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Québec – Nature et technologies.
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Abstract: A private bad is a commodity that causes its owner disutility. This article studies the bilateral
exchange of a bad for a good that provides utility. Considering the price of exchange to be fixed, we first
characterize the first-best choice of a single agent and study its properties, then investigate the equilibrium
strategies of the two-player game in cooperative and non-cooperative settings. The non-cooperative solution
is characterized by the normalized equilibrium à la Rosen (1965). In the equilibrium, the agents are assigned
an exogenous r-weight, and their weighted dissatisfactions resulting from the exchange are equalized. We
show the relationships between the first-best, cooperative and non-cooperative solutions. We then study
market-based policy instruments such as taxes or subsidies that aim to direct agents to the cooperative
outcome.

Keywords: Exchange of bads, coupled constraints, normalized equilibrium, first-best solution, joint welfare
optimization

Résumé : Un produit dont la possession induit une désutilité à son propriétaire est appelé une mauvaise
commodité (par exemple des déchets). Cet article s’intéresse aux échanges d’un tel produit. La raison qui
peut amener un agent à acheter une telle commodité est la fabrication d’un produit ayant une utilité positive
(produit obtenu par recyclage de déchets). Dans un premier scénario, on suppose que le prix est donné
par le marché et l’agent décide combien échanger à ce prix. Dans un deuxième scénario, on suppose que
deux agents font le commerce de cette commodité sous une contrainte jointe et on détermine un équilibre
de Rosen. Dans le dernier scénario, les joueurs peuvent collaborer en vue de la maximisation jointe de leur
profit. Ces solutions sont ensuite comparées et on discute des possibilités d’implémentation de mécanismes
règlementaires qui induisent les agents à coopérer.

Mots clés : Échange de mauvaises commodités, contraintes jointes, équilibre normalisé, solution coopér-
ative.
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1 Introduction

A private bad is a commodity that causes its owner disutility. Garbage, a local pollutant and a hazardous

material are examples of private bads. Some of these commodities can be exchanged, with the receiving

agent being compensated in return. Agents will engage in this bad-good exchange when their disutilities for

bad and/or their utilities for good differ among themselves. An illustrative example of this type of exchange

is the trade of solid municipal waste (SMW) between cities and countries. According to UN Comtrade data

on municipal waste (6-digit HS code 382510), countries reported 1.12 million tons of municipal waste exports

worldwide in 2015. These deals cost the waste exporter less than it would to stash its waste in landfills or

to use other disposal methods. Kellenberg (2012) provides an extensive empirical analysis of the waste trade

around the world.

There exist a number of theoretical studies on the management of waste through trade between countries.

Some examples are Copeland (1991), Fullerton and Kinnaman (1995), Cassing and Kuhn (2003), and Dubois

and Eyckmans (2015). These studies focus on issues of waste management efficiency, recycling, illicit dumping

or burning, and on the analysis of various policy instruments to incentivize the first-best or the second best

outcomes. The frameworks in these articles consider the price of exchanging waste to be endogenous and

determined by the trading countries’ waste supply and demand. However, there are cases in which the

price of exchange is determined by a policy maker, and the trade partners must decide and agree only on

the quantity. Price-taking behavior is studied in another stream of literature focusing on whether or not a

competitive equilibrium can exist when bads are in play (see, e.g., Hara (2005, 2008), and Hirai et al. (2006)),

but to the best of our knowledge none of the literature has looked at strategic non-cooperative or cooperative

behavior in a bilateral exchange.

The present work focuses on bilateral exchanges of bads between agents, using a simple and general

framework. First, we investigate the outcomes of the first-best scenario (a single agent vs. the market) and

next, the outcomes in a two-player cooperative and non-cooperative game, respectively. We provide results

on the relationships between these scenarios as well as on the policy instruments that direct the agents to

attain the cooperative outcome.

In our framework, we consider the quantity of exchange (q) to be a decision variable, with no assumption

on its sign (thus, the agent can be a buyer or a seller of bads) and we suppose that the price to pay for a

unit of bad export (p) is exogenously given. Agent i’s decision depends on the utility of good from exchange

ui(pqi) and the disutility of bad from exchange di(qi). In the first-best scenario, there is a market for what

the welfare-maximizing agent wants to buy or sell, and the optimal quantity is obtained by equalizing the
marginal utility and marginal disutility resulting from the exchange. In a bilateral exchange, the quantity

traded must suit the interest of both agents, not only the seller’s.

An important issue is how to make sure that both parties reach an agreement on the quantity to exchange.

There may exist situations in which the seller’s supply is greater than the buyer’s demand. Also, it may

well be the case that both agents are sellers of bads. If one assumes that the two agents can cooperate, then

a joint optimization solution can be implemented using, e.g., the Nash bargaining solution. The present

work takes another approach to the agreement problem by using the normalized equilibrium (also known as

generalized Nash equilibrium) introduced by Rosen (1965).

Rosen’s work investigates the equilibrium points in concave games in which the joint strategy space

of agents is constrained. He then introduces the normalized equilibrium in which player i is assigned an

exogenous weight (ri) and maximizes her payoff while satisfying the coupled constraint. Rosen shows that

the equilibrium exists and is unique in games that satisfy certain conditions. The theorems in Rosen’s work

have been applied to various subjects in environmental economics and operations research. Some examples in

environmental economics are Krawczyk (2005), Tidball and Zaccour (2005, 2009), Boucekkine et al. (2010),

and Bahn and Haurie (2016), and a survey of applications in operations research is provided by Facchinei

and Kanzow (2007).



2 G–2017–23 Les Cahiers du GERAD

In our analysis, we consider an agreement to be a constraint in the joint strategy space of agents facing

that exchange. The agreement takes place when both parties want to exchange the same quantity but in

opposite signs. For instance, if agent i wants to import quantity q of bad (qi = q) and agent j wants to export

the same quantity (qj = −q), then we say that both parties agree on making that exchange. Therefore, the

coupled constraint qi + qj = 0 represents the agreement points in the joint strategy space of agents i and j.

Then, all agents maximize their payoffs by taking into account that constraint, and we do not consider an

outside option. This means that the agents either want to agree, are compelled to agree, or are incentivized

to agree. When one of these is the case, then, by applying Rosen’s theorems, we show that the game of

exchanging a bad has a unique agreement point that is a normalized equilibrium. A similar application of a

normalized equilibrium to a bilateral exchange problem can be found in Fl̊am (2016).

In the cooperative solution (qci ), all agents are assigned a weight (ωi), and the sum of weighted payoffs

(joint welfare) is maximized given that both agents agree. In the non-cooperative solution (q0i ), the normalized

equilibrium is characterized such that all agents are assigned a weight (ri) and each agent’s weighted penalty

from being constrained is equalized with the other’s. The equilibrium consists of an agent who is willing to

buy more (or sell more) bad and a counterpart who is willing to sell less (or buy less) bad.

The results show that both the cooperative and non-cooperative solutions belong to the interval bounded

by the first-best choices of agents i and j, namely, qci , q
0
i ∈ (q∗i ,−q∗j ). The position of the agreement point

with respect to the first-best quantities is determined by the relative weights of agents (ri/rj). Moreover,

the non-cooperative solution coincides with the cooperative one if the r-vector is the inverse of the agents’

weights under joint welfare (r = 1/ω). The implication of these results are twofold. First, if the agents

can choose their r-weights, then they can attain the cooperative outcome without the existence of a market

or the presence of a regulator. Second, if there is a policy maker that can influence the agents’ r-weights,

then she can incentivize them to attain the cooperative outcome. When the policy maker uses market-based

instruments such as taxes and subsidies, we determine the optimal levels of regulation for each agent that lead

to the cooperative level of exchange, and show their relationships to the weight parameters in the cooperative

and non-cooperative solutions.

The article is organized in the following order: Section 2 describes the framework with the assumptions

made on the functional forms for utility and disutility. Section 3 presents the first-best scenario, in which a

single agent exchanges a bad in a market that accepts any quantity that she is willing to trade. Section 4

studies the two-player game in cooperative (4.1) and non-cooperative (4.2) settings. Section 5 concludes.

2 The framework

Consider a commodity that is a bad. Agents, which can be regions, countries, municipalities, or individuals,

can exchange it among themselves. The agent’s endowment in bad is b. We denote by q the quantity of

exchange and by d(q) the corresponding disutility. The exchange can take place in both directions, that is,

q ∈ [−b,+∞), which means that the agent can be a buyer or a seller of a bad. When q < 0, the disutility

that the agent suffers is less than in the no-exchange case.

We make the following assumptions on the disutility function:

Assumption 1 d : R 7→ R is increasing and strictly convex (d′ > 0, d′′ > 0) with d′(0) = ϕ ∈ (0,+∞) and

d′(−b) = 0.

The convexity of the disutility function is common in the literature dealing with pollution or other bads.

The statement that the marginal disutility is positive and finite in the absence of exchange follows from the

fact that the agent already owns some bad. Another way of interpreting this assumption is saying that the

agent can live without making this exchange. This assumption is crucial in this setup since it enables the

study of an intermediate case in which an agent can be the buyer or a seller of bad. Finally, d′(−b) = 0 ,

meaning that the agent sells all the bad in her possession, ensures that the first-best quantity will always be

interior.
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The bad can be exchanged with other agents at price p > 0 per unit, which denotes the quantity of good

to be given in exchange for a unit of bad. The agent selling a quantity q of a bad pays the buyer pq quantity

of goods (considered the numéraire), which provides utility u(pq). Note that, as for the disutility function,

the utility function can also have a negative input (pq < 0) when the agent sells bads and pays the buyer

goods in return, taking away from her utility. Along with the concavity assumption, we suppose that the

marginal utility is positive and finite when there is no exchange.

Assumption 2 u : R 7→ R is increasing and strictly concave (u′ > 0, u′′ < 0) with u′(0) = ψ ∈ (0,+∞).

The shape of the utility function we assume here has some similarities to and differences with the standard

utilitarian framework. Since the currency of exchange is a generic good, the assumption of the utility

function’s concavity is consistent with the common approach of continuous and strongly monotonic consumer

preferences. Yet, we will see there are interesting consequences to utility depending on the revenue (or cost)

of exchange. The motivation behind the finiteness of the marginal utility at the no-exchange state is similar

to the one for disutility: one can suppose that the agent is initially endowed with some good and thus, that

her marginal utility is positive and finite, and that also exchange is not an essential need for the agent.

The payoff (or welfare) of the agent is given by

v(q) = u(pq)− d(q). (1)

This payoff function is similar to the one commonly used in models of public bads, e.g., the transboundary

pollution game and the economics of climate change (see the surveys in Missfeldt (1999) and Tol (2009)), and

other classical problems, e.g., production of a firm. However, our formulation has two distinctive features with

respect to the literature, namely, the payoff depends on revenue, and we allow for negative-value decisions.

In the next section, we explore the first-best scenario. Then, we proceed to the game between two agents

in both cooperative and non-cooperative settings.

3 First-best scenario: Single agent vs. the market

The objective of this section is to study the first-best choice of a single agent facing the decision of whether

or not to exchange a bad. Suppose there is a market for this commodity and its price p is exogenously given.

The agent’s optimization problem is

max
q
v(q) = u(pq)− d(q). (2)

Maximization yields

pu′ (pq∗) = d′(q∗),

that is, the agent is willing to exchange q∗(p) quantity of the bad that equalizes marginal utility to marginal

disutility. As both u (·) and d (·) are strictly increasing, then, for any given price of exchange, there exists a

unique q∗(p) that satisfies the first-order condition.

Let p̃ = d′(0)/u′(0) = ϕ/ψ, which is the price level that equalizes the marginal utility of an additional

good to the marginal disutility of an additional bad when the quantity of exchange is null. By Assumptions 1

and 2, it is a given positive constant. The agent is satisfied with not trading when the price of the bad is

at that level. For any other price p 6= p̃, the agent will buy or sell a quantity of bad. Comparative statics

on q∗(p) show that its change with respect to p is ambiguous and depends on the level of p. The following

proposition shows the properties of a single agent’s offer curve for exchanging a bad:

Proposition 1 The first-best quantity of exchange that maximizes the agent’s welfare (q∗(p)) is such that

pu′∗(p) = d′∗(p) holds. It can be positive, null, or negative, depending on the price level.

q∗(p)


< 0 if p < p̃

= 0 if p = p̃

> 0 if p > p̃

(3)
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The change in the welfare-maximizing quantity with respect to price depends on the price level and the shape

of the utility function.

dq∗(p)

dp


> 0 if σ(p) > 1

= 0 if σ(p) = 1

< 0 if σ(p) < 1

(4)

where

σ(p) = − u′∗(p)

pq∗(p)u′′∗(p)
,

is the endogenous relative risk-aversion coefficient.

Proof. The first part is obtained by the first-order condition (pu′∗(p) = d′∗(p)). For the second part, applying

implicit differentiation to the first-order condition and rearranging terms leads to

dq∗(p)

dp
=
u′∗(p) + pq∗(p)u′′∗(p)

−p2u′′∗(p) + d′′∗(p)
. (5)

The denominator in (5) is clearly positive. Then, the sign of dq∗(p)
dp depends on the sign of the numerator,

which gives the result of Proposition 1.

Proposition 1 reveals some first insights about the first-best choice for an agent. When the price is

sufficiently low (p < p̃), the agent is willing to give some of it up to reduce the amount of bad she owns. The

agent would thus sell some of the bad and pay the buyer some good in return. On the contrary, when the

price is sufficiently high (p > p̃), the marginal utility that could be gained through additional good outweighs

the disutility that additional bad would cause. The agent is then willing to buy some bad from the market

to benefit from the utility of the good taken in return. Clearly, the value of p is a crucial parameter in

determining the first-best choice.

The second part of Proposition 1 shows how the first-best quantity of exchange varies with the price of

the good. It shows that the agent’s willingness to sell less (or more), or buy more (or less) of a bad when p

rises depends on the shape of the utility function, and more specifically on the agent’s relative risk-aversion

(σ(p)). The first observation from condition (4) is that, when the agent is a seller (that is, q∗(p) < 0), a

higher p implies a higher value of q∗(p) (a lower absolute value).1 The second observation is that, if the level

of price is p = p̃, yielding q∗(p̃) = 0, then an increase in the price of good always makes the agent a buyer

of bad
(

dq∗(p̃)
dp > 0

)
.2 Accordingly, the agent’s offer curve of exchange crosses q∗(p) = 0 at the single point

p = p̃ with a positive slope; therefore it intersects only once the q = 0 axis on the (q, p) plane.

When the agent is a buyer (q∗(p) > 0), the effect of an increase in the price of the good is not as

straightforward. It is not certain that the condition in (4) that ensures a decrease in quantity with price

(σ(p) < 1) could ever hold true. To understand this, we check whether the endogenous relative risk aversion

coefficient can ever be equal to 1. The following corollary presents the result.

Corollary 1 If the marginal utility is concave
(
u
′′′ ≤ 0

)
, then there exists p̂ > p̃ with q∗′(p̂) = 0, such that,

for any p > p̂, we have q∗′(p) < 0 as long as q∗(p) + pq∗′(p) > 0.

1Condition σ(p) > 1 holds if
u′∗(p) > −pq∗(p)u′′∗(p). (6)

When the first-best quantity of exchange is negative (q∗(p) < 0), an increase in p will always increase q∗(p) (making it less
negative) because the term on the right-hand side is always negative (−pq∗(p)u′′∗(p)) < 0) and the left-hand side is always
positive (u′∗(p)) > 0).

2This is because the right-hand side in condition (6) is null but the left-hand side is positive when q∗(p) = 0.
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Proof. We previously showed that q∗′(p) > 0 when q∗(p) ≤ 0. Now we consider the case in which the agent

is a buyer q∗(p) > 0. From condition (4) we have q∗′(p) = 0 iff σ(p) = 1, which is true when

u′∗(p) = −pq∗(p)u′′∗(p). (7)

We study whether condition (7) holds true for a price level p > p̃. When p = p̃ we have q∗(p̃) = 0, which

implies that LHS(7) = ψ and RHS(7) = 0. Then, whether condition (7) holds true for a level of p depends

on how LHS and RHS change with p.

The change of LHS(7) with respect to p is written as u′′∗(p))
[
q∗(p) + pq∗′(p)

]
, which is negative, and

hence, LHS(7) is decreasing in p. The change of RHS(7) writes as −(q∗(p)+pq∗′(p))u′′∗(p)−pq∗(p)(q∗(p)+

pq∗′(p))u′′′∗(p). The first element is positive. So RHS(7) is certainly increasing in p when −pq∗(p)(q∗(p) +

pq∗′(p))u′′′∗(p) ≥ 0. This is true if u′′′∗(p) ≤ 0. In this case, it is certain that (7) will hold true for a

price level p = p̂ > p̃. For p > p̂, the first-best quantity of exchange declines (q∗′(p) < 0) as long as

q∗(p) + pq∗′(p) > 0.

The shape of the exchange offer curve depends on the convexity-concavity of the marginal utility, the

third derivative of the utility function. If the marginal utility is concave, then it decreases more rapidly as

more of the good is received in exchange (a higher pq). Because of this effect, the agent is willing to buy

less of the bad after a certain price threshold. However, when the marginal utility is convex, the reduction

in marginal utility decreases with the quantity of the good. Then, it is ambiguous whether a certain price

threshold like that exists: it may well be the case that the agent would always buy more of the bad as the

price increased.

The results presented above show the first-best outcome for an agent. In this analysis there is always a

counterpart (the market) that enables what the agent is willing to buy or sell. The more interesting case is

how two agents facing such an exchange, both having the first-best choices presented as above, can achieve

an agreement cooperatively and non-cooperatively. The following section studies both situations.

4 Two-player game

There are two agents, indexed by i = 1, 2, each possessing bi amount of a bad. The disutility for bad (di)

and the utility of good (ui) satisfy Assumptions 1 and 2. As in the first-best case, q quantity of bad could

be exchanged in return for pq quantity of good, with the price p being an exogenously given constant. The

strategy of player i is the amount of the bad that she is willing to exchange, qi ∈ Ei = [−bi,+∞). The vector
q = {q1, q2} denotes the pair of strategies and belongs to the joint strategy space E (q ∈ E = E1 × E2).

In the previous scenario, the agent could find a taker (the market) for what she wanted to exchange. Now

we have two agents engaged in a bilateral relationship, and what one proposes may not correspond to what

the other wants. Consequently, a solution materializes only if the agents are willing to exchange the same

quantity in opposite signs (qi = −qj). Therefore, R = {q ∈ E| qi + qj = 0} denotes the set of agreement

points in the joint strategy space of agents i and j. The set R is convex, closed, and bounded.

The payoff function of each player is denoted as vi(q) = ui(pqi)− di(qi). By Assumptions 1 and 2, vi(q)

is concave in qi and does not depend on the other player’s strategy qj . However, to execute an exchange,

the agents need their counterpart to agree. Hence, this is a class of game in which the players’ objective

functions are decoupled, but the strategy sets are coupled due to the dependence on the counterpart’s will.

We first investigate how the agents reach an agreement in a cooperative way, and next we study the

non-cooperative game.

4.1 Cooperative exchange

The joint welfare is given by
∑

i ωivi(q), where ωi > 0 is the weight assigned to player i, with ω1 + ω2 = 1.

The optimization is carried out subject to the constraint q = q1 = −q2. Consequently, the optimization
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problem can be written as follows:

max
q
{ω1 (u1(pq)− d1(q)) + ω2 (u2(−pq)− d2(−q))} . (8)

The following proposition presents the cooperative solution.

Proposition 2 For any given weight vector ω = {ω1, ω2}, there exists a unique cooperative quantity of

exchange qc = {qc,−qc} satisfying

ω1 (pu′c1 − d′c1 ) = ω2 (pu′c2 − d′c2 ) . (9)

For two given weight vectors ωA =
{
ωA
1 , ω

A
2

}
and ωB =

{
ωB
1 , ω

B
2

}
with ωA

1 > ωB
1 and ωA

2 = ωB
2 (which

means that agent 1 has more weight in ωA), the cooperative solution A is closer to the first-best choice of

agent 1 compared to B, that is,
∣∣qA − q∗1∣∣ < ∣∣qB − q∗1∣∣.

Proof. Equation (9) is the first-order condition associated to program (8). Let ωivi(q) = ωi (ui(pq)− di(q)).
By Assumptions 1 and 2, we have ωiv

′
i(q) ≥ 0 or ωiv

′
i(q) ≤ 0, so the terms on the left-hand side and right-hand

side can be either both positive or both negative. We also have ωiv
′′
i (q) < 0 and −ωiv

′′
i (−q) > 0. Therefore,

in Equation (9), the term on the LHS is decreasing in q whereas the RHS is increasing in q. Therefore, a

solution to (8) is guaranteed and is unique.

For the second part of the proposition, let q∗i be such that v′i(q
∗
i ) = 0 (as in the first-best case), and denote

qA and qB the cooperative solutions corresponding to weight vectors ωA and ωB . There can be two cases:

ωB
1 v
′B
1

(
qB
)
< 0 and ωB

1 v
′B
1

(
qB
)
> 0.

First consider ωB
1 v
′B
1

(
qB
)
< 0. This is the case when qB > q∗i . By (9), we have ωB

1 v
′B
1

(
qB
)

=

ωB
2 v
′B
2

(
−qB

)
. Now replace ωA

1 with ωB
1 (ωA

1 > ωB
1 ), which yields ωA

1 v
′B
1

(
qB
)
< ωB

2 v
′B
2

(
−qB

)
. To sat-

isfy the equality, v′B1
(
qB
)

must increase and thus qB must decrease, yielding qA < qB . Moreover, q cannot

decrease until q∗i because it requires v′i(q
∗
i ) = 0 but the RHS can have a zero value only if q∗j = −q∗i . Therefore,

when q∗j 6= −q∗i we have q∗i < qA < qB .

Now consider the second case, ωB
1 v
′B
1

(
qB
)
> 0. In this case, qB < q∗i . Replacing ωA

1 in Equation (9) for

ωB writes as ωA
1 v
′B
1

(
qB
)
> ωB

2 v
′B
2

(
−qB

)
. As v′1(q) is decreasing, qB must decrease to satisfy the equality.

Therefore, qA > qB and qB < qA < q∗i . Figure 1 illustrates this graphically.

-

Figure 1: Sample equilibrium points in the cooperative game (ω1
1 < ω2

1)

Figure 1 illustrates the results of Proposition 2. We see that the weighted marginal gain from exchange

is equalized between the two agents in the cooperative solution. Indeed, the cooperative solution depends
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on a range of factors including the agents’ utility and disutility as well as their weights in joint welfare.

For instance, in Figure 1, suppose that two agents have equal weights (ω1
1 = ω1

2), and each of them would

be willing to sell some of their bad if there was a counterpart that would accept (q∗1 < 0 and q∗2 < 0). In

that case, the cooperative solution favors the agent who is willing to sell more (agent 2 in the figure). The

agents cooperatively agree on the exchange in which agent 2 sells qc1 quantity of the bad to agent 1 (Ec
1).

Furthermore, consider the case in which agent 1 has more weight in joint welfare than agent 2 (ω2
1 > ω2

2).

When this is the case, the cooperative solution favors agent 1 and gets closer to the first-best choice of agent 1.

Then, agent 2 buys qc2 quantity of the bad from agent 1, which increases agent 1’s welfare with respect to

agent 2 (Ec
2).

To sum up, the joint-welfare maximizing solution equalizes the marginal gain from exchange, and it favors

the agent with a greater payoff weight. In a bilateral monopoly context, there is no reason to assume different

weights for the agents. Another interpretation of cooperation could be that a policy maker assigns different

weights to the players and determines the optimal exchange.

4.2 Non-cooperative exchange

Our aim is to characterize an equilibrium point where two agents exchange in a non-cooperative way and

to study its links with the first-best and cooperative solutions. We then analyze potential instruments

that incentivize the agents to reach an agreement on the cooperative joint-welfare maximizing quantity of

exchange.

In the non-cooperative game, each agent aims to maximize her individual payoff. Unlike in the first-best

or cooperative cases, the counterpart’s agreement is not taken as given. The assumption is that the agents

do not have any outside option and that the exchange can take place only if two agents want to exchange

the same quantity in opposite signs (qi = −qj). Therefore, a non-cooperative solution exists only when the

pair of strategies belongs to the set of agreement points (q ∈ R), which represents the constraint in the

joint strategy space of agents i and j. The agents’ payoffs are concave and there is a coupled constraint

that restricts the agents’ actions, therefore the game at hand is a concave game as in Rosen (1965). The

non-cooperative equilibrium point of this two-player game is given by a point q0 that satisfies the following:

vi(q
0) = max

qi

{
vi(qi, q

0
j )
∣∣ (qi, q

0
j ) ∈ R

}
for i = 1, 2. (10)

Rosen introduced the notion of normalized equilibrium for the class of N -person concave games. In this type

of equilibrium, all agents maximize their payoffs while satisfying the coupled constraint, leading to having

a multiplier associated to this constraint (µi) that reflects the constraint’s effect on the payoff of agent i.

Consider an exogenous vector r that assigns each agent a weight ri. The normalized equilibrium is defined

as the point where the weighted values of coupled constraint multipliers are equalized among all agents (here

µi/ri = µj/rj). Rosen provides the necessary conditions for the existence and uniqueness of a normalized

equilibrium for any given positive r-vector (r > 0). In the following lemma, we verify that these conditions

are satisfied for the game we address; hence there is a unique quantity of the bad such that both agents agree

to an exchange in the non-cooperative game.

Lemma 1 For any given r > 0, the two-player game of exchanging a bad attains a unique normalized equi-

librium à la Rosen.

Proof. Using the notation of Rosen (1965), let σ(q, r) = r1v1(q) + r2v2(q), where r > 0 denotes the vector

that assigns ri weight to player i’s payoff. Furthermore, let g(q, r) be the pseudogradient of σ(q, r), that is,

g(q, r) = [ri∇ivi(q)]. The Jacobian of g with respect to q is written:

G(q, r) =

[
r1(p2u

′′

1 (pq1)− d′′1 (q1)) 0

0 r2(p2u
′′

2 (pq2)− d′′2 (q2))

]
. (11)
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The Jacobian G is negative-definite since each diagonal element is negative (Gii < 0 ∀i). The payoff functions

are diagonally strictly concave, and the coupled constraint R is convex, closed, and bounded; therefore the

game attains a unique equilibrium as shown in the uniqueness theorem of Rosen (1965).

The existence and uniqueness of a normalized equilibrium is guaranteed by the decoupled structure of the

payoff functions and the coupled constraint R being convex, closed, and bounded. Because of the decoupled

concave payoff functions, the Jacobian of the marginal payoff matrix is ensured to be negative-definite since it

is a diagonal matrix with all negative elements. In effect, this is Rosen’s diagonal strict concavity condition,

which ensures the uniqueness of the equilibrium.

We proceed with the characterization of the unique normalized equilibrium. The Lagrangian of agent i

associated to (10) is as follows:

Li(q, µi) = ui(pqi)− di(qi)− µi(qi + qj). (12)

First-order conditions write as

pu′i(pqi)− d′i(qi)− µi = 0 for i = 1, 2, (13)

q1 + q2 =0. (14)

The variable µi in condition (13) denotes the multiplier of agent i associated to the coupled constraint

q1 + q2 = 0. It plays a crucial role in the characterization of the non-cooperative equilibrium, and it can be

interpreted as the dissatisfaction or penalty that agent i experiences for being constrained by the counterpart’s

will on the quantity of exchange.

Let q∗i be the quantity that maximizes the payoff of agent i without any constraint, pu′i(pq
∗
i )−d′i(q∗i ) = 0,

which is the level agent i would choose in the absence of the constraint, as analyzed in Section 3. If the

counterpart’s choice is the same quantity but in opposite sign (qj = −q∗i ), then the payoff of agent i is already

at its maximum on the coupled constraint. In that case, the value of the multiplier is null (µi = 0). The

agent exchanges her first-best quantity, and being constrained by the need for the counterpart’s agreement

does not cause any dissatisfaction or penalty.

When the counterpart’s choice is different than the first-best choice of agent i (qj 6= −q∗i ), the value of

the multiplier is going to be non-zero (µi 6= 0). The agent is willing to increase or decrease the quantity

of exchange but is bound by her counterpart. To satisfy the coupled constraint, agent i’s choice is going

to be different than the first-best quantity (qi = −qj 6= q∗i ). This is why the agent will experience a

dissatisfaction about the exchange, represented by the magnitude of the multiplier µi. The difference in the

exchange quantity from the first-best quantity of agent i increases as the absolute value of µi becomes larger,

and vice versa.

The sign of µi can be positive or negative, as the constraint can be binding from below or above. For

instance, if −qj = qi < q∗i then agent i would like to increase the quantity being exchanged but is restricted

by her counterpart. This case corresponds to µi > 0 as qi < q∗i leads to pu′i(pqi) − d′i(qi) > 0. In this case,

agent i would like to buy more (or sell less) of the bad, but agent j does not agree to it. In the contrary

case, that is, if −qj = qi > q∗i , then the agent is willing to decrease the quantity of the exchange but her

counterpart does not allow it. Then, we have pu′i(pq
∗
i )−d′i(q∗i ) < 0 and µi < 0, corresponding to the situation

in which the agent is either willing to buy less of the bad or sell more of it.

For a given vector of weights r = {r1, r2}, the unique normalized equilibrium is defined as the quantity of

exchange such that the weighted value of each agent’s multiplier is equal to the other’s. This is to say that

each agent’s weighted dissatisfaction from the exchange is equalized in the equilibrium, that is,

µ1

r1
=
µ2

r2
. (15)

The equality in (15) must hold; therefore µi is either positive or negative for both agents. Therefore, the

equilibrium consists of either an agent willing to buy more and its counterpart willing to sell less, or an agent
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willing to sell more and its counterpart willing to buy less of the bad. By conditions (13), (14), and (15), the

equilibrium quantity of exchange (q0) must satisfy

pu′1(pq0)− d′1(q0)

r1
=
pu′2(−pq0)− d′2(−q0)

r2
. (16)

The following propositions characterize the unique normalized equilibrium of the two-player game:

Proposition 3 For a given r > 0, the unique normalized equilibrium of the two-player game of exchanging a

bad is (q0i , q
0
j ) = (q0,−q0) that satisfies (16).

Proposition 4 For two given weight vectors rA =
{
rA1 , r

A
2

}
and rB =

{
rB1 , r

B
2

}
with rA1 > rB1 and rA2 = rB2

(which means that agent 1 has more weight in rA), the non-cooperative solution B is closer to the first-best

choice of agent 1 compared to A,
∣∣qA − q∗1∣∣ > ∣∣qB − q∗1∣∣.

Proof. The proof of uniqueness is identical to the one for the cooperative solution in Proposition 2. The

proof for the effect of r follows the same methodology as the proof for the role of ω in Proposition 2. The

result is inverse since r and ω have opposite effects on the equilibrium condition. A graphical illustration is

presented in Figure 2.

v1 ' qR/r11

v1 ' qR  r12

v2 ' -qR  r2

-

qR

0

q1
* q2

*
qR2qR1

ER1

ER2

q1

q2

0

q1
*

q2
*

Figure 2: Sample equilibrium points in the non-cooperative game (r11 < r21)

Figure 2 illustrates the results given in Propositions 3 and 4. To facilitate comparison, it depicts two

agents who are willing to sell a bad (q∗i < 0 for i = 1, 2) as in Figure 1 in the cooperative case. The normalized

equilibrium takes place when the weighted dissatisfaction from the exchange is equalized among all agents.

Remark 1 The equilibrium quantity of exchange always lies within the interval of first-best choices for agents i

and j, q0i ∈
(
q∗i ,−q∗j

)
.

Remark 1 implies that the quantity of exchange can be null only if the first-best levels of all agents share

the same sign, meaning that the two agents must be either both sellers (as in the case depicted in the figure),

or both buyers. In that case, for a given r-vector, if the price of exchange satisfies

p =
(r2ϕ1 − r1ϕ2)

(r2ψ1 − r1ψ2)
,

then there is no exchange in the equilibrium. For all different values of p and r there will be an exchange. In

the other case, if an agent would like to buy and the other would like to sell, then the equilibrium quantity
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of exchange is always non-zero. One can illustrate that case in Figure 2 with both marginal payoff curves

crossing the horizontal axis at the same side of the origin.

Whether the quantity of the exchange is close to an agent’s first-best choice depends on the exogenous

weight vector r. One can observe that having a higher r-weight for agent 1 while keeping r2 constant changes

the slope of the weighted marginal payoff of 1 to be more horizontal (the dashed curve), which means

that the equilibrium point moves closer towards the first-best choice for agent 2 (from ER1 to ER2), and

agent 1’s dissatisfaction from exchange increases with r1. Hence, the weight vector r affects the quantity of

the exchange in an inverse way compared to the effect of ω weights in the cooperative case. The following

corollary presents this result formally:

Corollary 2 Consider that the weights of agent 1 and 2 in joint welfare are {ω1, ω2}. The non-cooperative

solution coincides with the cooperative one if

{r1, r2} =

{
1

ω1
,

1

ω2

}
. (17)

Proof. Follows directly from (9) and (16).

The relation between the non-cooperative and cooperative outcomes is shown in Corollary 2. Accordingly,

a higher agent weight in joint welfare requires a lower r-weight assigned to that agent in the non-cooperative

game in order to achieve the level of cooperative joint-welfare maximizing exchange. This leads us to make

the following remarks:

Remark 2 If the agents can choose their r-weights, then they can attain the cooperative outcome without the

existence of a market or the presence of a regulator, by setting their weights as in Corollary 2.

Remark 3 If the policy maker can influence the agents’ r-weights, then it can incentivize them to attain the

cooperative outcome.

Remark 2 emphasizes that the cooperative solution is included in the non-cooperative one for r = 1/ω.

Therefore, if the agents wish to exchange such that joint welfare is maximized, they can do so by choosing

their r-weights according to the weights in the joint welfare. Remark 3 refers to policy intervention. For the

game we address, some policy tools that could influence the r-vector are market-based instruments such as

taxes or subsidies on per-unit of exchange, or regulations that enforce a certain quantity of exchange. In

effect, for the case of market-based instruments, the magnitude of the multiplier of agent i (µi) reflects a

per-unit tax or subsidy imposed on agent i. This can be seen from (13). The optimal tax or subsidy rates

for each agent are

τ1 = pu′1(pqc)− d′1(qc), (18)

τ2 = pu′2(−pqc)− d′2(−qc), (19)

where qc is given by Proposition 2, and τ1/τ2 = µ1/µ2. In the following, we consider agent 1 as the buyer of

a bad (qc > 0), and thus, agent 2 as the seller of a bad. When µ1, µ2 > 0, which corresponds to the case in

which agent 1 would like to buy more and agent 2 is willing to sell less, the instruments τ1 is a per-unit tax

and τ2 is a per-unit subsidy. Accordingly, to incentivize the agents to agree on the jointly optimal level of

exchange, the agent with a lower weight in joint welfare (a lower ωi) has to be assigned with a higher per-unit

tax or subsidy (a higher ri) compared to the other agent. More precisely, the ratio of taxes and subsidies has

to be the inverse of the ratio of the agents’ weights in joint welfare (τ1/τ2 = ω2/ω1).

And when µ1, µ2 < 0, which is the case where agent 1 is willing to buy less and agent 2 is willing to sell

more, the instrument τ1 is a per-unit subsidy and τ2 is a tax. In this case, the agent with a lower weight in

the joint welfare is given a higher subsidy to accept the jointly optimal level. The joint optimum requires the

transfer of a bad to an agent who is not willing to buy it; thus the policy instrument corrects the disutility

caused by the buyer’s additional quantity bad, making her agree to buy.
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Lastly, the following corollary presents the effect of an increase in price (p) in the non-cooperative game:

Corollary 3 The effect of an increase in the price of exchange depends on the differences in weighted marginal

utilities
(

u′1(pq
0(p))

r1
− u′2(−pq

0(p))
r2

)
.

Proof. Considering the equilibrium quantity of exchange q0(p) in (16), and applying implicit differentiation,

and then rearranging yields:

dq0(p)

dp
=
r2u
′
1(pq0(p))− r1u′2(−pq0(p)) + pq0(p)

[
r2u
′′
1(pq0(p)) + r1u

′′
2(−pq0(p))

]
r2d′′1(q0(p)) + r1d′′2(−q0(p))− p2(r2u′′1(pq0(p)) + r1u′′2(−pq0(p)))

. (20)

The denominator is positive. We investigate two possible cases: q0(p) > 0 and q0(p) < 0.

When q0(p) > 0, hence when agent 1 is the buyer and agent 2 is the seller, the third term in the

nominator is negative. Then the sign of the nominator depends on the sign of r2u
′
1(pq∗(p))− r1u′2(−pq∗(p)).

If r2u
′
1(pq∗(p)) − r1u′2(−pq∗(p)) < 0 then dq0(p)

dp < 0. In the second case (q0(p) < 0), the third term in the

nominator is positive. This implies that dq0(p)
dp > 0 when r2u

′
1(pq∗(p))−r1u′2(−pq∗(p)) > 0 and vice versa.

Corollary 3 implies that there is an ambiguity about the sign of dq0(p)
dp . However, even though it is possible

to have dq0(p)
dp > 0 when q0(p) > 0, the sign is going to change to negative after a level of p because the first

term in r2u
′
1(pq∗(p)) − r1u′2(−pq∗(p)) is decreasing, whereas the second term is increasing in p. Thus, for

high prices, we have q0(p) moving towards zero. Similarly, when q0(p) < 0, we have the inverse result, that

is, after a level of p, the equilibrium quantity of the exchange must increase and thus moves towards zero.

5 Conclusion

This article characterizes the first-best, cooperative and non-cooperative outcomes of an exchange in which

agents buy (or sell) a bad in return for receiving (or paying) a good with an exogenously given price. The

framework of the analysis is simple and general, and differs from the related literature in various ways.

We consider agents who can be both buyers and sellers and who are independent in their decision-making

but constrained by the need for their opponent’s agreement on the quantity to be exchanged. The non-

cooperative solution is characterized by a normalized equilibrium à la Rosen (1965) that assigns exogenous

r-weights to agents.

The results show that agents’ first-best outcomes determine the boundaries of the interval in which

cooperative and non-cooperative solutions can exist. Moreover, the non-cooperative solution is inversely

related to the cooperative one in terms of exogenous r-weights and agents’ weights under joint welfare. We

show that the agents can attain the cooperative solution in the non-cooperative game if they choose their

r-weights accordingly, even in the absence of a regulator or a market structure. Moreover, the policy maker

can direct the agents to the cooperative solution if it can influence the r-weights, or by using market-based

instruments such as taxes and subsidies.

One can verify that the result of existence and uniqueness in Lemma 1 can be generalized to the case of

N -players that engage in a good-bad exchange among themselves. The exchange is organized in such a way

that all agents decide and agree on the quantity to be exchanged and then there is a distribution of goods

and bads among agents according to the agreed-upon quantities. Therefore, an agent can be transferring

bads or goods from/to multiple agents. A framework consisting of a network of agents could be used in order

to study a purely bilateral exchange.

Further research directions include the extension to a dynamic framework where the quantity of the bad

accumulates with some decay. The present work considers the price of exchange to be exogenous, but results

would differ if there were a bidding mechanism or a reference price that the agents can manipulate over time.
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In addition, our framework abstracts from some important determinants of bads exchanges, such as transfer

costs and reasons to exchange for recycling. Including these features would make it possible to analyze their

roles in the outcomes of different scenarios.
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