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Université du Québec à Montréal, ainsi que du Fonds de recherche du
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Dépôt légal – Bibliothèque et Archives nationales du Québec, 2017
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Abstract: This paper proposes a hierarchical decision making model for a coupled planning and operation
problem of an advanced microgrid. The proposed model, is formulated as a bilevel optimization problem
and recast as a mathematical program with equilibrium constraints (MPEC) where the decision variables
of the two problems are independently controlled. The upper problem determines the strategic investment
decision and optimal configuration of the microgrid, the needs for carbon emission permits and peak charges
from using neighbouring network capacity, while the lower problem optimizes the output of the distributed
energy resources (DER) through the implementation of an energy management system (EMS). The proposed
approach was applied to the energy infrastructure of a remote mine. Results obtained through its application
show significant savings in the cost of energy and improved benefits to stakeholders. They also show the
advantages of a bilevel approach over other state-of-the-art microgrid planning methodologies.

Keywords: Bilevel optimization, economic analysis, energy management, distributed energy resources,
microgrid planning

Résumé : Cet article propose un modèle de planification hiérarchique capable d’effectuer de manière
systématique le lien entre les exigences opérationnelles et de conception d’un micro-réseau électrique. Le
problème de planification intégré est formulé tel un problème d’optimisation bi-niveaux qui est, par la suite,
reformulé tel un problème de programmation mathématique sous contrainte d’équilibre. On démontre que la
formulation bi-niveaux est appropriée étant donné que les variables de décision au niveau stratégique ne sont
pas directement alignées avec celles du niveau opérationnel. Concrètement, c’est au niveau supérieur que
les décisions stratégiques d’investissements, de conception, de gestion des permis d’émission de carbone et
d’utilisation de ressources énergétiques exogènes sont arrêtées. De son côté, le niveau inférieur procède à la
programmation opérationnelle du micro-réseau via l’exploitation de ses ressources énergétiques. On applique
cette approche à un cas de mise à niveau de l’infrastructure énergétique d’une exploitation minière éloignée.
Les résultats obtenus démontrent comment l’approche proposée permet de réduire les charges d’exploitation
tout en générant d’autres bénéfices pour les différents acteurs du système. On y voit aussi comment l’approche
bi-niveaux est avantageuse comparativement à d’autres méthodes de planification des micro-réseaux.

Mots clés : Optimisation bi-niveaux, analyse économique, gestion de l’énergie, programmation opérationnelle
des ressources énergétiques, planification des micro-rseaux
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Nomenclature

The main symbols used in the paper are listed below:

Indices

i Index for all energy resources

t Index for hour

h Superscript for heat/thermal resources

e Superscript for electrical resources

y Index for years of project lifetime

r Index of demand response (DR)

Sets

B Set of indices for new DERs

B̄ Set of indices of new DERs except storage

A Set of existing resources i in the network

G Set of dispatchable generating units

D Set of indices of diesel generating units

N Set of combined heat and power (CHP) units

Q Set of non-CHP gas fired thermal units

S Set of electrical energy storage (ESS) devices

U Set of remote community power resources

W Set of indices of wind power generating units

Y Set of indices of years in the project lifetime J

T Set of indices of time t within a year

Parameters

vi Energy to capacity ratio of storage resource i

ker Electrical DR energy to power ratio

khr Thermal DR energy to power ratio

we
r Percentage of electrical load available for DR

wh
r Percentage of thermal load available for DR

Cb
i Budget constraint for resource i

Cc
i Capital expenditure of resource i

Cf
i Fuel cost of resource i

Cu
i Cost of purchased energy from remote community power resource i

Cz
y Cost of carbon permit per kg CO2 in year y

Cm
i Maintenance cost for resource i

Xmax
i Maximum power capacity for a new resource i

Pmax
i Maximum power output of existing resource i

Pmin
i Minimum power output of existing resource i

Le(y, t) Electrical load at time t in year y

Lh(y, t) Thermal load at time t in year y

Le,max Peak electrical load

Lh,max Peak thermal load

ai Power capacity of existing asset i

η Storage charging and discharging efficiency

ς Electric to heat ratio of CHP unit

Operation level Variables

P e
i (y, t) Electrical output of resource i at time t in year y

Ph
i (y, t) Thermal output of resource i at time t in year y

P e
r(y, t) Electrical output from DR at time t in year y

Ph
r (y, t) Thermal output from DR at time t in year y

Ee
i (y, t) Electrical energy level of ESS i at time t in year y
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Design Level Variables

Rp
y Peak power drawn from neighbouring community resources in year y

xi Capacity of DER assets to be installed

Υy Carbon permits bought in year y

1 Introduction

With an increased focus on reliability and a desire to reduce its environmental impacts, power system planners

are exploring the advantages of distributed energy resources (DERs) to compliment central grid infrastruc-

tures. Government policies, technological advancement, economic and environmental incentives are changing

the features of power systems, while DERs gradually increase their presence. Many key industrial players

have developed energy saving strategies and are investing in renewable energy.

In the same vein, microgrids can be seen as vehicles for a greater integration of renewable energy resources

(RES), the reduction in emissions of greenhouse gases, improving local system reliability and efficiency, as

well as to manage and control power generation. It is defined as a group of interconnected loads and DERs

within clearly defined electrical boundaries that act as a single controllable entity with respect to the grid [1].

It can operate connected to the grid or in isolation. Nevertheless, the microgrid concept and functionalities

have evolved over the years from providing emergency energy supply for reliability to include an energy

management system (EMS) that should optimally allocate energy resources to minimize cost. The concept

and its changing functionalities characterizing advanced microgrids are described in detail in [2]. It is clear

that the successful implementation of advanced microgrids will require advance planning strategies to best

capture operational and financial benefits.

1.1 Literature review

Most research work reported in literature on microgrid planning and operation tends to decouple the invest-

ment planning problem from the microgrid operational problem. The literature here can be categorized into

three groups.

The first category pertains to microgrid operational planning challenges. Papers within this group as-

sume a known microgrid design capacity/configuration, and they propose different optimization algorithms

to minimize the systems’ operational cost considering environmental and reliability implications [3]–[13].

Their applications span remote networks all the way to industrial applications. Recent publications within
this group have focused on energy management strategies that deal with supply/demand uncertainties and

highlight the value of flexible resources within the network [6]–[8].

From the planning perspective, the second category of contributions proposed planning problem formu-

lations seeking to configure and size the assets of microgrids. The design problem formulations here are

generally presented either as single or as multiobjective optimization problems [14]–[18]. Each of them has a

generic cost minimization objective with some variations around constraints, objective functions and available

technologies. Specifically, the proposed approach in [14] utilizes a mixed-integer linear programming (MILP)

formulation and solution algorithm to determine the configuration of a potential microgrid that minimizes

its energy procurement cost and CO2 emissions, while a benefit to cost ratio is also considered in [16] for de-

termining the best planning option. Complex, cumbersome and costly fuel logistics unique to several remote

networks are also highlighted in [18] where heuristics are used to establish the microgrid design.

The third category of contributions, within which this paper belongs, investigates joint microgrid design

and operations [19]–[21]. Particularly, in [19], authors have developed a two-step mixed-integer linear pro-

gramming (MILP) model that optimizes the configuration of a hybrid microgrid and seeks to determine an

operating policy based on the design. The first step solves an MILP to select and size the microgrid assets,

while this solution is then passed to a second step where a data mining analysis is used to establish the logic of

a microgrid controller. Also, a bilevel optimization design approach for ESS sizing in microgrids is proposed

in [20] where the upper level’s objective of minimizing cost and the lower level’s variable operation cost are

aligned [20]. The authors of [21] also attempt to nest the microgrid planning and operational problem in
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the form of a generalized doubleshell framework based on an evolutionary algorithm; however, the economic

analysis of the design options in [21] are not established systematically.

1.2 Gaps in the state-of-the-art and contributions

From the above survey, it can be concluded several challenges must be addressed when considering joint

microgrid asset and operations planning, as this paper does. Specific gaps include 1) the need to include the

widest range of asset classes for system designers, 2) the need to design multi-energy microgrids systematically,

and 3) to formulate joint optimal design-operation problems that represent with better fidelity the actual

flow of decision making and that can exploit the capabilities of available high-performance MILP solvers.

This paper addresses these challenges by proposing a design approach for microgrids acknowledging the

wide array of technologies available to microgrid designers: generation (to installed in the microgrid and/or to

be obtained from a neighbouring community power system), energy storage system (ESS), combined heat and

power (CHP), and demand response (DR). All these can represent their operations with good fidelity over a

microgrid’s lifetime. The high-fidelity operational representation is enabled by the formulation of the problem

as a bilevel optimization problem, which can be solved systematically by commercially available MILP solvers.

At the same time, the design problem formulation allows microgrid planners to consider coupled heat and

power demands systematically. As a side benefit, the formulation of the microgrid planning problem we cast

here is capable of providing decision support to operators who can take advantage of periodically updating

asset configurations, given changing operating conditions e.g., cost saving seasonal decommissioning/idling

diesel generation.

To demonstrate the design approach, an extensive case study is developed for the upgrade of heat and

power generation infrastructure of a remote mine. The design and operational performance results are shown

to outperform the widely-accepted, industry microgrid design software tool DERCAM [14]. The approaches

in [22] and [23] are further exploited to provide an economic justification for different investment options.

The rest of the paper is structured as follows: Section II outlines the proposed bilevel formulation and

its transformation into an equivalent mathematical program with equilibrium constraints (MPEC) followed

by a second transformation into an MILP problem to be solved by commercial solvers. Section III outlines

an economic analysis of the planning options. Section IV then describes an application of the proposed

formulation to a representative remote mining operation, and Section V discusses the results obtained. Section

VI finally provides brief concluding remarks.

2 Problem formulation

When choosing and sizing the microgrid components, a reflection of the expected system operations must

appear within the design problem. At the same time, it is clear that past microgrid design decisions can

have a direct incidence upon operating costs and the available operating space. Therefore, there is a need

to find a way to unify these two with the objective of finding the best microgrid design, which could provide

the best operating conditions over the microgrid assets’ lifetimes, i.e., an overall profitable business case. At

the same time, it is important to represent with better fidelity the fact that in practice design and operating

decisions are made sequentially and without direct cooperation. This sequentiality and non-cooperation have

an incidence on design and operating decisions, even in spite of the fact that design and operating objectives

are aligned. It is just unrealistic to assume that operating decisions for the entire lifetime of a microgrid can

be programmed at the same time as the microgrid is designed.

The process where the design of a microgrid is established in this fashion could be cast as a sequence

of interactions where the designer proposes a microgrid configuration with the objective of minimizing the

combined cost of strategic decisions on investment, power purchases from neighbouring systems and an

estimate of carbon permits’ cost. Given the proposal of the designer, the operator is then to minimize

the microgrid running costs. The designer, observing the operator’s actions, could then set a new design

which the operator would then work with. This process could go on until the designer and operator find an

equilibrium (fixed point) where neither of them has an incentive to change their decisions.
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The above description of a repeated interaction can be recast as a bilevel optimization problem [24].

The designer is primarily tasked with reducing the capital investment costs; this requires the designer’s

main objective to have just enough capacity to meet the operating requirements while considering uncertain

market prices. On the other hand, the operator can benefit from having wider margins and flexibility to reduce

operating costs; such operational improvements can only come at the expense of further capital expenditures

incurred at that upper level. As mentioned above, such an approach could be equally extended to study

opportunities for periodic asset reconfiguration and maintenance planning, since it can trade off respective

costs and benefits of planning and operations.

2.1 Bilevel model outline

The sequential planning and operational problem can be formulated as a bilevel optimization problem, as

illustrated in Figure 1. Herein the microgrid designer, acting as the leader, is represented by the upper level

problem while the lower level represents the microgrid EMS (operator proxy) acting as the follower. The

designer receives input information about the planning horizon, peak load, available DER options with their

possible ratings and economic parameters i.e., capital costs of DERs, interest rates and budget constraints.

It then selects a design configuration (capacity of DERs, xi,∀i ∈ B, where B is the set of all DER options;

power capacity purchases with a neighbouring system Ri ∀i ∈ U) seeking to maximize its payoff, and passes

it to the EMS. The capacities from the upper level serve as parameters in the lower level problem defining

the inducible region of the lower level problem. The EMS thus determines the operating points of the DERs

minimizing hourly running costs based on the parameters received. The DER set points (Pi) are passed back

to the upper level to evaluate the total cost over the planning horizon. The designer, observing the EMS’

selection, optimizes its objective and passes a new configuration to the lower level problem. This process is

repeated until an equilibrium is found where neither level has an incentive to change its selection. The entire

bilevel formulation is outlined in (1)–(19).

Figure 1: Schematic diagram of the bilevel design-operating model.

2.1.1 Business case & design – Upper level problem

The upper level’s objective function in (1) minimizes the annualized investment cost of the new DERs (first

and second terms) and the annual demand charge by the remote community energy provider (third term) and

the cost of allowable carbon permits (fourth term). The variable (xi) denoting the capacities of each DER

option to be installed is the solution to the upper level’s problem. The total planning cost is converted into its

present value by a factor γ, with %y being the capital recovery factor.1 The objective function is constrained

by a budget allocation for investment (2) and the maximum allowable carbon permits purchased (3). The

1By definition, the capital recovery factor in year y is %y = [r(r + 1)y ]/[(r + 1)y − 1], where r is the annual interest rate.
Moreover, γ = [1− (r + 1)−J ]/r is used to bring all annual values to the present.
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parameter ζi denotes CO2 emitted by resource i per kWh.

min
x,R,Υ≥0

γ
∑
y∈Y

{
%y

(∑
i∈B̄

Cc
i xi +

∑
i∈S

Cc
i xi

)
+ Cu

y (Rp
y) + Cz

y (Υy)

}
(1)

subject to ∑
i∈B̄

Cc
i xi +

∑
i∈S

Cc
i xi ≤

∑
i∈B

Cb
i (2)

∑
i∈D

∑
t∈T

ζiµiP
e
i (y, t) +

∑
i∈Q

∑
t∈T

ζiµiP
h
i (y, t) ≤ Υy (3)

where Rp
y is the peak power drawn in year y from the neighbouring remote community energy provider

resources (i ∈ U) and given by (4) for all t ∈ T

Rp
y ≥ P e

i (y, t) (4)

2.1.2 EMS – Lower level problem

The formulation of the lower level problem, equivalent to an EMS solving an economic dispatch problem in a

given time period t, is given by (5)–(19). The objective function defined by (5) minimizes the hourly electrical

generation cost in period t (first term), the costs of providing heat from a non-CHP resource (second term),

the cost of electric energy from the neighbouring remote community provider (third term), the maintenance

cost of the new DERs as well as the existing units (fourth and fifth terms, respectively).

(P e
i (y, t), Ph

i (y, t)) = arg min
P e,Ph

∑
i∈G

Cf
i P

e
i (y, t) +

∑
i∈Q

Cf
i P

h
i (y, t)

+
∑
i∈U

Cu
i P

e
i (y, t) +

∑
i∈B

Cm
i xi +

∑
i∈A

Cm
i ai (5)

The lower level’s objective is constrained by hourly electrical and thermal generation and load balances, (6)

and (7). The electrical power balance for all hours t ∈ T and years y ∈ Y is∑
i∈E

P e
i (y, t) +

∑
i∈U

P e
i (y, t) = Le(y, t); λ(y, t) (6)

while the thermal power balance requires also for each hour t of all years y∑
i∈H

Ph
i (y, t) = Lh(y, t); φ(y, t) (7)

where λ(y, t) and φ(y, t) are the Lagrange multipliers associated with those constraints.2

The hourly dispatch problem is further constrained by maximum and minimum limits of the dispatchable

generating resources, (9). Other DERs considered here are CHP units, wind turbines and ESS. Modeling of

the operational output of the combined heat and power unit is similar to that of a diesel generating unit.

However, a CHP provides both electric power and useful thermal energy from a single fuel. The relationship

between the thermal and electric load is shown in (8); readers are encouraged to refer to [25] for further

details on CHP modeling. Wind generation is non-dispatchable and the uncertainty associated with its

speed is modeled based on the Weibull distribution function as outlined in [23], [26]. Energy from storage

technologies available within the microgrid are also used to mitigate the deviation of wind from its forecasted

values. The capacities of the potential DERs xi, passed by the upper level, serve as a maximum limits of the

operational output of these resources as found in (10). The heat output from the CHP is given by

Ph
i (y, t) =

P e
i (y, t)

ςi
; ωi(y, t) (8)

2All Greek letters appearing to the right of semicolons represent Lagrange multipliers of the various constraints presented
along the length of the paper.
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for all i ∈ N , t ∈ T and y ∈ Y . The generation limits are

Pmin
i ≤ P e

i (y, t) ≤ Pmax
i ; αmin

i (y, t), αmax
i (y, t) (9)

for all i ∈ D, t ∈ T and y ∈ Y , in addition

0 ≤ P e
i (y, t) ≤ xi; δmin

i (y, t), δmax
i (y, t) (10)

for all i ∈ B̄, t ∈ T and y ∈ Y .

General equations describing the operation of the ESS and its constraints are provided in (11)–(13). The

variation of the state of charge (SOC) Ei in (11) depends on the charging/discharging power, the charging

and discharging efficiency, and the storage capacity of the system. The maximum available energy (12) is

constrained by the design capacity passed by the upper level problem. The charging and discharging power

limits of the storage device are outlined in (13). The constant vi in (13) is dependent on the type of storage

technology installed. A larger vi suggests a faster charging and discharging storage device and vice versa.

Here, for each ESS resource i ∈ S, hours t ∈ T and years y ∈ Y .

Ei(y, t) = Ei(y, t− 1) + ηPi(y, t)∆t; ρi(y, t) (11)

0 ≤ Ei(y, t) ≤ xi; πmin
i (y, t), πmax

i (y, t) (12)

−vixi ≤ Pi(y, t) ≤ vixi; ξmin
i (y, t), ξmax

i (y, t) (13)

Similarly, the dispatch problem is also subject to limits on energy available for both the electrical (14), (15)

and thermal demand response resources (17), (18). Equations (16) and (19) outline the constraint on the

hourly electric and thermal power available for DR respectively. Note that parameters key,r and khy,r are

dependent on the DR technology/strategy used. The electric-side demand response has to satisfy

Ee
r(y, t) = Ee

r(y, t− 1) + P e
r (y, t)∆t; σ(y, t) (14)

0 ≤ Ee
r(y, t) ≤ we

rL
e,max; τmin(y, t), τmax(y, t) (15)

−kerwe
rL

e,max ≤ P e
r (y, t) ≤ kerwe

rL
e,max; ϕmin(y, t), ϕmin(y, t) (16)

and the thermal load is flexible according to, for all t ∈ T and y ∈ Y ,

Eh
r (y, t) = Eh

r (y, t− 1) + Ph
r (y, t)∆t; β(y, t) (17)

0 ≤ Eh
r (y, t) ≤ wh

rL
h,max; θmin(y, t), θmax(y, t) (18)

−khrwh
rL

h,max ≤ Ph
r (y, t) ≤ khrwh

rL
h,max; ψmin(y, t), ψmax(y, t) (19)

We note that uncertainty in operations—e.g., coming from uncertain wind and solar generation—could

be considered by having several operating scenarios at the lower level. Concretely, this would turn the

problem into a single-leader, multiple-follower bilevel problem, where each low-level follower would optimize

its operations based on its given operating scenario for the common microgrid configuration provided by

the leader. The upper-level leader’s task would be to configure the microgrid based on probability-weighted

operating costs coming from the low-level operating scenarios. This way, the designer would get to find a

compromise between the need minimize the costs of the “average” operating scenario, while also appraising

the value of being able to operate adequately for low-probability scenarios. We note, nonetheless, that the

main downside of this would be the multiplication of lower-level variables and constraints by the number of

scenarios considered.

2.2 Co-linearity and justifying a bilevel planning approach

Bilevel programming problems are closely related to multiobjective (and multistage) optimization problems.

This relation has been illustrated in [27] and can be observed considering3 the bilevel problem B, which

consists of (20)–(23), and the multiobjective problem M, (24)–(26):

3The variables used here are for illustrative purposes and do not relate to the problem at stake in this paper.
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(B) min
x,y

cx (20)

subject to

y = arg min
y

(dx+ fy) (21)

Ax+By ≤ a (22)

Cy ≤ b (23)

and

(M) min
x,y

cx+ dx+ fy (24)

subject to

Ax+By ≤ a (25)

Cy ≤ b (26)

Here, it is easy to observe that a solution of the bilevel programming problem B is Pareto optimal for

the corresponding multiobjective optimization problem M if c = ξd, where ξ > 0, and c, d ∈ Rn. Thus, in

such cases, where vectors c and d are co-linear the bilevel problem B reduces to the multiobjective (single-

level) problemM. Otherwise, when vectors c and d are not co-linear, problems B andM will have different

solutions [28], with B not realizing more optimistic results than M.

Bilevel problem formulations (B) are meant to tradeoff conflicting objectives, just like multiobjective

problems (M). Bilevel problems find the best cx satisfying the constraints (22) and (23), while constraining y

on the basis of the prior choice of x. Improvements in cx are possible until no feasible y are found, which

means that here we find one solution.

On the other hand, with multiobjective problems, the objectives cx and dx + fy are considered on the

same footing. At the optimum, although changing x would affect y (through the need to maintain feasibility),

an improvement in cx would lead to a corresponding degradation in the second objective dx+fy. The Pareto

front, where the sum of the sub-objectives is minimized, represents a set of solutions of equal quality. The

selection of one solution over the others would generally involve some degree of subjectivism.

The effective lack ambiguity of bilevel problem formulations is what makes them attractive in the context

of this paper. As we are addressing the planning of a microgrid, the focus of its optimization and decisions

should be at the strategic level: the choice of assets and their ratings, emission permits’ management and the

reliance or lack thereof on external power sources. For sure these choices are bound to have repercussions on

day-to-day operations, as the lower level problem captures.

As will be seen in the following section, the solution of bilevel optimization problems is nontrivial in

comparison to their multiobjective counterparts. Therefore, it is essential to ascertain that indeed the upper

and lower level problems’ objectives are not co-linear. It can be observed from (1) and (5) that this is indeed

the case because the upper-level variable Rp
y, which is there to capture the annual capacity charge for drawing

peak power from the neighbouring community system is not present at the operational level. Therefore, the

problem we are tackling here is a true bilevel problem.

2.3 Transformation to MPEC and MILP

Bilevel problems are usually difficult to solve; even the linear bilevel problem is an NP-hard problem [19].

Nevertheless, the aforementioned bilevel formulation for the microgrid combined planning and EMS problems

can be transformed into a single level problem and solved jointly, provided the lower level’s rational reactional
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set is non empty and its inducible region is a singleton [24]. With the linearization of the generation cost

function and an assumed constant charging and discharging efficiency of the storage device, for each value of

the upper level variable xi, the lower level problem is proven to be linear (thus convex) as parametrized in

xi, ∀i ∈ B. Hence, there are two options in solving this problem

1. KKT formulation: to replace each lower-level problem by its Karush-Kuhn-Tucker (KKT) conditions.

2. Primal-dual formulation: to replace each lower-level problem by its primal constraints, its dual con-

straints, and by enforcing the strong duality theorem (SDT) equality.

The primal-dual approach has been demonstrated in [24], [29] to be more efficient than the KKT option.

The complementary slackness present in the KKT approach is eliminated in the second formulation via the

strong duality theorem in which the primal and the dual objective functions are equated. Given that, we

take the primal-dual approach in this work. The transformation, as outlined in the appendix, comprises

replacing the lower level problem with its primal constraints (6)–(19) and its dual constraints (30)–(40). This

is combined with the equality associated with the SDT (41) and the upper level problem (2), (3) to make up

the transformed MPEC.

min
x≥0

(1) (27)

subject to

Constraints (2)− (3) (28)

Constraints (5)− (18) (29)

dual constraints for all t ∈ T and y ∈ Y

Cf
i − λ(y, t)− αmin

i (y, t) + αmax
i (y, t) =0; ∀i ∈ D (30)

Cf
i − λ(y, t)− δmin

i (y, t) + δmax
i (y, t)− ωi(y, t)

ςi
=0; ∀i ∈ N (31)

−λ(y, t)− δmin
i (y, t) + δmax

i (y, t) =0; ∀i ∈W (32)

−λ(y, t)− ξmin
i (y, t) + ξmax

i (y, t)− ρi(y, t) =0; ∀i ∈ S (33)

−ρi(y, t)− πmin
i (y, t) + πmax

i (y, t) =0; ∀i ∈ S (34)

−λ(y, t)− ϕmin(y, t) + ϕmax(y, t)− σ(y, t) =0 (35)

−τmin(y, t) + τmax(y, t)− σ(y, t) =0 (36)

−φ(y, t)− ψmin(y, t) + ψmax(y, t)− β(y, t) =0 (37)

−θmin(y, t) + θmax(y, t)− β(y, t) =0 (38)

−φmin(y, t) + ωi(y, t) =0 (39)

Cf
i − φ(y, t) =0; ∀i ∈ H (40)

and the strong duality equality for all t ∈ T and y ∈ Y∑
i∈G

(Cf
i + Cz

i )P e
i (y, t) +

∑
i∈Q

(Cf
i + Cz

i )Ph
i (y, t)

= λLe(y, t) +
∑
i∈D

(αmin
i (y, t)Pmin

i − αmax
i (y, t)Pmax

i )

−
∑
i∈B̄

δmax
i (y, t)xi −

∑
i∈S

(viξ
min
i (y, t)xi + viξ

max
i (y, t)xi)

−
∑
i∈S

(
πmax
y,i (y, t)xi − ρi(y, t)Ei(y, t− 1)

)
+ σ(y, t)Ee

r(y, t− 1)− we
rτ

max(y, t)Le,max

− (ϕmin(y, t)kerw
e
rL

e,max + ϕmax(y, t)kerw
e
rL

e,max)

+ φ(y, t)Lh(y, t) + β(y, t)Eh
r (y, t− 1)

− θmax(y, t)wh
rL

h,max − (khrw
h
rψ

min(y, t)Lh,max + khrw
h
rψ

max(y, t)Lh,max)

(41)
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The non-linearities associated with the products of variables δmax
i (y, t)xi, viξ

max
i (y, t)xi, viξ

min
i (y, t)xi

and πmax
i (y, t)xi in (41) of the MPEC can be linearized at the expense of more constraints and auxiliary

variables, transforming the problem into an equivalent MILP problem. Equation (41) is then linearized using

the techniques found in [24]. Note that all the Lagrange multipliers are positive variables here.

3 Case study

The proposed bilevel design approach is applied to a microgrid implementation of a remote mine in northern

Quebec, Canada. The energy infrastructure of remote mines is characterized by unique features outlined

in [30, 13] that differentiate them from most remote community microgrids.

The peak electric load of the mine considered here is 10 MW with an average load of 9.5 MW. This load

is currently supplied by a 5 MW diesel generator, two smaller 1.5 MW units and the rest by the community

energy provider. Space heating at the mine site is provided by a gas-fired heat exchanger. The diurnal and

annual daily heating and cooling profiles from [13, 31] are adapted for this work. Seven day type loads are

considered in modeling the entire monthly load. These day-types represent 5 weekdays and 2 weekend days

in a week. They are aggregated by a factor based on the number of day types in a particular month. The

weekly profile is then modeled for each and every month to reflect the seasonality in the year. Ten percent of

the mine’s electrical and heating load is assumed to be available for DR. The mine has been in operation for

some years now so load growth is negligible. It is also known to have some level of control and communication

devices already installed to regulate its load during emergencies; hence, additional costs to implement DR are

ignored. Fuel escalation rate based on historical pattern is also considered. The ESS technology considered

is a new generation compressed air energy storage system with a ratio of energy storage capacity to power

capacity of four hours. The hypothetical layout of the mine with some modification is provided in Figure 2.

Three planning scenarios are considered for expanding the energy infrastructure of the existing remote

microgrid: i) the base case plus wind power generation, ii) the base case plus wind power generation and

electrical energy storage, and iii) the base case plus wind power generation, energy storage and demand

response. Economic parameters of the mine and other required data are provided in Table 1. Moreover, a

capital cost allowance of 50% is considered for corporate tax purposes.

The cost of carbon permit one needs to buy within the auction window is used to determine the cost

associated with CO2 emission permits (Cz
y (Υy)) for each generating resource i.

Table 1: Summary of input parameters.

Diesel Generator Wind Turbine

Diesel price [32] 0.76 $/` Capital cost [34] 2213 $/kW
Fixed O&M [32] 15 $/kW/yr Fixed O&M [34] 10 $/kW/yr
Variable O&M [32] 3 $/MWh
Emission rate [33] 2.64 kg/`

ESS

Capital cost [35] 600 $/kW

CHP Financial parameters

Capital cost [25] 1200 $/kW Interest rate 3.5%
Natural gas price [25] 3.1 $/GJ Planning horizon 20 yrs
O&M cost [25] 0.006 $/kWh Carbon permits [33] 14.3 $/ton CO2



10 G–2017–22 Les Cahiers du GERAD

Figure 2: Schematic diagram of the remote mine’s power system.

4 Results and discussion

4.1 Investment decisions

The above case study was evaluated using a custom-made Excel tool interfacing with the CPLEX solver of

GAMS, termed BIEX (bilevel Excel). To validate the proposed approach, the results are compared with

those of DERCAM (a commercially accepted software based on the traditional MILP) [14] and the output

is presented in Table 2. Both tools were provided with the same input data and parameters to make the

comparison reliable. From Table 2, it could be observed that the total cost (capital plus operating) of BIEX

is lower than that of DERCAM and the MultiObjective Optimization (MOO) [10], although their optimal

configuration is comparably similar. This could be attributed to the better representation of the order of the

decision making process by the BIEX. Here, the operator has a better perspective of the designer’s decision,

hence its solution lead to a lower operation cost in BIEX compared to DERCAM, where both problems

are solved concurrently. Also, the BIEX solution was compared to that of the multiobjective optimization

approach where the cost of planning is co optimized with operational cost to illustrate the difference in the

two approach. From Table 2, it can be observed that, the bilevel provided a less expensive configuration

compared to the MOO. This is due to its selection of a lesser capacity of the expensive biomass although

the biomass has a higher capacity factor. Also, the hierarchical nature of the formulation makes it possible

for the upper level problem to increase its interest (shift from the Pareto optimal) without necessary being

detrimental (to the disadvantage) to the lower level. However, the MOO formulation may have to find a

compromise (Pareto optimal) among the two objectives. Hence, its solution selects a reasonable capacity of

the expensive biomass as well as other DER as shown in Table 2. The cost presented in Table 2 (last column)

is the sum of the annualized investment cost of the design solution and annual the operational costs.

Table 2: Optimal microgrid expansion.

Wind CHP ESS Biomass Cost

(kW) (kW) (kWh) (kW) (k$)

BIEX 7458 690 3965 547 38 792
MOO 7350 579 4075 644 38 823
DERCAM 7300 600 4000 700 39 015

4.2 EMS output

The performance of the EMS is presented in Figure 5 and Figure 7, while Figure 4 shows the hourly generation

profile of the generating units in the base case. Figures 5 and 7 also show the electrical and thermal output

of DERs set by the EMS on a typical day. It could be observed from Figure 4 that the mine often utilizes all

its three generators in the base case while keeping the third diesel unit (Diesel III) constant at its maximum

operating point and buying last resort power from the remote community energy provider.
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However, with the implementation of the EMS in Case III, the two smaller generators (i.e., Diesel I and

Diesel II) and power from the remote community are not utilized. However, with the implementation of the

EMS, the two smaller generators (i.e., Diesel I and Diesel II) Considering the difference in efficiency when the

generators operate at lower loads(below 50%) and the capacity of the generators, microgrid implementation

results in significant savings . The output of the largest generator (Diesel III) is also seen to experience

some level of fluctuation unlike in the base case. With high output from the wind turbine, less power needs

to be provided by Diesel III as well as power purchased from the remote community and vice versa when

the wind output is low. The ability of the EMS to take full advantage of the no-cost energy from the wind

also contributes to the reduction in the total energy costs. The output of the heat exchanger is primarily

dictated by the thermal need of the mine in the base case. Heat from the CHP also offsets parts of the energy

extracted from the heat exchanger in other scenarios. Also the performance of the EMS in the case where

the MOO approach is considered is shown in Figure 6.

Figure 3: Generation efficiency of 1.5 MW Diesel I
and II.

Figure 4: Generating units operating point in a typ-
ical day.

Figure 5: Electrical output of DERs in a typical day
for BIEX.

Figure 6: Electrical output of DERs in a typical day
for MOO.

Figure 7: Thermal Output of DERs in a typical Day.
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4.3 Financial performance metrics and results

Key financial metrics such as the Present Value Ratio (PVR) and the Internal Rate of Return (IRR) are used

next in determining the profitability of the investment options. The PVR is the ratio of the present value

(PV) of the microgrid benefit/revenue to the PV of the investment cost. A PVR greater than one indicates

the profitability of an investment, which is unprofitable when its PVR less than one. We elaborate further

on the IRR in a subsequent subsection.

The output of the bilevel planning strategy was subjected to cost benefit analysis. Results obtained show

significant savings in energy costs for all three planning scenarios or cases. Nevertheless, case III happens to

yield the most benefit to all participating stakeholders. Table 3 outlines the outcome of the economic analysis

for all three scenario. It illustrates the benefit to cost ratio or PVR for the corresponding stakeholders (the

mine’s management in this case). The base unit corresponds to the base case’ total cost. High percentage of

savings to the mines could be observed from Table 3. The reduced fuel costs due to a lower consumption of

diesel coupled with the strategic optimization by the EMS contribute to the increase the mine’s savings. The

low PVR in the third scenario is due to the high penetration level of DER’s which further translates into a

higher capital investment cost.

Table 3: Per unit costs and benefits.

Costs Base case Case I Case II Case III

Emissions 0.175 0.080 0.088 0.080
Fuel 0.611 0.360 0.590 0.360
Power 0.214 0.000 0.000 0.000
Investment 0.000 0.038 0.045 0.269
Total 1.000 0.784 0.723 0.708

Savings – 21.61% 27.7% 29.22%

PVR – – – 1.08

4.3.1 Project internal rate of return (IRR)

The discount rate was varied to determine the interest rate at which an investment in expanding this mining

microgrid would breakeven. A high IRR of 21.5% was obtained, which suggests the attractiveness of imple-

menting a DER rollout in a remote mining context. This would be especially the case for potential investors

in areas with competitive borrowing rates.

5 Conclusion

A bilevel optimization formulation for a microgrid planning problem has been developed and implemented

in this work. The coupled planning and operational problem is recast as an MPEC and transformed into

an MILP based on the strong duality theorem. The transformed MILP sequentially determines the design

configuration and optimally allocates the DERs through the implementation of an EMS proxy whose role is

to dispatch the resources in real time. Results obtained from the implementation of the proposed approach

for the specific case of a remote mine are compared to those of a commercial MILP-based microgrid planning

software. A comparison of the results of the two optimization tools (commercial tool and the proposed

approach) showed lower total energy cost in the proposed approach, which do end up outweighing the extra

DER capacity investments made. The results also demonstrate how a microgrid with an enabling technology

mix of DERs and an EMS based on advanced optimization strategy could be crucial in achieving a higher

return on investment. The high IRR found in the paper’s case study indicate the attractiveness of microgrids

based on sustainable low-carbon DERs to potential investors and participating stakeholders.

Future work in this area includes the consideration of non-industrial remote communities where load

factors are much lower. It would be of interest to determine how the optimal DER investment mix is affected
by the peakedness of the load. At the same time, it would be of interest to assess several energy storage

technologies depicting different rated energy to rated power ratios.
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Bologna, Italy, Sept. 2011.

[23] M. Quashie and G. Joós, A methodology to optimize benefits of microgrids, in Proc. 2013 IEEE Power & Energy
Society General Meeting, Vancouver, BC, Jul. 2013.

[24] J. F. Bard, Practical bilevel optimization, Dordrecht, The Netherlands: Kluwer Academic Publishers, 1998.

[25] K. Darrow, et al., Catalog of CHP technologies, Washington, DC: US Environmental Protection Agency, Dec.
2008.

[26] Y. Atwa, et al., Optimal renewable resources mix for distribution system energy loss minimization, IEEE Trans.
on Power Syst. , 25(1) 360–370, Feb. 2010.

[27] S. Dempe, Foundations of bilevel programming, Dordrecht, The Netherlands: Kluwer Academic Publishers, 2002.



14 G–2017–22 Les Cahiers du GERAD

[28] P. Marcotte and G. Savard, A note on the Pareto optimality of solutions to the linear bilevel programming
problem, Comp. Oper. Res., 18, 355–359, 1991.

[29] A., L., Motto, On the exact solution of a class of Stackelberg games. in Proc. Amer. Control Conf., 249–250,
Jun. 2005.

[30] K. Fytas and J. Paraszczak, Can renewable energy sources help to meet the challenge of powering remote mine
sites?, Proceedings of ENERMIN Conf., El Salvador, Brazil, Sept., 2012.

[31] RELOAD Database Documentation and Evaluation and Use in NEMS, Electric Power Research Institute, Jul.
9, 2001. [Online]. Available: http://www.onlocationinc.com/ LoadShapesReload2001.pdf

[32] NorthwesTel Remote Station Solar/Diesel Hybrid Feasibility, Yukon, February 25, 2013. [Online]. Available:
http://www.energy.gov.yk.ca/pdf/northwestel_feasibility_study.pdf

[33] British Columbia Ministry of finance bulletin, Victoria, BC, Dec. 2014. [Online]. Available: http://www.sbr.

gov.bc.ca/documents_library/bulletins/mftct_005.pdf

[34] Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants, Washington, DC: US Energy
Information Agency, Apr. 2013.

[35] R. Hensley, J. Newman, and M.Rogers, Battery technology charges ahead, McKinsey Quarterly, Jul. 2012.

http://www.onlocationinc.com/
http://www.energy.gov.yk.ca/pdf/northwestel_feasibility_study.pdf
http://www.sbr.gov.bc.ca/documents_library/bulletins/mftct_005.pdf
http://www.sbr.gov.bc.ca/documents_library/bulletins/mftct_005.pdf

	Introduction
	Literature review
	Gaps in the state-of-the-art and contributions

	Problem formulation
	Bilevel model outline
	Business case & design – Upper level problem
	EMS – Lower level problem

	Co-linearity and justifying a bilevel planning approach
	Transformation to MPEC and MILP

	Case study
	Results and discussion
	Investment decisions
	EMS output
	Financial performance metrics and results
	Project internal rate of return (IRR)


	Conclusion

