proposed an MILP formulation for the minimum duplex arrangement problem, which in our
terminology is denoted as DRFLP with departments of equal length (DREFLP). His approach exploits the sparsity
of the instances considered and is able to solve randomly generated instances with at most 10 departments (for
dense instances) to 20 departments (for sparse instances). Amaral’s MILP is closely related to models for the
NP-hard Quadratic Assignment Problem (QAP) that is known to be a particularly challenging combinatorial
optimization problem in practice. The QAP asks for an assignment of n facilities to n locations that minimizes
the sum of the distances between pairs of locations multiplied by the corresponding flows between pairs of
facilities. For further details see, e.g., the survey paper [43] and the book [15].

Most of the earliest applications for the MRFLP were motivated by QAP problems where the locations were
arranged on a regular grid, see [14, 21, 22, 26, 41, 44, 45, 49] among others. These QAPs are equivalent
to MREFLPs, where the flows between pairs of facilities correspond to the connectivities between pairs of
departments.
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1.3 Research contributions

This paper is concerned with the MREFLP and its main contributions are:

e A proof that the MREFLP always has an optimal solution on the integer grid. This implies that it suffices
to consider (multiple) spacing departments of unit length to obtain an optimal solution.

e Exact expressions for the minimum number of such spacing departments (as a function of the number
of departments and of rows) such that from an optimal solution of the resulting “space-free” problem, it
is possible to recover at least one global optimal solution for the MREFLP instance.

e An ILP model and an SDP model that are the first models for the MREFLP exploiting the fact that it
can be modeled using only binary variables. This fact follows from the above theoretical results, and
has a significant positive impact on the computational performance of the models. These models do not
assign a row to each department but ensure that there are at most m departments at each (horizontal)
integer position.

e Our computational experiments show that:

— For the double-row case we increase the size of the largest instances solved to optimality from 16
departments (not extremely sparse) [23] to 25 departments.

— For 3 < m <5 we increase the size of the largest instances solved to optimality from 8 depart-
ments [36] to 25 departments.

— We achieve optimality gaps smaller than 1% for DREFLP and smaller than 4% for MREFLP,
m € {3,4,5}, for instances with up to 50 departments.

1.4 OQutline

This paper is structured as follows. In Section 2 we state and prove our theoretical results on the structure
of optimal MREFLP layouts. In Section 3 we focus on the double-row case; we present an ILP model for it
in Subsection 3.1, an SDP model in Subsection 3.2, and these two models are extended to the multi-row
case in Subsection 3.3. In Section 4 we describe a suitable combination of optimization methods to obtain
both strong lower bounds and feasible MREFLP layouts using our proposed models. In Section 5 we report on
a computational study of all relevant exact approaches for the MREFLP. Section 6 concludes the paper and
proposes directions for future research.

2 The structure of optimal MREFLP layouts

The definitions of the MRFLP and the MREFLP allow the spaces between departments to be of arbitrary length.
Thus, most optimization models use continuous variables to model the distances between departments. In this
section we prove two theoretical results about the structure of optimal MREFLP layouts that allow to model
the MREFLP with binary variables only.

In Subsection 2.1 we show that the MREFLP always has an optimal solution on the integer grid. The key
insight here is that modeling the possible spaces between departments with spacing departments of unit length
preserves at least one optimal solution.

In Subsection 2.2 we prove exact expressions for the minimum required number of such spacing departments,
given the number of departments and of rows, to preserve at least one optimal solution.

These results are of interest because they reveal hitherto hidden structural properties of the MREFLP, and
in turn these properties can be used to improve the practical performance of our models in Sections 3 and 3.3.
These properties also allow improving other models applicable to the MREFLP [2, 18] by reducing the big-M
value in these models.
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2.1 A combinatorial property of MREFLP layouts on the integer grid

In this section we prove that the MREFLP always has an optimal solution on the integer grid. For a closely
related result on general MRFLP layouts, we refer to [36, Theorem 2].

Theorem 1 There is always an optimal solution to the MREFLP on the integer grid.

Proof. Let an optimal solution of the MREFLP be given. We define an integer grid such that the centers
of the leftmost departments are on a grid point. Next we divide the departments into two sets, a set S
containing those departments with their centers already on the integer grid, and a set T' containing the other
departments. We assume, w.l.o.g., that the indices of the departments in S are all smaller than the indices of
the departments in T, ie., i < j, Vi€ S, j€T.

Observe that there exists € > 0 sufficiently small so that we can move all the departments in T' simul-
taneously, either to the left or to the right, by a distance £. This holds because all departments have (the
same) integer length, and because the departments in S are arranged on the integer grid. The change in the
objective function from any such shift of the departments in 7" is given by

622 £ Z Wi — € Z Wij

€T JES, j<i JES, i<j

for a shift to the left, and by —¢ for a shift to the right, where i<j means that the center of department j is
to the right of the center of department ¢, and ¢ is chosen small enough such that no center of a department
in T traverses a grid point. Due to the optimality of the given layout, é has to be equal to zero because
otherwise a shift either to the left (§ < 0) or the right (6 > 0) would improve the objective value. Hence the
proposed shifting operation does not change the objective value.

Let us choose ¢ as the largest value such that the center of at least one department in 7" lies on a grid point
after the shifting operation (to the left or right). If we apply this shifting to the given optimal solution, we can
now move that department to the set S. Repeatedly applying this operation to the remaining departments
allows us to arrange all departments on the integer grid in at most n — 1 steps without changing the objective
value. U

Figure 2 depicts an MREFLP layout on the integer grid, where s denotes a spacing department and d;
denotes department ¢. For layouts satisfying the grid property, we say that department i lies in column j if
the center of i is located at the j** grid point. For example, department 5 lies in column 4 in Figure 2.

di| s |ds|ds|ds]s ' Rowl
dz d3 d5 d7 S

IV IV |

r==1=71

Figure 2: lllustration of the grid property of layouts.

We number the columns from 1 to d as for d departments obviously at most d columns are needed.
By Theorem 1 we can represent an optimal solution of the MREFLP by an assignment «: [d] — [d] of the d
departments to d different columns with the interpretation

a(i) =4, if department ¢ lies in column j, 4,5 € [d], (1)
where additionally at most m departments are assigned to each column j € [d], i.e.,
{i € [d]: a(t) =j} <m.

Note that the modeling approach in [3] builds directly on this assignment.
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For the remainder of the paper we restrict our analysis, w.l.o.g., to layouts satisfying the grid property.
This restriction is clearly advantageous from both a theoretical and a practical point of view. Note that the
grid property is automatically satisfied for the minimum duplex arrangement problem [3], the (weighted)
linear arrangement problem [16, 17, 20, 39] and its extension, where two or more nodes can be assigned to
the same position. By Theorem 1, these problems are all special cases of the MREFLP.

2.2 Exact expressions for the minimum number of spacing departments

We now consider the minimum number of spacing departments of length one, or simply spaces, that must be
added to an instance of the MREFLP so that after solving the problem with the added spaces, we can recover
at least one optimal solution for the original instance. Clearly this number is a function of the numbers of
departments and the number of rows. Since for given cost coefficients we do not have a priori knowledge
of the structure of optimal solutions, our function does not depend on the weights w;; other than on their
non-negativity.

We first state three additional assumptions that allow us to reduce the number of spaces required. We
then prove that Lemma 1 ensures that at least one optimal layout is preserved under these assumptions, i.e.,
there always exists an optimal solution o*: [d] — [d] that satisfies these three assumptions. Using Lemma 1,
we then prove Theorem 2 that gives exact expressions for the minimum number of spacing departments. We
conclude this section with two examples whose optimal layouts contain many spaces and hence the results of
Theorem 2 are tight.

Assumption 1 Columns that contain solely spaces can be deleted. Equivalently, if we number the columns
from 1 to d there exists k' € [d] such that each column with index at most &k’ contains at least one
department.

Assumption 2 If two nonempty neighboring columns together contain no more than m departments, then
all corresponding departments can be assigned to the left column, and the right column can be deleted.
Thus, with k&’ as in Assumption 1, we know that columns ¢ and ¢ + 1 with ¢ € [k’ — 1] contain at least
m + 1 departments.

Assumption 3 If d > 2m and the first and third columns contain in total at most m departments, then all
corresponding departments can be assigned to the third column, and the first column can be deleted.
An analogous argument holds for columns k' — 2 and &/, with &’ as in Assumption 1.

Figure 3 illustrates these assumptions: the left-hand side depicts a feasible layout and the right-hand side
depicts the adaptation of that layout so that the respective assumption holds. Note that the adaptations
cannot worsen the objective value of the layout.

a | [dsda] AR
Assumption 1: S 2 P Rl s 3 B I el -
d2| 1 ]ds da ds|
ar Tas [da[ds | Nrarara it
Assumption 2: B S il el ez 3 B S el -
d2 L dﬁ d2 d4 dG J
| [as]er] o [di [ds [z 1
Assumption 3: | 2 il > Gl It Sz A
dy |ds |da |de |ds d3 |da[ds |ds|

Figure 3: lllustration of Assumptions 1, 2, and 3.

Lemma 1 Let d,m € IN. Then there always exists an optimal solution a*: [d] — [d] of the MREFLP (satisfying
the grid structure) that assigns each department i € [d] to a column o*(i) € [d] that satisfies the following
properties:
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1.

2.

There exists a k' € [d] such that |{i € [d]: a*(i) =1} > 1 for alll € [d], | <K', and |{i € [d]: a*(i) >
kK +1} =0.

If {i € [d]: a*(i) = 5} > 0 and |{i € [d]: a*(i) = j+ 1} > 0 for some j € [d], j < d, then
Hie[d:a*@) =4} +{i€ld:a*(@)=7+1} >m+1.

3. Letd >2m. Then |{i € [d]: a*(i) > K + 1} =0 and |{i € [d]: o™ (i) = k'}| > 0 for some k' € [d] imply

H{i€[d: a*(i) =k — 2} + |{i € |d]: a*(z) =K'} > m+ 1. Furthermore, |{i € [d]: a*(i) =1} + |{i €
[d]: a*(i) =3} >m+ 1.

Proof. Let d,m € IN and o be an optimal solution of the MREFLP satisfying the grid structure.

1.

If |{i € [d]: a*(i) = j— 1} = 0 and |{i € [d]: a*(i) = j}| > 1 for some j € [d], then the solution
a': [d] = Nwith /(1) = a*(1) if a*(1) < j and o/(I) = a*(I) — 1 otherwise is also optimal for the MREFLP
because the distances between departments are not increased. The repeated deletion of empty columns
proves the statement.

. Assume that |[{i € [d]: o*(0) = j} + [{i € [d]: a*(?) = j + 1}| < m for some j € [d],j < d. Then

o': [d] = N with /(1) = o*(]) if a*(I) < j and /() = a*(I) — 1 otherwise is a feasible multi-row
assignment and it is optimal because all distances are not increased (some are even decreased) and
there are at most m departments in each row. Applying this approach repeatedly we get an optimal
assignment & such that |[{i € [d]: a(i) = j}| > 0 and |{i € [d]: a(i) = j+ 1}| > 0 for some j € [d — 1]
imply [{i € [d]: &(i) € {j,j + 1}}| > m.

Assume w.l.o.g. that there exists an optimal solution o* of the MREFLP and k' € [d] such that |{i €
[d]: a*(i) = K'}| > 1,|{i € [d]: a*(i) > k' + 1}| = 0. By the previous statements we may assume
i€ [d: a*(i) =k —1} > 0and —{i € [d]: a*(¢) € {k' —1,K'}}| > m. If in addition |{i € [d]: a*(i) €
{K' = 2,k}}| < m, the solution «': [d] — N with o/(I) = o*() — 2 if a*(l) = k¥’ and /(1) = a*(1)
otherwise is also optimal because all distances between departments are not increased.

O

Theorem 2 The minimum number of columns sufficient to preserve at least one optimal layout for an instance
with d departments is

1.
2.

3.
4.

equal to 1 if d < m, and equal to 2 if m < d < %m—i— %;
equal to f%} — 1 for the DREFLP with d > 9;

equal to Lf—_‘ilJ for the MBEFLP with an odd number of rows m; and

equal to or at most 21 + 1 for the MREFLP with an even number of rows m and d € {'§ +24 (m +1)(I —
1),...., 5+ 1+ (m+1)l} for somel € N,

Proof. We prove each of the four claims in turn:

e Proof of 1: Let d,m € N be given. If d < m, it is clear that arranging all departments in one column

leads to a cost of zero. Furthermore, as long as m < d < %m + % there exists an arrangement such
that only two columns are used because, w.l.o.g., we can assume that the first two columns contain
m + 1 departments and that the second column contains at most [ ] of these departments. Then the
remaining departments could also be included in one of the first two columns, either all in the second
column or also some of them in the first column.

Proof of 2: Let m = 2, d > 9 and let a* be an optimal solution of the DREFLP satisfying the grid structure
and the properties given in Lemma 1. Then there exists a k' € [d] such that |[{i € [d]: a*(i) =1}| > 1
foralll € [d], | < kK and |{i € [d]: a*(i) > k'}| = 0. (Note: d > 9 implies ¥’ > 5.) By Lemma
1 the solution a* satisfies [{i € [d]: a*(i) € {j,5 + 1}}| > 3 for all j € [d], j < k', as well as
Hield: a*(i) € {1,2,3}}| > 5and [{i € [d]: a* () € {K'—2,k'—1,k'}}| > 5. We consider two cases for

k'. If (k' — 6) mod 2 = 0, then the first &’ columns contain at least 10+ (k' —6)3 = 3k’ + 1 departments.
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Otherwise, if (k' — 6) mod 2 = 1, then the first &' columns contain at least 5 + (k' — 3)2
departments. Now, assume that k' > [%1 Then the first £’ columns contain at least [(% [%1
departments, a contradiction. The claim follows.

e Proof of 3: Let m be odd and d > 2m. Let o* be an optimal solution of the MREFLP that satisfies the
properties given in Lemma 1. By Lemma 1 there exists k¥’ € [d] such that |{i € [d]: a*(¢) =1}| > 1
for all I € [d], | < K and |{¢ € [d]: a*(i) > k' + 1}] = 0. Then we know by Lemma 1 that
i e [d: a*(i) =4} +|{i € [d]: a*(i) = j+ 1} > m+1for all j € [d], j < k. Suppose now that
E > {mg—flJ, then the &’ columns contain at least 251 - &/ > mT'H({mQ—ﬁlJ + 1) > d departments, a
contradiction.

e Proof of 4: Let m be even and d > 2m. Let o™ be an optimal solution of the MREFLP that satisfies the
properties given in Lemma 1. Assume d € {F +2+ (m+1)(1—1),..., 5 +1+ (m+1)l} for some [ € IN.
By Lemma 1 there exists a k' € [d] such that |{i € [d]: a*(i) = m}| > 1 for all m € [d], m < k' and
{i € [d]: a*(i) > k' +1}| = 0. Then we know by Lemma 1 that |{i € [d]: o*(i) = j}| +|{i € [d]: o*(i) =
J+ 1} >m+1forall jed], j <k'. Assume now that k' > 2] + 2. Then the first k£’ columns contain
at least 22 (m+1) = (m+ 1)l + m+1> (m+ 1)l + 2 + 1 > d departments, a contradiction.

O
Table 1 gives exact values of the minimum number of columns ¢ for instances with 2, 3 and 4 rows and up
to 16 departments. Note that ¢ - m — d spaces are needed for the respective row-department combinations.

Table 1: Minimum number of columns required for d < 16 and m € {2,3,4}.

d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2rows 1 1 2 2 3 4 4 5 5 [§ 7 7 8 9 9 10
3rows 1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8
4rows 1 1 1 1 2 2 2 3 3 4 4 4 5 5 5 6

We conclude this section with two examples for which the number of columns required as per Table 1
is tight.

1. Consider m = 3 rows, d = 2l departments for some [ € IN, and weights w;;11) = 1,4 =1,3,5,...,2[ — 1,
and w;; = € otherwise. For ¢ sufficiently small, the optimal solution contains exactly one space in each
column. The left-hand side of Figure 4 illustrates the case d = 10. In this example the objective value is
not worsened if we reduce the number of rows from 3 to 2.

2. For m > 2 even, the exact calculation of the bounds is complicated and might be slightly improved if d
cannot be written as 5 +1+4(m+1)! for some [ € IN. Nevertheless no improvement of the (seemingly) large
number of spaces is possible if we want to preserve an optimal solution. To see this consider a problem
with four rows and 13 departments with wis = w3 = wys = W7y = Weg = W9190 = W1112 = Wi113 = 1
and all other weights equal to a small € > 0. Then all optimal solutions have a structure like the one
visualized on the right-hand side of Figure 4. In this case d = 13 = % + 14 51 with [ = 2.

Figure 4: Worst-case examples for Theorem 2.
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In summary Theorem 2 allows us to reduce the number of spaces, and hence of variables, in formulations
such as the MILP model in [3] and the ILP and SDP models that we propose in the next section. Theorem 2
also helps to eliminate some of the symmetries in the problem, like, e.g., the position of empty columns.

3 New formulations for the DREFLP and MREFLP

In this section we present two new models for the DREFLP and their extensions to the MREFLP. Our models take
only horizontal distances between the departments into account as they are assumed to be one-dimensional.
This is a typical assumption in the row layout literature, especially for exact approaches that usually only
discuss the double-row case because it is the most important case in practice.

For the MREFLP and the MRFLP, the only exact methods that are able to take vertical distances into account
use an enumeration scheme to deal with each row assignment individually [23, 36]. For d > 17 these approaches
have to consider a prohibitive number of NP-hard subproblems to even obtain a lower bound and hence are
not competitive for MREFLP instances of challenging size. Instead our suggested ILP and SDP models solely
ensure that at most m departments are assigned to each column, which allows them to scale well for instances
with up to 60 departments and up to 5 rows. However, our models cannot be used for applications where
vertical distances matter.

In Subsection 3.1 we propose an ILP formulation for the DREFLP that uses betweenness variables together
with variables modeling whether pairs of departments are assigned to the same column. In Subsection 3.2
an SDP formulation for DREFLP based on products of ordering variables is presented. To the best of our
knowledge, Amaral [3] suggested the only other approach tailored specifically to the DREFLP. His MILP uses
position variables and is loosely related to formulations for the QAP. In Subsection 3.3 we extend the two
approaches to the MREFLP.

3.1 An ILP formulation for the DREFLP

Our first model is an ILP formulation for the DREFLP that extends the model proposed in [1] for the SRFLP.
We use additional variables to model that two departments can be assigned to the same column. We also
fill up the ¢ columns with spaces, i.e., departments of length 1 and pairwise weights equal to 0 with all the
departments (including other spaces). We collect all these spaces in a set S. To simplify notation we set the
total number of departments (original ones plus spaces) to n := 2¢ and the number of spaces is thus s = n — d.
After the insertion of spaces we deal in fact with a space-free problem, and by Theorems 1 and 2 the optimal
solution of the corresponding optimization problem is an optimal solution of the DREFLP.

Our model makes use of betweenness variables b;ji = by;i € {0,1}, 4,5,k € [n], i <k, i # j # k, and
of column overlap variables a;; = a;; € {0,1},4,j € [n],i < j. These two sets of binary variables have the
following interpretations:

bijr =

1, if department j lies between departments ¢ and k,
0, otherwise;

1, if departments ¢ and j are assigned to the same column,
Qs =
7 0, otherwise.

Our resulting ILP formulation of the DREFLP is

min > ne. > bing +2(1 - aig) (2)
i,j€[n], i<j ke[n]\{i,5}
s.t. @i+ aip + ajp + bijre + bigg + b =1, i,5,k € [n], i <j <k, (3)

Z Qi = 1, xS [’I’LL (4)
j€n]\{i}
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bin; + bink + bjnr < 2, i, 5, k,hen], i<j<k#h, i#h#j, (5)
— binj + bink + bjnk + bikj > 0, i,j,k,heln], i <j<k#h, i#h#j, (6)
+ binj — bink + bjnk + biji > 0, i,j,k,h€n], i <j<k#h, i#h#j, (7)
+ binj + bink — bjni + bjir > 0, i, 5, k,hen], i<j<k#h, i#h#j, (8)
— binj + bink + bjnk + ang >0, i,j,k,heln], i <j<k#h, i#h#j, 9)
+ bing — bink + bjnr + anj >0, i,j,k,h€ln], i <j<k#h, i#h#j, (10)
+bihj+bihk_bjhk+ahi207 Z],khE[n],i<j<k7éh,i7éh7éj, (11)
biji € {0,1}, i, j,k €n], i <j, i#k#], (12)
a;j € {0,1}, 1,7 € [n], i < j. (13)

The objective function (2) counts all departments that lie between the departments ¢ and j, because the
distance between ¢ and j equals the number of columns between them, regardless of which row they are in.
This is equal to half of the number of departments between ¢ and j, plus a term accounting for whether they
lie in the same column or not. Specifically we divide the coefficient of the betweenness variables by 2 and
count w;; towards the cost if departments ¢ and j do not lie in the same column.

Equations (3) ensure that for every choice of three different departments either these lie in three different
columns and one of the betweenness variables equals 1, or two of the three departments lie in the same column
and the associated overlap variable equals 1. Equations (4) ensure that each department ¢ € [n] lies in the
same column as exactly one other department. Inequalities (5) to (11) are extensions of the inequalities in [1]
for the SRFLP: inequality (5) ensures that a department h cannot lie between each two of every choice of three
departments 4, j, k € [n]\ {h}, i < j < k, and inequalities (6)—(11) ensure that if department h lies between
departments ¢ and j, then h lies also between i, k, or between j, k, or in the same column as k (which also
implies that k lies between ¢ and j).

Due to the introduction of spaces, our model contains some symmetries that we break to improve its
practical performance. The following constraints enforce an order of the s spaces such that space i is to the
left of space j or in the same column as j iff i < j, i,j € S:

a;; =0, i,j€S, i+2<7, (14)
biji = 1, i kES, itA<jt+2<k (15)
bijk =0, 1,5,k €S, 1#k, (j > max{i, k} Vi< min{i, k}) (16)

A further improvement to the model is to include a variation on a class of inequalities for the SRFLP
introduced by Amaral [1]. The precise statement of our proposed inequalities is given in Theorem 3. We note
that taking 5 = 4 in Theorem 3 yields (6)—(11).

Theorem 3 Let § € IN, 8 > 4, be even and let T C [n] with |T| = B. For a partition of T in T1,Ts, {k} such
that T = TYUTLU{k}, (Th NTy = 0,k ¢ Ty, k ¢ Tz) and |Ty| = g the following inequalities are valid for the
DREFLP

E bpkg + § bpkq — E bpkq < E Akp, (17)
p,q€T, p,q€Ts, p€eT, pET?

p<q p<q q€T>

§ bpkq + E : bpkq - § bpkq < E : bpoq’ (18)
p,q€T, p,g€Ts, p€Th, p,q€T1, o€Ts,

p<q p<q q€T> p<gq

Proof. Let 8 € N, > 4, even and T C [n] with |T| = 8 be given. We consider a partition of T into
Ty, T, {k} such that T = TyUT2U{k} and |T1| = g (so |Tx] = g —1). In order to prove that inequalities (17)
and (18) are valid for the DREFLP we consider a fixed double-row assignment a: [n] — [5] that assigns each
of the n departments (original and spaces) to one of the columns. We define o} := |{i € Ty : a(i) < a(k)}|,
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o= {i € Ta: a(i) < a(k)}|, o == |{i € Ty: a(i) > a(k)}], 03 = |{i € Ty: a(i) > a(k)},
Ti: a(i) = a(k)}], 03 == |{i € Ta: a(i) = a(k)}|. Then of + 03 + 03 = g, 0%+ 03 + 0% =
o} 4+ 02 < 1. The left-hand side of (17) and (18) is equal to 7, where

ot = |{i €
gfl and

1.1 2 2 1.2 1.2 1 212 1 2 11 1.2 12 2 2
v =010y + 0705 — 0103 — 0501 = — (0 — 07)” + 0y — 0] — 0103 + 0105 + 03071 — 0703.

The last equality follows by direct computations using ol = g — o}l — o) and 03 = g —1—0?—02% We
consider three cases:

e 04 =0%=0: Then v = —(0f —0})? 4+ 0f — 0} = —(0] — 0%)(0f — 0?7 — 1) <0 and with a;; >0, 4,5 €
[n], i <, bijr >0, i,5,k € [n], i <k, |{i,J,k}| =3, the validity follows in this case.

e 0l =1,02=0: Theny = —(0{—0?)*+0{—0?—0i{+0} = —(01 —0})? and with a;; > 0, i, € [n], i < j,
bijk >0, 4,5,k € [n], i <k, [{i,],k}| =3, the validity follows in this case.

e 05 =0,03 =1: Then vy = —(0] —0%)*+ 0] —0f + 01 —0f = —(0f —0})(0f — o} —2). This term is

positive if and only if o — o = 1 by the integrality of the o?.

So, it suffices to show that the right-hand sides of (17) and (18) are at least one if 03 = 0, 03 = 1 and
o} —0? = 1. For (17) the term o3 = 1 implies the existence of an o € Ty that lies in the same column as
k. Considering (18), 02 =1 and o — 07 = 1 imply o} > 0, 03 > 0 and so there exist p,q € Ty, p # ¢, and
o € Ty such that o lies between p, g. O

3.2 An SDP formulation for the DREFLP

Our second formulation for the DREFLP is based on a quadratic formulation using ordering variables that we
rewrite using symmetric matrices. The matrix-based formulation is then relaxed into an SDP problem, and
this SDP relaxation can be tightened using several classes of valid constraints. For more details on semidefinite
programming we refer to the handbooks [6, 50].

We introduce the ordering variables z;;, ¢,j € [n], i # j, where z;; is 1 if department i lies left of
department j, and —1 otherwise. We observed in Subsection 3.1 that the center-to-center distances between
departments can be encoded using betweenness and column-overlap variables. Because we are willing to work
with quadratic terms, we can express those two kinds of variables in terms of the ordering variables:

birj = H(TinTrj + TjpThi + Tik + Thj + Tjk + i) + i,j,k € [n], i <j,

2 (19)
_ 1 . .
aij = —3(zi; +xj5), 4,5 €[n], i <.
It directly follows that we can rewrite the objective function (2) as a linear-quadratic function of the ordering
variables:

Wy i Wi
K+ Z 8J< Z (TikTrj +5Cjk$ki)> + Z TJ(% + i), (20)
i,j€[n] ke[n] 1,j€[n]
i<j ki, k#£j i<j
where K is a constant defined as
K=Y "1 (21)

4 4
i,5€[n]
1<]J

Any feasible ordering of the departments has to satisfy the well-known 3-cycle inequalities
1 <@+ — v < 1, i,j,k€n], i#j#k, i#k (22)

that together with integrality conditions on the ordering variables suffice to describe feasible orderings, see
e.g. [47, 51]. In the present context we need the following additional constraints

l'ij+xji§07 iaje [n]v i<j7 (23)
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that model the fact that either department ¢ lies to the left of department j or department j lies to the left of
department ¢ or both departments are assigned to the same column.

Note from the definition of the ordering variables that if two departments ¢ and j are placed in different
columns then z;; + x;; equals zero, while if they are assigned to the same column the sum is —2. In contexts
where the departments cannot overlap, such as the SRFLP, this observation is often used to halve the number
of variables in models using ordering variables by requiring that x;; + x;; = 0. While some overlap is allowed
here, we ensure that exactly two departments are assigned to each column using the constraints

> (wijtau)=-2, i€c[nl. (24)
jeln)\{i}

Lemma 2 Minimizing the objective function (20) over x € {—1,1}*"=1 and (22)-(24) solves the DREFLP.

Proof. The constraints (22)—(24) together with the integrality conditions on z suffice to induce feasible
double-row layouts and the definition of the objective function ensures that the distances between departments
are computed correctly. O

Next we collect the ordering variables in a vector x and reformulate the DREFLP as a quadratic program in
ordering variables.

We define X := xx " and rewrite the quadratic objective function (20) in matrix notation to obtain:
min {(Cx,X) + ¢/ x4+ K: 2 € {—1,1}"(" satisfies (22)(24)}. (DREFLP)

The cost matrix Cx and the cost vector ¢, are deduced from (20):

Wi 4
Cx, X)= > ?] > (winwrs + ki),

i,jE[n] ke(n]
1<j i#k#]
Wi
c;x = Z %(x” -l-.%'ji).
i,5€[n]
1<J

We can further rewrite the above formulation as an SDP by relaxing the non-convex equation X —zz' =0
to the positive semidefinite constraint X — za " = 0. Moreover, the main diagonal entries of X correspond to
squared {—1,1} variables, hence diag(X) = e, where e denotes the vector of all ones. To simplify notation let
us introduce

Z = Z(z,X) ::(i § ) (25)

where dim(Z) = n(n — 1) + 1. By the Schur complement theorem [7, Theorem 1.6], X —xz" = 0 < Z = 0.
Hence any feasible layout is contained in the elliptope € := {Z: diag(Z) = e, Z = 0}. In order to express
constraints on z in terms of X, they have to be reformulated as quadratic conditions in z. A natural way to
do this for the 3-cycle inequalities (22) is to express them as |z;; + =5 — z;x| = 1 and square both sides [34].
Additionally using x7; = 1, we obtain

Tij ik — Tij,ik — Tik,jk = —1, i,j,ken], i#j#k i#k. (26)
These conditions were first used for the SRFLP in [10].

Now we can formulate the DREFLP as a semidefinite optimization problem in binary variables.
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Theorem 4 The problem
min {KJr (Cy,Z): Z satisfies (26), Z € &, x € {—1,1}""~Y satisfies (23) and (24)}

where Z is given by (25), K is defined in (21) and the cost matriz Cy is given by

0 Le
[ 2T
Oz (écw CX) ’

is equivalent to the DREFLP.

Proof. Since 2 =1, i € {1,...,n(n — 1)}, we have diag(X — xz ") = 0, which together with X —zz" = 0
shows that in fact X = za' is integral. Equations (26) ensure |z;; + zjr — x| = 1, and constraints (23)
and (24) together with the integrality of x suffice to induce feasible double-row layouts due to Lemma 2.
Finally the definition of K and Cz ensures that the distances between departments are computed correctly. [

Dropping the integrality condition on the first row and column of Z yields the basic semidefinite relaxation
of the DREFLP:

min {K + (Cz,Z): Z satisfies (26), Z € &, x satisfies (23) and (24)} . (SDPpasic)
We now consider possible ways to tighten the above relaxation. First we observe that adding Equations (3)
from our ILP model does not improve SDPy.g;c.
Observation 1 Fquations (3) can be expressed as the sum of two equations of the form (26) using (19).

We can add symmetry-breaking constraints arising from the addition of spaces (as already seen in
Subsection 3.1):

Zo1 = —1, (27)
vy = 1, i,j €S, i+2<], (28)
Ti(i4+1)Thi — Thi — Ti(s =1
(i+1)Tk k (i+1) i€8,i#n, keld. (30)
Ti(i+1)Th(i+1) — Th(i+1) — Tigi+1) = —1,

Constraint (27) breaks the symmetry of the overall arrangement. Constraints (28) ensure that two spaces
¢ and j can be assigned to the same column only if ¢ + 1 = j. Constraints (29) guarantee that in all
layouts considered the labels of the spaces increase from left to right. Finally, constraints (30) are related to
Assumption 1 in Subsection 2.2: if two spaces i, j € S lie in the same column, then each department k € [d]
has to lie left to them (see also Figure 3). Direct computations using (19) give the following result:

Observation 2 The ILP symmetry-breaking Equations (14)—(16) can be derived from (28)—(30).

Equations (28) and (29) allow us to reduce the size of the semidefinite problem for the computational
experiments in Section 5. However, this requires all constraints containing the relevant variables to be
transformed accordingly. While this is a straightforward exercise, it involves technical detail that does not
provide further insight, so we omit the details of this transformation and of the resulting constraints. (For the
same reason, we chose not to exploit (27) though this could be done in principle.)

Again because we allow quadratic terms, we can express the inequalities (23) as equations:
TijTii + Tij + x5 = —1, i, ] € [n}, 1< J. (31)

Equation (31) is valid because either x;; = z;; = —1 (both departments lie in the same column) or
x;; +x;; = 0 and x;52;; = —1 (they lie in different columns).
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The theoretically smoothest way to deal with Equations (24) would be to use them to reduce the dimension
of the problem by n (for details see [32, Proposition 4.4]). Unfortunately, this would make their practical
implementation much more complicated. An alternative is to lift (24) into quadratic space via multiplication
by an arbitrary ordering variable x;,,, I, m € [n], | # m, and the addition of the resulting linear-quadratic
equations to the semidefinite relaxation:

Z (xijxlm + sz'xlm) = =2z, i,l,m € [TLL l 7£ m. (32)
Jeln]
J#i

A well-known class of valid inequalities for our model is the triangle inequalities of the max-cut polytope,
see e.g. [19]. Since Z is generated as the outer product of the vector (1 sr:)T that has merely {—1,1} entries
in the (non-relaxed) SDP formulation, any matrix Z representing a feasible layout belongs to the metric
polytope M:

1 -1 -1
1 1 1 Zij
M=<(Z: 1 -1 1 zit | <e, 1<i<j<k<nn-1)+1;, (33)
1 1 -1 Zik

which is defined through ~ 4n® facets.

In summary, we get the following tractable semidefinite relaxation of the DREFLP:
min{K + (Cz,Z): Z € ENM satisfies (26)—(32)}. (SDPsy11)

All variables in Z with cost coefficient greater than zero appear in a 3-cycle equality (26) or in Equations (32)
and thus are tightly constrained in the relaxation.

3.3 Extensions to the MREFLP

In this section we extend the models for double-row problems presented in Sections 3.1 and 3.2 to multi-row
problems.

We again use Theorem 2 to reduce the MREFLP to a space-free version by introducing enough spacing
departments. Let ¢ be the minimum number of columns needed to preserve at least one of the original optimal
solutions. Then our transformed problem has n := c¢m departments, where s = n — d are spaces.

3.3.1 Extension of the ILP formulation

We extend the ILP formulation for DREFLP proposed in Subsection 3.1 to the following formulation of the
MREFLP:

min . > bikg +m(l - ay) (34)

iJi[;}], ke[n]\{i.j}
s.t. (5)—(13)
aij + biji + binj + bjir < 1, i,j,k €n], i <j <k, (35)
@ik + bijk + big; +bjie < 1, i,5,k€n], i <j<k, (36)
aji + biji + big; + bjap < 1, i,j,k € [n], i <j <k, (37)
aij + ajp — ap <1, i,j,ken], i<k, i#£j#k, (38)
Z a;; =m—1, i€ n, (39)

jeln]\{i}
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i,5,k€[n],

i<k, j#k, j#i
In the objective function (34), the distance between two departments i, j € [n],i # j, in the same column is
zero (all associated betweenness variables are zero). If 4, j are not in the same row, the distance is at least
one and we add the number of departments between ¢ and j divided by m in the objective (so we derive the
number of columns between i, j for that part).

Inequalities (35)—(37) ensure that three departments i, 7,k € [n], i < j < k, either lie next to each other
or at least two of them are in the same column. Note that in the double-row case we used the strengthened
version (3).

The inequalities (38) enforce the transitivity property that if departments ¢ and j as well as j and k lie in
the same column, then 7 and k also lie in the same column.

Equations (39) are the generalization of (4): each i lies in the same column as m — 1 other departments
(possibly including spaces).

Finally, we enforce exactly how many betweenness variables must equal 1 in a feasible solution. Let
c1,¢2,c3 € {1,...,c} be three different columns of a solution, then for each choice of one department from
each of the three columns, we count 1 towards the left-hand side of (40).

3.3.2 Extension of the SDP formulation

The starting point for our semidefinite relaxation for the MREFLP is again a quadratic problem in ordering
variables. We use the z-ordering variables and the 3-cycle inequalities (22) as well as (23). We change (24) to

Z (l’ij + .’I?ji) =-2m+4+2, 1€ [nL (41)
J€[n]\ {3}

and adjust the objective function (20) to

K™+ Z oL Z (Tinxrj + Tjpxr) + § 4(7"—27172%; (@ij +xj5). (42)
i€l kel\{ii} i, 7€),
1<J 1<j

where K™ = 3 Zi,je[n],iﬁ W;j.

The following result for the MREFLP follows directly from Theorem 2.
Corollary 1 Minimizing (42) over x € {0,1}™"=1) and (22), (23), (41) solves the MREFLP.
In analogy to the double-row case, we can rewrite the MREFLP in matrix notation as
min {(C%, X) + Pz + K™: z € {-1,1}"(""Y satisfies (22),(23) and (41)}, (MREFLP)

where X := 227 and the cost matrix C and cost vector ¢ are deduced from (42). Rewriting the above
formulation along the lines of the double-row case gives

min {Km +(CP, Z): Z satisfies (26), Z € &, z € {—1,1}""~ 1 satisfies (23) and (41)}
where Z is given by (25), K™ is defined right after (42), and the cost matrix C%' is given by
0 Lem
mo.__ 27T
7= (g &)
The basic semidefinite relaxation of the MREFLP reads

min {K™ + (C%', Z): Z satisfies (26), Z € €, x satisfies (23) and (41)}. (SDPIZ.;c)
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To strengthen this relaxation we use

Z (ijrr + zjizr) = (—2m + 2)xp, ik, 1 € [n], k#1I, (43)
JE€\{}

which can be derived by multiplying (41) for fixed ¢ with an z-variable xy;, k,l € [n], k # [. Furthermore we
use (31) instead of (23).

Finally, we add constraints to break the symmetry of the spaces .S:

5 =1, ,7€S8, i+m<j, (44)

xi; = —1, i,j €8, j<i, (45)

TijTps — Thi — Tij = —1, i,jeS, j=i+m—1, keld, (46)

TijTr; — Thyj — Tij = —1, i,j €S, j=i+m—1, keld, (47)
—Ti(i45)Ti(itk) T Ti(itk) — Ti(i4j) = — 1, ieS, jkeN, k<j<m,i+j<n. (48)

The constraints (44) and (45) ensure that two spaces i,j € S, i < j, can lie in the same column only if
i+m > j. If two spaces 4, (i +m — 1) € S lie in the same column each of the original departments k € [d] lies
left to them, see (46)—(47). Furthermore, if two spaces ¢, (i + j) € S lie in the same column, then all spaces
i+1,...,i4+j— 1 also lie in this column by (48). Additionally, we can use (27) and the triangle inequalities
described in (33).

In summary we obtain the following tractable semidefinite relaxation of the MREFLP:

min {K™ 4+ (C},Z): Z € €N M satisfies (26), (27), (31) and (43)—(48)}. (SDPY45)

4 Computational implementation

We now describe our implementation of exact approaches based on our two new formulations. In Subsection 4.1
we discuss how we solve the linear and semidefinite optimization problems to obtain lower bounds on the
optimal solution. In Subsection 4.2 we describe heuristics for the semidefinite approach that yield feasible
layouts and hence upper bounds.

4.1 Computing the lower bounds

For the models from Chung and Tanchoco [18] (we use the variant proposed in [52]), Amaral [2] and [3] we in-
cluded all the constraints directly and used CPLEX [37] as an ILP solver. For our new ILP model (2)—(16), tests
with CPLEX showed that one should not add all inequalities at once, but should separate inequalities (5)—(11).
We separate (5)—(11) exactly and dynamically in a branch-and-cut approach. We decided to not additionally
separate (17), (18) because handling (5)—(11) is already computationally challenging. The same separation
procedure was applied in the multi-row case.

For the SDP approach, we solve our new SDP relaxation using a spectral bundle method [28, 29] in
conjunction with primal cutting plane generation [27]. In general the optimal objective value v of the relaxation
is not integer but then [v] is a global lower bound for the layout instance (if all weights are integral). We also
use this property in the linear approaches. For the application of a spectral bundle method in the solution of
the max-cut and bisection problems, see [12, 27].

One of the main advantages of the spectral bundle method is the ability to exploit the sparsity of the SDP
relaxation [27]. In the objective function all the entries z;;x; with {4, j, k,l}| = 4 are zero, and the support
of Equations (26)—(31) is also small. However (32) and the triangle inequalities of the metric polytope M
have a larger support. To keep the small support consisting of the first row and column and the entries
zijre with 7, k1 € [n],i # j, k # 1,|{i, 7, k,1}| <3, we restrict to inequalities (32) with i € {l,m}, i.e., we
only multiply (24) for ¢ € [n] fixed with zi,,l,m € [n],l #m, if i € {I,m}. Moreover we do not include the
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triangle inequalities and instead add the odd-cycle inequalities [13] (transformed to the —1/1-setting) on the
small support of the objective function, where the coefficient matrix is interpreted as the adjacency matrix of
a graph. In our tests we used a separator by C. Helmberg that is a variant of that by M. JAijnger. Note that
if we work with the full support (and thus on a complete graph) and exactly separate the triangle inequalities,
then there is no need for an additional odd-cycle separator because all odd-cycles with length at least five are
not chordless and are therefore implied by the triangle inequalities [13].

As mentioned before, for the DREFLP equalities (28) and (29) (respectively equalities (44) and (45) for the
MREFLP) are used to reduce the size of the semidefinite relaxations. In our implementation we add all the
equations of (SDPgy1) (respectively (SDPFL;)) right from the beginning (except the ones with large support
mentioned above), and then iteratively include the odd-cycle inequalities. After 50 (null or descent) steps
of the spectral bundle method [28] we determine violated odd-cycle inequalities and restrict the separation
to adding at most 100 of the most-violated constraints. To speed up the implementation we also delete
constraints if they are no longer important, see, e.g., [12].

4.2 Computing the upper bounds

CPLEX provides upper bounds while solving ILP formulations. We describe here how we derive feasible
layouts using SDP primal information.

Let (1 j) denote the first row of the SDP matrix Z. Hence & gives the values of the z-variables in the
relaxation. Given a partial solution consisting of k completely filled columns, k € {0,..., 2} (we arrange

’m

departments and spaces simultaneously), we determine and position the next column in a greedy manner.

First, we determine for each subset T of the remaining departments and spaces with |T| = m the sum
T = Zz jeT,izs Tij- A small value of 7p indicates that the m elements of T" should be arranged in the same
column. (Note that if all the departments in 7" lie in the same column, then 3, .o, Zij = —m(m —1).)

Hence we choose the smallest 71 and place the departments in 7" in the same column, that we denote by C.

Finally we decide on the position of the new column using again the information encoded in Z. More

precisely let N C [n] denote the set of all departments and spaces that have already been assigned and set
[V]

= % The function apere: N — [%} gives an assignment of the elements of N to the ~ columns. Now

we calculate for the departments in C

W=D, Eit Y &y
i€C, jJEN i€C, jEN
apart(§)<p apart(j)=p

for all possible positions p € [l + 1]. Finally we determine p = argmax,c 1] Yp, update apare by

D, ieC,
apart (Z) — apart (2)7 Z S N> apm"t(i) < ﬁ’
apart(i) + 1a } S Nvﬁ S apart(i)a

and set N <~ NUC.

When all departments and spaces have been arranged, we try to improve the layout using a 3-OPT
heuristic (see e.g. [42]) that searches for advantageous exchanges of two or three departments in a greedy
manner. We also test if the solution can be improved by reallocation of any column or by exchanging two or
three columns. Apart from the presented heuristic, we use an adapted version of this in order to save running
time. This determines the departments that lie in the same row in an alternative way. For each new column
we start with the pair {i,j} C [n] \ N of the currently unassigned departments that minimizes Z;; + &;; and
set D = {i,j}. Next we iteratively add the department k € [n] \ (N U D) to D that minimizes the sum
> e (Tr 4 Fy) until [D| = m. Then we set N <= N U D. If every department has been assigned to a column,
we finally determine the order of the columns in the same way as above. For m = 2 the two heuristics are
exactly the same. Additionally we use the first heuristic for m = 3 and the second computationally cheaper
one for m € {3,4,5}.
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5 Computational experiments

We present computational results for double-row instances from the literature as well as instances originally
studied for the SREFLP with at least 10 departments in order to highlight the practical impact of our theoretical
results. All experiments were conducted on an INTEL-Core-17-4770 (4x 3400MHz, 8 MB Cache) with 32
GB RAM in single processor mode using openSUSE Linux 42.1. We test instances with d > 10 used for the
SREFLP in [35], instances proposed for the DREFLP by Amaral [3] (denoted by A-d-{edge probability-100})
where the pairwise weights w;; are either zero or one because of the underlying graph problem, and instances
constructed by Hungerlinder and Anjos [33] (denoted by E-d-{edge probability-100}). The instances together
with information on the source and the density are available at http://www.miguelanjos.com/f1lplib.

In the following we compare the computational times and final gaps calculated by the following five
approaches:

e TAN: The MILP model from [18] (corrected according to [52]) that can be used directly for solving the
MRFLP with m > 3.

e AMA: The MILP model of Amaral [2] that cannot be easily extended to the MRFLP with m > 3.
e AMA2: The MILP model of Amaral [3] that can be easily extended to the MRFLP with m > 3.

e ILP: The ILP models in Section 3.1 for the DRFLP and Section 3.3.1 for the MRFLP.

e SDP: The SDP relaxations in Section 3.2 for the DRFLP and in Section 3.3.2 for the MRFLP.

We tested these approaches on all available benchmark instances from the literature with d > 10
departments. We considered m € {2, 3,4, 5} rows, except for AMA that is only applicable for m = 2.

We improve the models TAN, AMA and AMA2 from the literature by setting the big-M term or the number
of possible positions of the departments according to Theorem 2.

We do not test against the approaches in [36] and [23] that are both based on enumerating over all different
row assignments and so for larger d even deriving strong lower bounds is out of scope due to the large number
of challenging subproblems to be (approximately) solved.

We calculate the percentage gap between the best upper bound found (regardless of which method(s)
derived it) and each lower bound:
(upper bound

lower bound

1) -100%.

Note that except for a simple start construction heuristic for SDP, each method determines its own upper
bound during the solution process.

First we consider the results of the two approaches not specifically tailored to DREFLP and MREFLP, TAN
and AMA, for m = 2 in Tables 2 and 3, one can see that both approaches are usually slower than our new
approaches. AMA is in most cases the faster of the two and if the time limit is reached, the gaps are smaller.
With TAN 24 instances and with AMA 32 instances out of 61 instances could be solved to optimality within the
time limit of one hour for m = 2. For m € {3,4,5} we also tested TAN. In total 23 instances for m = 3, 21 for
m = 4, and 22 for m = 5 could be solved to optimality within the time limit. Usually, the running times
for m € {3,4,5} are larger than for m = 2; only when the number of departments is small in comparison
to the number of rows do the running times partially decrease. One explanation for this behavior might be
that the big-M value is rather small then. Both approaches from the literature have in common, that for the
medium-sized instances (d = 13,14, 15) usually optimality cannot be proved within the time limit of one hour
and the gaps are relatively large. For this reason we do not test them on the larger instances with d > 16. In
general, it seems that sparsity of the objective function helps in both approaches to reduce the running times
or to derive good bounds. In particular, this can be seen on the instances A-13-10, A-13-20, A-14-10 and
A-14-20 that are the only instances with d > 13 that were solved to optimality by both methods.

Next we look at the results for AMA2. Tables 2 and 3 show that for sparse instances, this approach is
sometimes the best approach if m = 2. For m € {3,4,5} it is very often the best approach for small instances,
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especially for the sparse ones. If the instances could not be solved within the time limit, the gaps are usually
rather high in comparison to SDP, but better than the ones of TAN and AMA. The running times decrease
with increasing m. The main reason for this seems to be our improvement of the model presented in [3]
according to Theorem 2 that significantly reduces the number of potential positions, and hence the number
of variables. All instances with d < 15 could be solved to optimality for m = 5 within one hour. Due to
this good performance we also tested AMA2 on the medium-sized instances with a time limit of one and of
three hours. Table 4 shows that only sparse instances can be solved to optimality. But usually the gaps are
extremely large and SDP (as well as ILP for m = 2) behaves much better. This is not surprising since the
model is closely related to formulations for the quadratic assignment problem [43]. Comparing the results
for different values of m, AMA2 also works better for larger m on the medium-sized instances. But even for
m =5 the gaps are greater than 10% for 13 of 21 instances after three hours (for m = 2 the gap of 20 of the
21 instances is greater than 39% after three hours).

ILP is the best approach for small and medium-sized instances with up to 20 departments in the case
m = 2. All instances with d < 18 and m = 2 could be solved to optimality in less than 5 minutes. For
larger m, the solution times are much higher than for m = 2 and the obtained lower bounds are rather weak.
Furthermore, CPLEX has difficulties proving optimality: sometimes, although the lower bound equals the
optimal solution value (found by a different method), the calculation goes on because of the higher upper
bound, see e.g. instance A-20-10 in Table 4. One explanation for this behavior could be that Equations (3)
for m = 2 are rather strong in comparison to inequalities (35)—(37) for m > 3. Furthermore, ILP and SDP
both seem to suffer from the fact that for larger d, the number of spaces (additional departments) needed
grows with m, see Tables 4 and 5 for large d.

Looking at the results of SDP, one can see that the lower bounds for MREFLP are often very strong, while
the quality of the bounds is even a bit better for the case m = 2. Although we do not combine the lower
bound computation with a bounding scheme, we are able to prove optimality for 76 instances with m = 2
and for 60/58/65 instances with m = 3/4/5 within a time limit of one hour. The largest instances solved to
optimality have 25 departments for m = 2 and at least 20 departments for m € {3,4, 5}, see Tables 4 and 5.
For the instances that cannot be solved exactly within the time limit, we achieve gaps of less than 2% or an
absolute difference of at most 1 for 102/103/90/95 instances out of 108 when m = 2/3/4/5. Table 5 shows as
well that the gaps get worse as the number of departments increases. Comparing SDP to ILP for m = 2 shows
that for small instances, ILP is faster and allows to solve all instances to optimality. But for instances with
d > 21 the bounds with SDP are much stronger whereas the gaps with ILP are often greater than 10%.

For ILP and SDP and d > 16, we further increased the time limit to three hours for m = 2 for both
approaches, and for m € {3,4,5} for SDP only, see Tables 4 and 5. The increased time limit mainly helps SDP
as the gaps can be reduced significantly. For ILP the improvements are small, especially for instances with
d > 30. Here it seems that the solver has some problems handling the large number of constraints (usually a
large number of constraints are violated during the solution process).

We also looked at the upper bounds derived with the various approaches. In most cases our SDP
construction heuristic is the best and provides rather high-quality solutions. These good upper bounds make
it possible to stop our SDP relaxation approach because we are close enough. Indeed, in all approaches we
used the fact that in the instances from the literature all weights are integer and so the optimal solution value
is also integer. If our SDP heuristic fails to determine an optimal solution, then the solution process might
continue although theoretically the gap is closed, see e.g. instance A-20-60 and m = 4.

In summary, we conclude that:

e for d < 19 and m = 2 ILP is the best choice,
e for d = 20, m = 2 there is no clear winner, and
e form=2,d>21 and m € {3,4,5},d > 15 SDP is the best choice.
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For larger m and small d < 14, AMA2 is a good alternative. Moreover the SDP approach is well-suited for
providing good lower bounds for large MREFLP instances in a reasonable time. Finally the upper bounds
derived from the SDP fractional solutions are of high-quality.

6 Conclusions and future work

We considered the special case of multi-row layout problems in which all departments have the same length.
We showed that only spaces of unit length are required when modeling the problem, and we stated and proved
exact expressions for the minimum number of spaces that need to be added so as to preserve at least one
optimal solution. These results show that the MREFLP can be modeled using only binary variables, which has
a significant computational impact.

Using the results on the structure of optimal solutions, we proposed ILP and SDP models for the DREFLP and
the general MREFLP. Our results show that the SDP approach dominates for medium-sized and large instances.
For the double-row case we increased the largest instances solved to optimality from 16 departments [23] to
25 departments. When considering 3 to 5 rows, we increased the largest instances solved to optimality from 8
departments [36] to 25 departments. Furthermore we achieved optimality gaps smaller than 1% for instances
with up to 45 departments.

One direction for future research is the use of the SDP relaxation within a branch-and-bound scheme
in order to solve larger instances to optimality. This is worth exploring given the very good lower bounds
provided by the SDP approach for instances with up to 60 departments and up to 5 rows.

Our approaches to the MREFLP can also be used for the development of new exact solution methods for the
MRFLP. For example one might apply our approaches to compute tight lower bounds of MRFLP instances if
the lengths of the departments of the given instance do not vary much. In this case we suggest to reduce all
department lengths to multiples of the minimum length over all departments and then to compute an optimal
solution, or at least a lower bound, for this modified instance containing only departments of equal length.



Table 2: Computation times (in (m)m:ss) and gaps (in percent) for instances of Amaral [3] with 10 to 14 departments.

A-10-10
A-10-20
A-10-30
A-10-40
A-10-50
A-10-60
A-10-70
A-10-80
A-10-90
A-11-10
A-11-20
A-11-30
A-11-40
A-11-50
A-11-60
A-11-70
A-11-80
A-11-90
A-12-10
A-12-20
A-12-30
A-12-40
A-12-50
A-12-60
A-12-70
A-12-80
A-12-90
A-13-10
A-13-20
A-13-30
A-13-40
A-13-50
A-13-60
A-13-70
A-13-80
A-13-90
A-14-10
A-14-20
A-14-30
A-14-40
A-14-50
A-14-60
A-14-70
A-14-80
A-14-90

m=2 m=3 m =4 m=25
TAN AMA AMA2 ILP SDP TAN AMA2 ILP SDP TAN AMA2 ILP SDP TAN AMA2 ILP SDP

best gap time gap time gap time gap time gap time best gap time gap time gap time gap time best gap time gap time gap time gap time best gap time gap time gap time gap time
0 0.00 00:00 0.00 0:00 0.00 0:00 0 0:00 00:00 1 0.00 0:01 0.00 0:00 0.00 0:53 0 0:04 0 0.00 0:00 0.00 0:00 0.00 1:170.00 0:02 0 0.00 0:00 0 0:00 0.00 0:42 0 0:02
1 0.0000:01 0.00 0:00 0.00 0:00 0000 00:00 3 0.00 0:10 0.00 0:00 0.00 1:33 0 0:60 1 0.00 0:00 0.00 0:00 0.00 0:020.00 003 1 0.00 0:00 0 0:00 0.00 0:14 0 0:03
1 0.0000:09 0.00 0:01 0.00 0:00 00:00 00:00 5 0.00 0:25 0.00 0:00 0.00 0:18 0 0:28 3 0.00 0:32 0.00 0:00 0.00 0:520.00 0:10 1 0.00 0:00 0 0:00 0.00 0:00 0 0:01
10 0.00 03:03 0.00 1:39 0.00 0:04 0 0:00 0 0:07 20 0.00 7:04 0.00 0:02 526 TL 0 044 13 0.00 5:00 0.00 0:00 0.00 3:020.00 0:03 10 0.00 7:35 0 0:00 0.00 0:18 0 0:06
9 0.0003:52 0.00 0:53 0.00 0:04 0 0:00 00:01 19 0.00 5:22 0.00 0:01 0.0045:04 0 1:06 13 0.00 3:38 0.00 0:00 0.00 1:190.00 0:14 9 0.00 7:46 0 0:00 0.00 0:07 0 0:05
8 0.0001:39 0.00 1:02 0.00 0:03 0 0:01 0 1:47 15 0.00 1:38 0.00 0:00 0.00 4:25 0 0:13 11 0.00 3:51 0.00 0:00 0.00 7:370.00 0:21 8 0.00 3:10 0 0:00 0.00 0:00 0 0:06
16 0.00 13:17  0.00 4:42 0.00 0:20 0 0:00 0 0:01 33 0.0018:43 0.00 0:06 10.00 TL 0 0:37 24 0.0031:40 0.00 0:01 4.35 TL 0.00 0:27 16 0.00 14:32 0 0:00 0.00 0:10 0 0:04
21 0.00 40:50 0.00 0:44 0.00 045 0 0:00 0 0:02 44 732 TL 0.00 0:1112.82 TL 0 248 32 1429 TL 0.00 0:0310.34 TL0.00 1:18 21 0.0027:49 0 0:00 0.00 0:00 0 0:02
21 0.00 44:26  0.00 0:40 0.00 048 0 0:00 0 0:02 44 476 TL 0.00 0:12 732 TL 0 2:07 32 10.3¢ TL 0.00 0:0310.34 TL 0.00 0:54 21 0.0029:03 0 0:00 0.00 0:00 0 0:02
0 0.00 00:00 0.00 0:00 0.00 0:00 0 0:01 00:01 0 000 0:00 000 0:00 0.00 1:27 0 0:04 0 0.00 0:00 0.00 0:00 0.00 8:340.00 0:04 0 0.00 0:00 0 0:00 0.00 1:10 0 0:02
5 0.0005:12 0.00 2:10 0.00 0:03 0 0:06 0 0:14 11 0.00 840 0.00 0:01 0.00 TL 0 0:20 & 0.0012:19 0.00 0:00 0.0039:120.00 0:38 5 0.00 5:10 0 0:00 0.00 0:01 0 0:02
8 0.00 04:47 0.00 2:01 0.00 0:08 0 0:01 0 0:18 16 0.00 831 0.00 0:01 0.00 2:31 0 0:12 12 0.00 22:09 0.00 0:00 0.00 27:350.00 0:21 8 0.00 20:10 0 0:00 0.00 0:03 0 0:03
11 0.00 12:34 0.00 5:37 0.00 0:12 0 0:01 0 0:13 20 0.0022:08 0.00 0:02 526 TL 0 4:53 14 0.0040:21 0.00 0:00 0.00 48:12 0.00 0:21 11 10.00 TL 0 0:00 0.00 1:39 0 0:39
18 2439 TL 0.0032:00 0.00 1:17 0 0:02 0 0:22 34 9.68 TL 0.00 0:06 968 TL 0 2:09 24 20.00 TL 0.00 0:01 9.09 TL 0.00 0:36 18 28.57 TL 0 0:00 0.00 9:11 0 1:37
14 00.00 06:43 0.00 4:11 0.00 0:14 0 0:00 0 0:03 24 0.00 7:25 0.00 0:01 0.0057:51 0 0:05 18 0.0023:36 0.00 0:00 0.00 4:31 0.00 0:17 14 0.00 49:40 0 0:00 0.00 0:38 0 0:22
19 2273 TL 0.0024:54 0.00 1:34 00:02 00:56 35 9.38 TL 0.00 0:07 294 TL 0 046 26 30.00 TL 0.00 0:01 13.04 TL 0.00 2:03 19 26.67 TL 0 0:00 0.00 3:46 0 0:30
27 21.31 TL 0.00 41:04 0.00 6:09 0 0:00 0 0:29 49 40.00 TL 0.00 0:16 889 TL 0 1:50 36 50.00 TL 0.00 0:04 09.09 TL0.00 1:50 27 5882 TL 0 0:01 0.00 2:60 0 1:32
37 7119 TL 0.00 6:47 0.0058:32 0 0:06 0 4:01 66 78.38 TL 0.00 3:1215.79 TL 0 2:20 48 84.62 TL 0.00 0:2720.00 TL 0.00 2:15 3710556 TL 0 0:03 882 TL 0 8:22
0 00.00 00:00 0.00 0:00 0.00 0:00 0 0:00 00:01 1 0.00 0:01 0.00 0:00 0.00 5:03 0 0:42 0 0.00 0:00 0.00 0:00 0.00 0:210.00 0:03 0 0.00 0:00 0 0:00 0.0020:16 0 0:12
4 00.00 01:19 0.00 0:28 0.00 0:00 0 0:01 00:02 7 000 229 0.00 0:00 0.0058:21 0 0:40 5 0.00 5:59 0.00 0:00 0.00 0:26 0.00 0:13 4 0.0033:39 0 0:00 0.00 8:06 0 0:56
4 00.00 05:33 0.00 1:09 0.00 0:07 0 0:01 0 0:13 8 0.00 2:26 0.00 0:01 0.0025:00 0 0:41 5 0.00 1:08 0.00 0:00 0.00 4:300.00 0:12 4 0.00 838 0 0:00 0.00 TL 0 0:37
15 19.35 TL 0.0039:14 0.00 1:12 0 0:02 0 0:06 24 435 TL 0.00 0:12 9.09 TL 0 0:60 16 0.0033:14 0.00 0:01 0.00 1:36 0.00 0:04 15 66.67 TL 0 0:0115.38 TL 0 11:58
17 0750 TL 0.0024:37 0.00 0:37 0 0:01 0 0:16 27 0.0053:05 0.00 0:08 385 TL 0 020 20 25.00 TL 0.00 0:01 0.00 TL0.00 0:39 17 54.55 TL 0 0:0113.33 TL 0 4:12
21 2927 TL 816 TL 0.00 220 0001 00:28 33 1379 TL 0.00 0:13 3.12 TL 0 0:14 24 2632 TL 0.00 0:02 0.0010:27 0.00 0:18 21 75.00 TL 0 0:01 16.67 TL 0 10:14
30 79.07 TL 35.09 TL 0.0022:32 0001 0035 49 6333 TL 0.00 1:4811.36 TL 0 0:16 34 70.00 TL 0.00 0:05 0.00 5:48 0.00 0:01 30130.77 TL 0 0:041538 TL 0 9:19
40 8214 TL 64.52 TL 0.0040:31 0 0:01 0 0:07 65 91.18 TL 0.00 3:46 22.64 TL 0 0:07 47 88.00 TL 0.00 0:17 9.30 TL 0.00 0:07 40 150.00 TL 0 0:111429 TL 0 8:55
42 103.77 TL 0.00 55:11  0.00 30:04 0 0:01 0 0:14 70 89.19 TL 0.00 5:4520.69 TL 0 0:32 50100.00 TL 0.00 0:1211.11 TL0.00 0:10 42147.06 TL 0 0:0913.51 TL 0 10:25
1 00.00 00:01 0.00 0:01 0.00 0:00 0002 00:02 1 0.00 0:01 0.00 0:00 0.00 1:13 0 021 1 0.00 0:01 0.00 0:00 0.0029:18 0.00 0:36 1 00.00 0:04 0 0:00 0.0021:27 0 0:44
9 00.00 15:22  0.00 22:05 0.00 1:01 0 0:18 0 1:57 15 0.0023:54 0.00 0:03 7.14 TL 0 1:05 11 0.00 58:29 0.00 0:01 10.00 TL 0.00 2:06 9 28.57 TL 0 0:0012.50 TL 0 5:44
14 31.03 TL 5.56 TL 0.00 1:15 0 0:13 0 0:32 25 25.00 TL 0.00 0:09 870 TL 0 1:19 19 46.15 TL 0.00 0:03 18.75 TL 0.00 821 14 5556 TL 0 0:00 7.69 TL 0 0:42
16 55.56 TL 27.27 TL 0.0010:49 0 0:07 0 0:44 27 50.00 TL 0.00 0:35 0.0051:29 0 1:16 20 66.67 TL 0.00 0:06 11.11 TL 0.00 2:45 16 100.00 TL 0 0:0114.29 TL 0 2:40
26 106.06 TL 51.11 TL 0.0027:36 0 0:24 0 2:12 44 76.00 TL 0.00 1:1410.00 TL 0 2:07 32 8324 TL 0.00 0:14 1429 TL 0.00 2:37 26 116.67 TL 0 0:0423.81 TL 0 4:22
26 9444 TL 62,79 TL 0.00 16:46 0 0:02 0 0:57 46 91.67 TL 0.00 1:20 6.98 TL 0 2:16 33 9412 TL 0.00 0:1210.00 TL 0.00 2:33 26 116.67 TL 0 0:0313.04 TL 0 3:13
41 144.19 TL 11429 TL 1798 TL 0 0:13 0 2:06 69 137.93 TL 0.00 12:36 15.00 TL 0 6:07 50177.78 TL 0.00 1:1319.05 TL 0.00 6:01 4121538 TL 0 0:1820.59 TL 0 33:39
53165.38 TL 72.50 TL 43.75 TL 0 0:02 0 2:06 90210.3¢ TL 0.00 42:58 16.88 TL 0 2:07 66 153.85 TL 0.00 4:4020.00 TL 0.00 4:60 5319444 TL 0 0:431522 TL 0 6:20
58 17321 TL 45.71 TL 54,55 TL 0 0:03 0 5:13 101 225.81 TL 10.99 TL 1882 TL 020:35 74236.36 TL 0.00 82027.59 TL 0.0022:32 5820526 TL 0 0:5516.00 TL 0 4:40
1 0.00 00:07 0.00 00:08 0.00 0:00 0 0:17 0 0:11 3 0.00 0:07 0.00 0:00 0.00 TL 0 3:07 1 0.00 0:02 0.00 0:00 0.00 TLO0.00 1:32 1 0.00 0:14 0 0:00 0.0020:57 0 0:17
8 0.00 5811 0.0039:32 0.00 0:46 0 1:23 0 3:11 16 1429 TL 0.00 0:09 14.29 TL 032:04 11 2222 TL 0.00 0:03 10.00 TL0.00 835 8 33.33 TL 0 0:00 0.0047:49 0 0:40
13 100.00 TL 63.64 TL 0.0041:39 0 0:40 0 1:60 24 84.62 TL 0.00 1:16 1429 TL 0 11:51 18 100.00 TL 0.00 0:20 38.46 TL5.88 TL 13 8571 TL 0 0:01 833 TL 0 1:41
16 86.96 TL 3871 TL 0.0028:35 0 0:12 0 1:31 28 86.67 TL 0.00 1:46 7.69 TL 0 3:43 21110.00 TL 0.00 0:31 31.25 TL 0.00 24:54 16 100.00 TL 0 0:01 1429 TL 0 5:25
35193.75 TL 147.37 TL 30.56 TL 0 0:39 0 2:26 63 231.58 TL 0.00 56:53 21.15 TL 039:53 47235.71 TL 0.00 14:16 38.24 TL 217 TL 35191.67 TL 0 0:0920.69 TL 0 6:17
37160.563 TL 153.85 TL 2857 TL 0 0:06 0 0:43 65182.61 TL 0.0020:31 10.17 TL 0 1:34 49250.00 TL 0.00 6:23 32.43 TL 0.0020:41 3718462 TL 0 0:08 882 TL 0 1:50
5222857 TL 187.50 TL 7250 TL 0 4:42 0 4:27 92283.33 TL 22.67 TL 1948 TL 01836 68325.00 TL 0.0045:13 30.77 TL 0.00 32:37 5227143 TL 0 0:3913.04 TL 0 3:32
64 209.26 TL 169.35 TL 62.14 TL 0 2:53 0 2:01 111 362.50 TL21.98 TL23.33 TL 0 6:11 83361.11 TL 1216 TL36.07 TL 122 TL 6443333 TL 0 1:1316.36 TL 0 5:19
71297.87 TL 128.05 TL 136.71 TL 0 1:18 0 1:46 125420.83 TL 48.81 TL 20.19 TL 02819 9334286 TL20.78 TL 3881 TL1.09 TL 71446.15 TL 0 5:011833 TL 0 6:37

*A time “TL” indicates that an optimal solution could not be determined within the time limit of one hour.
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Table 3: Computation times (in (m)m:ss) and gaps (in percent) for instances with 10 to 14 departments.

m=2 m=3 m=4 m=>5
TAN AMA AMA2 ILP SDP TAN AMA2 ILP SDP TAN AMA2 ILP SDP TAN AMA2 ILP SDP

best gap time gap time gap time gap time gap time best gap time gap time gap time gap time best gap time gap time gap time gap time best gap time gap time gap time gap time
E-10-100 427  0.00 22:07  0.00 10:57 0.00 1:43 0 0:01 0 0:59 277 0.00 27:34 0.00 0:16 12.60 TL 0.00 0:57 209 885 TL 0.00 0:04 13.59 TL 0.00 7:52 133 0.00 16:49 0 0:00 0.00 0:00 0.00 0:11
E-10-50 191 0.00 4:24 0.00 1:06 0.00 0:06 0 0:02 0 3:35 114 0.00 01:35 0.00 0:01 0.00 12:50 0.00 0:15 89 0.00 4:36 0.00 0:00 7.23 TL0.00 1:46 59 0.0002:59 0 0:00 0.00 0:000.00 0:14
E-11-100 539 35.77 TL 11.36 TL 0.0014:22 0 0:01 0 1:48 351 51.29 TL 0.00 0:49 10.73 TL 0.00 4:04 256 56.10 TL 0.00 0:08 15.84 TL 0.00 22:13 191 076.85 TL 0 0:01 0.00 7:54 0.00 5:00
N-15 1064 247.71 TL 166.00 TL 61.46 TL 0 0:04 0 4:02 668 307.32 TL 0.00 33:08 6.37 TL 0.00 7:11 500 267.65 TL 0.00 10:59 30.21 TL 0.81 TL 38227451 TL 0 1:0118.27 TLO0.79 TL
0O-10 670  0.00 12:17  0.00 6:20 0.00 0:26 0 0:00 0 0:09 450 0.00 25:26 0.00 0:10 12.22 TL 0.00 0:59 334 0.00 52:05 0.00 0:02 6.71 TL 0.00 1:24 222 0.00 25:53 0 0:00 0.00 0:01 0.00 0:54
O-15 2556 266.19 TL 256.98 TL 158.44 TL 0 0:04 0 4:551660 492.86 TL 39.73 TL 12.93 TL 0.00 28:25 1250 392.13 TL 17.92 TL 35.14 TL 0.73 TL 914 603.08 TL 0 6:36 17.03 TL 0.00 5:41
S-12 2167 116.27 TL 9228 TL 1790 TL 0 0:00 0 0:54 1404 113.05 TL 0.00 21:23 16.32 TL 0.07 49:53 995 108.16 TL 0.00 0:45 12.56 TL 0.00 4:08 841 148.82 TL 0 0:2918.79 TL 0.00 16:01
S-13 2940 177.88 TL 12720 TL 79.71 TL 0 0:15 0 T7:48 1938 224.08 TL 20.22 TL 18.68 TL 0.16 TL 1413 242.96 TL 0.00 14:33 25.27 TL 0.00 19:19 1132 208.45 TL 0 1:5221.98 TL 0.00 50:06
S-14 3608 221.00 TL 217.33 TL 124.66 TL 0 0:60 0 33:55 2408 357.79 TL 42.99 TL 21.43 TL 0.08 TL 1794 340.79 TL 24.24 TL 45.03 TL 1.36 TL 1369 508.44 TL 0 5:3120.19 TL 0.00 18:33
S-15 4466 289.70 TL 304.90 TL 180.00 TL 0 0:24 0 50:22 2883 513.40 TL 90.80 TL 14.31 TL 0.00 21:44 2180 393.21 TL 41.94 TL 46.80 TL 1.02 TL 1612 588.89 TL 028:2621.11 TL0.31 TL
Y-10 1697 3.60 TL 0.0021:02 0.00 1:54 0 0:00 0 0:211140 9.83 TL 0.00 0:3319.25 TL 0.00 6:30 845 26.31 TL 0.00 0:07 19.52 TL 0.00 10:42 530 0.00 32:35 0 0:00 0.00 0:00 0.00 0:36
Y-11 2008 53.99 TL 3431 TL 0.0052:24 0 0:00 0 2:101314 71.09 TL 0.00 2:33 8.60 TL 0.00 4:36 947 71.87 TL 0.00 0:17 18.37 TL 0.00 3:04 724 95.15 TL 0 0:02 0.00 26:56 0.00 8:24
Y-12 2342 124.564 TL 82.68 TL 1876 TL 0 0:00 0 0:44 1510 128.44 TL 0.00 18:34 13.79 TL 0.00 2:59 1070 115.29 TL 0.00 0:3512.39 TL 0.00 0:41 908 157.95 TL 0 0:3518.85 TL 0.00 15:43
Y-13 2730 177.16 TL 15231 TL 5564 TL 0 0:01 0 11:13 1798 226.32 TL 19.87 TL 17.98 TL 0.00 26:48 1314 265.00 TL 0.00 15:41 24.31 TL 0.00 21:59 1048 217.58 TL 0 1:46 22.43 TL 0.00 29:40
Y-14 3164 229.93 TL 180.50 TL 158.50 TL 0 0:06 0 7:18 2110 432.83 TL 46.32 TL 20.99 TL 0.00 42:54 1574 333.61 TL 29.23 TL 46.55 TL 1.35 TL 1201 469.19 TL 0 T7:04 21.44 TL 0.00 58:23
Y-15 3676 296.55 TL 278.58 TL 180.40 TL 0 0:05 0 51:48 2357 526.86 TL 73.31 TL 12.45 TL 0.00 3:41 1782 395.00 TL 50.51 TL 47.15 TL 0.96 TL 1322 567.68 TL 0 54:4222.18 TL 0.30 TL

*A time “TL” indicates that an optimal solution could not be determined within the time limit of one hour.

Table 4: Computation times (in h:mm:ss or (m)m:ss) and gaps (in percent) for medium-sized instances solved with SDP and AMA2 as well as with ILP in the case m = 2.

instance best ub

A-20-30
A-20-40
A-20-50
A-20-60
A-20-70
A-20-80
A-20-90
N-16a,
N-16b
N-17
N-18
N-20
0-20
S-16
S-17
S-18
S-19
S-20
Y-20

m=2 m=3 m=4 m=5
AMA2 1h AMA2 3h ILP 1h ILP 3h SDP 1h SDP 3h AMA2 1h AMA2 3h SDP 1h SDP 3h AMA2 1h AMA2 3h SDP 1h SDP 3h AMA2 1h AMA2 3h SDP 1h SDP 3h
gap time gap time gap time gap time gap time gap time best ub gap time gap time gap time gap time best ub gap time gap time gap time gap time bestub gap time gap time gap time gap time

12 0.00 4:29 0.00 TL 0 TL9.09 TL 0.00 2:28:32 7 0.00 0:29 16.67 TL 16.67 TL 4 0.00 0:02 33.33  TL 0.00 1:25:38 3 0.00 0:00 0.00 13:11

73 170.37 TL 108.57 TL 0.00 TL 0 1:25:41 0.00 17:53 49 4412 TL 28.95 TL 2.08 TL 2.08 TL 34 0.00 13:31 0.00 43:35 27 0.00 1:56 0.00 42:55
111 258.06 TL 164.29 TL 0.00 26:39 0.00 10:00 74 5417 TL 39.62 TL 1.37 TL 0.00 1:21:36 54 22.73 TL 8.00 TL 1.89 TL 0.00 2:24:31 42 0.00 4:51 2.44 TL 0.00 1:03:11
149 210.42 TL 148.33 TL 0.00 20:50 0.00 19:36 98 122.73 TL 92.16 TL  0.00 42:15 73 52.08 TL 37.74 TL 139 TL 1.39 TL 58 7.41 TL 0.00 1:21:14 1.75 TL 1.75 TL
249 591.67 TL 352.73 TL 0.00 57:37 0.00 28:21 166 127.40 TL 102.44 TL 0.61 TL 0.61 TL 122 90.62 TL 64.86 TL 0.83 TL0.83 TL 96 33.33 TL 18.52 TL 1.05 TL 1.05 TL
345 618.75 TL 618.75 TL 0.00 21:46 0.00 20:30 229 252.31 TL 172.62 TL 0.44 TL 0.00 1:29:48 167 131.94 TL 96.47 TL 0.00 TL 0.00 1:01:46 132 53.49 TL 40.43 TL 0.76 TL 0.76 TL

385 474.63 TL 352.94 TL 0.00 13:12 0.00 9:17 258 309.52 TL 226.58 TL 118 TL 0.39 TL 187 139.74 TL 101.08 TL 0.54 TL0.00 1 146 6591 TL 46.00 TL 0.00 34:26
434 600.00 TL 600.00 TL 0.00 38:29 0.00 15:28 290 308.45 TL 215.22 TL 1.05 TL 0.69 TL 21119718 TL 134.44 TL 0.48 TL 0.00 1:24:21 165 81.32 TL 55.66 TL 0.61 TL 0.00 1:21:09

521 740.32 TL 689.39 TL 0.00 TL 0 2:38:36 0.19 47:03 347 298.85 TL 230.48 TL 0.58 TL 0.00 1:22:25 252 300.00 TL 215.00 TL 0.00 22:02 197 105.21  TL 79.09 TL 0.00 8:13
1496 119.68 TL 89.37 TL 0.00 0:18 0.00 4:47 1002 48.01 TL 29.12 TL 0.80 TL 0.00 1:10:20 706 0.00 42:20 0.00 6:31 584 0.00 T7:21 1.57 TL 0.00 2:02:19
1168  63.59 TL 39.71 TL 0.00 0:17 0.00 2:45 792 14.78 TL 0.00 2:05:12 1.15 TL 0.76 TL 570 0.00 11:27 0.71  TL 0.00 1:50:17 462 0.00 1:41 1.76 TL 1.09 TL
1678 250.31 TL 180.60 TL 0.00 0:59 0.00 12:45 1114 66.77 TL 41.73 TL  0.00 58:58 808 23.36 TL  0.00 2:43:27 0.00 14:03 662 0.00 17:52 1.69 TL 0.30 TL
1970 200.30 TL 149.05 TL 0.00 1:55 0.00 25:31 1292 125.09 TL 92.84 TL 031 TL 0.00 1:34:43 972 41.28 TL 23.19 TL 0.00 34:11 772 11.08 TL 0.00 1:26:27 1.45 TL 0.00 1:47:02
2782 990.98 TL 522.37 TL 0.00 5:20 0.00 17:43 1856 235.02 TL 159.58 TL 131 TL 0.49 TL 1360 115.19 TL 81.33 TL 1.42 TL0.97 TL 1068 37.98 TL 23.61 TL 1.33 TL 0.47 TL
6414 1055.68 TL 728.68 TL 0.00 9:41 0.00 30:34 4284 537.50 TL 335.81 TL 0.59 TL 0.45 TL 3118 320.22 TL 224.45 TL 0.42 TL0.32 TL 2444 100.66 TL 75.07 TL 0.70 TL 0.53 TL
5446 219.04 TL 154.13 TL 0.00 0:20 0.00 8:28 3638 134.86 TL 105.65 TL 0.89 TL 0.30 TL 2600 54.30 TL 38.52 TL 0.00 26:32 2094 24.13 TL 12.10 TL 0.48 TL 0.00 1:24:53
6577 412.23 TL 277.34 TL 0.00 1:18 0.03  TL 0.00 1:31:08 4354 202.57 TL 148.66 TL 0.23 TL 0.02 TL  3225108.20 TL 82.10 TL 1.07 TL 0.84 TL 2577 46.25 TL 28.02 TL 0.98 TL 0.27 TL
7788 477.74 TL 411.02 TL 0.00 3:53 0.08 TL 0.01 TL 5110 307.17 TL 226.94 TL 0.10 TL 0.00 1:41:13 3892 175.25 TL 131.39 TL 1.35 TL0.36 TL 3083 76.88 TL 53.77 TL 2.12 TL 0.29 TL
9343 643.87 TL 488.72 TL 0.00 31:18 0.39 TL 0.34 TL 6190 431.79 TL 288.82 TL 0.98 TL 0.52 TL 4599 285.50 TL 194.43 TL 1.66 TL0.79 TL 3612 111.23 TL 82.89 TL 1.06 TL 0.56 TL

10841 930.51 TL 562.25 TL 0.01 TL 0 2:00:20 0.06 40:00 7227 542,40 TL 392.64 TL 0.85 TL 0.54 TL 5260 308.07 TL 215.54 TL 0.32 TLO0.17 TL 4105 118.93 TL 91.73 TL 0.00 34:22

6046 1200.22 TL 581.62 TL 0.00 20:04 0.05 TL 0.00 1:20:46 4033 540.16 TL 399.13 TL 0.55 TL 0.30 TL 2934 260.89 TL 179.16 TL 024 TLO0.17 TL 2282 117.54 TL 88.28 TL 0.00 9:31

*A time “TL” indicates that an optimal solution could not be determined within the time limit of one or three hours, respectively.
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Table 5: Computation times (in h:mm:ss or mm:ss) and gaps (in percent) for large instances solved with SDP and with ILP for m = 2.

A-25-10
A-25-20
A-25-30
A-25-40
A-25-50
A-25-60
A-25-70
A-25-80
A-25-90
N-21
N-22
N-24
N-25
N-30
S-21
S-22
S-23
S-24
S-25
Y-25
Y-30
Y-35
Y-40
Y-45
Y-50

m =2 m=3 m=4 m=2>5
ILP 1h ILP 3h SDP 1h SDP 3h SDP 1h SDP 3h SDP 1h SDP 3h SDP 1h SDP 3h
instance best ub gap time gap time gap time gap time best ub gap time gap time best ub gap time gap time best ub gap time gap time

41 20.59 TL 0.00 TL 0.00 34:36 27 3.85 TL 3.85 TL 20 17.65 TL 11.11 TL 15 7.14 TL 0.00 1:42:25
110 64.18 TL 34.15 TL 0.92 TL 0.00 1:29:15 75 7.14 TL 4.17 TL 55 10.00 TL 5.77 TL 40 2.56 TL 0.00 1:06:29
222 55.24 TL 21.31 TL 0.45 TL 0.00 1:24:44 146 0.69 TL 0.00 1:42:06 110 3.77 TL 1.85 TL 87 3.57 TL 1.16 TL
400 34.23 TL 22.70 TL 0.50 TL 0.25 TL 265 1.15 TL 0.76 TL 198 3.66 TL 2.06 TL 156 3.31 TL 2.63 TL
511 22.84 TL 14.32 TL 0.39 TL 0.39 TL 340 1.49 TL 0.89 TL 254 3.25 TL 242 TL 196 1.55 TL 0.51 TL
549 19.87 TL 12.50 TL 0.73 TL 0.37 TL 364 1.39 TL 0.83 TL 271 2.65 TL 1.88 TL 212 192 TL 1.44 TL
660 59.04 TL 5.60 TL 0.46 TL 0.30 TL 441 1.85 TL 1.38 TL 325 1.88 TL 1.25 TL 255 1.59 TL 1.19 TL
910 1.68 TL 0.78 TL 0.44 TL 0.33 TL 604 0.83 TL 0.50 TL 450 1.58 TL 1.35 TL 350 0.29 TL 0.00 2:45:03

1084 0.65 TL 0.00 TL 0.37 TL 0.28 TL 721 0.98 TL 0.70 TL 537 1.51 TL 1.13 TL 417 0.00 58:58
2512 0.00 51:32 0.08 TL 0.00 1:18:51 1664 1.59 TL 1.16 TL 1248 2.89 TL 1.79 TL 972 1.78 TL 0.62 TL
3064 0.23 TL 0.16 TL 0.56 TL 0.20 TL 2034 1.60 TL 0.35 TL 1530 2.89 TL 2.00 TL 1188 1.19 TL 0.00 2:03:13
4120 3.75 TL 0.59 TL 0.81 TL 0.54 TL 2712 0.97 TL 0.59 TL 2022 2.59 TL 1.66 TL 1624 3.24 TL 2.07 TL
4604 10.43 TL 1.10 TL 0.70 TL 0.00 2:03:36 3062 1.16 TL 0.69 TL 2286 293 TL 1.83 TL 1796 2.16 TL 1.35 TL
8230 21.60 TL 21.60 TL 0.48 TL 0.23 TL 5442 1.34 TL 0.68 TL 4086 3.36 TL 1.95 TL 3232 3.06 TL 1.99 TL
12431 0.00 26:51 0.44 TL 0.24 TL 8144 0.11 TL 0.00 2:52:34 6136 1.86 TL 1.44 TL 4849 243 TL 1.83 TL
14208 0.04 TL 0.04 TL 0.04 TL 0.02 2:09:55 9484 1.18 TL 0.85 TL 7082 1.72 TL 0.88 TL 5623 2.03 TL 0.92 TL
16521 0.40 TL 0.07 TL 0.51 TL 0.42 TL 10974 1.07 TL 0.71 TL 8159 1.22 TL 0.80 TL 6523 1.99 TL 1.10 TL
18658 0.38 TL 0.04 TL 0.06 TL 0.05 TL 12349 0.32 TL 0.19 TL 9147 041 TL 0.29 TL 7342 1.61 TL 0.96 TL
21172 1.37 TL 0.31 TL 0.68 TL 0.40 TL 14070 1.04 TL 0.85 TL 10487 1.81 TL 1.44 TL 8149 0.30 TL 0.00 2:26:56
10170 1.86 TL 1.24 TL 0.39 TL 0.37 TL 6761 1.00 TL 0.87 TL 5050 2.04 TL 1.61 TL 3930 0.69 TL 0.33 TL
13790 3.67 TL 2.86 TL 0.17 TL 0.14 TL 9133 0.54 TL 0.12 TL 6889 2.18 TL 1.62 TL 5390 0.92 TL 0.62 TL
19087 27.02 TL 27.02 TL 0.48 TL 0.26 TL 12705 1.28 TL 0.69 TL 9492 2.02 TL 1.32 TL 7504 1.28 TL 0.67 TL
23739 31.37 TL 31.37 TL 0.55 TL 0.38 TL 15825 1.82 TL 1.18 TL 11801 2.86 TL 1.26 TL 9381 245 TL 1.22 TL
31442 35.78 TL 35.78 TL 1.08 TL 0.66 TL 20887 2.74 TL 0.68 TL 15664 5.19 TL 2.33 TL 12434 4.21 TL 1.70 TL
41517 39.56 TL 39.56 TL 1.94 TL 0.62 TL 27695 3.46 TL 1.29 TL 20760 7.73 TL 3.24 TL 16483 5.80 TL 2.46 TL
55986 46.83 TL 46.83 TL 8.26 TL 1.51 TL 37304 15.44 TL 3.18 TL 27913 14.92 TL 5.47 TL 22291 15.34 TL 5.66 TL

Y-60

*A time “TL” indicates that an optimal solution could not be determined within the time limit of one or three hours, respectively.
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