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Abstract: The Runge-Kutta class of iterative methods is designed to approximate solutions of a system of
ordinary differential equations (ODE). The second-order class of Runge-Kutta methods is determined by a
system of 3 nonlinear equations and 4 unknowns, and includes the modified-Euler and mid-point methods.
The fourth-order class is determined by a system of 8 nonlinear equations and 10 unknowns. This work
formulates the question of identifying good values of these 8 parameters for a given family of ODE as a
blackbox optimization problem. The objective is to determine the parameter values that minimize the overall
error produced by a Runge-Kutta method on a training set of ODE. Numerical experiments are conducted
using the NOMAD direct-search optimization solver.
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1 Introduction

Many algorithms rely on a set of parameters. The question of identifying values that improve performance

is known as parameter tuning [9]. Various metrics may be used to quantify the performance of an algorithm,

including accuracy of the solutions and computational time. There are frameworks for tuning parameters on

a collection of test problems [2, 4, 7].

The objective of the present paper is to illustrate the high-level simplicity of parameter tuning on the

well-known class of fourth-order Runge-Kutta methods for solving systems of ordinary differential equa-

tions (ODE).

The question of tuning the parameter on a family of ODE is formulated as a blackbox optimization

problem that takes as input values of the Runge-Kutta parameters, then solves a series of ODE systems and

returns as output a measure of the norm of the errors produced by the Runge-Kutta method. This blackbox

optimization problem is then solved by a direct-search solver. For cross-validation, the optimized parameters

are then tested and compared on other members of the family of ODE.

The document is structured as follows. Section 2 presents the fourth-order Runge-Kutta class of methods

that depend on two real parameters. Section 3 models the question of tuning these parameters as a black-

box optimization problem. Finally, Section 4 analyzes the results produced by applying the optimization

framework on two specific families of ODE.

2 Fourth-order Runge-Kutta methods

Runge-Kutta methods solve a system of ` ordinary differential equations (ODE) of the type y′(t) = f(t, y(t))

where y : R 7→ R` and f : R × R` 7→ R`, subject to the initial condition y(t0) = y0 ∈ R` with t0 ∈ R.

The second-order class of Runge-Kutta methods is determined by a system of 3 nonlinear equations and 4

unknows, and the class includes the modified-Euler and mid-point methods.

Fourth-order Runge-Kutta methods use a constant step size h ∈ R+ and estimate y(tn) by the value yn

through the following iterative process initiated at n = 0:

tn = t0 + nh

k1 = hf(tn, yn)

k2 = hf(tn + β1h, y
n + β1k1)

k3 = hf(tn + β2h, y
n + β3k2 + (β2 − β3)k1)

k4 = hf(tn + β4h, y
n + β5k2 + β6k3 + (β4 − β5 − β6)k1)

yn+1 = yn + α1k1 + α2k2 + α3k3 + α4k4

n← n+ 1

in which the parameters (α, β) ∈ R4×R6 are chosen in such a way that y(tn+1) is approximated by a fourth-

degree polynomial around y(tn) with error term O(h5). The cumulative errors on yn, yn−1, . . . , y1 add up to

yield the approximation y(tn) = yn + O(h4). Gill [6] shows that this is achieved when the ten parameters

α ∈ R4 and β ∈ R6 satisfy the eight nonlinear equations

α1 + α2 + α3 + α4 = 1, α3 β1 β3 + α4 β1 β5 + α4 β2 β6 = 1
6 ,

α2 β1 + α3 β2 + α4 β4 = 1
2 , α3 β1 β2 β3 + α4 β1 β4 β5 + α4 β2 β4 β6 = 1

8 ,

α2 β
2
1 + α3 β

2
2 + α4 β

2
4 = 1

3 , α3 β1
2β3 + α4 β1

2β5 + α4 β
2
2β6 = 1

12 ,

α2 β1
3 + α3 β

3
2 + α4 β

3
4 = 1

4 , α4 β1 β3 β6 = 1
24 .

Any values that satisfy these equations define a valid Runge-Kutta method, and the classical ones are

α =

(
1

6
,

1

3
,

1

3
,

1

6

)
, β =

(
1

2
,

1

2
,

1

2
, 1, 0, 1

)
.
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These equations possess two degrees of freedom, and given values of β1 and β5, the other parameters can

be identified according to the following equations:

β2 =


1

2
if β1 =

1

2
12β3

1β5 − 6β1β5 −
√
γ − 5β1 + 5

8(3β2
1β5 − 2β1β5 − β1 + 1)

otherwise

where γ = 144β6
1β

2
5 − 384β5

1β
2
5 + 400β4

1β
2
5 − 40β4

1β5 − 192β3
1β

2
5 + 72β3

1β5

+36β2
1β

2
5 + 16β3

1 − 36β2
1β5 − 39β2

1 + 4β1β5 + 30β1 − 7;

β3 =


1

2(1− β5)
if β1 =

1

2
β2(β1 − β2)

2β1(2β1 − 1)
otherwise;

β4 = 1;

β6 =
β1(−β1β2β5 + β2

2β5 + β1β3 − β3)

12β3
1β

2
3 − 4β2

1β2β3 − 8β2
1β

2
3 + 4β1β2

2β3 + β1β2
2 − β3

2

;

α2 =
12β2

1β
2
2β3β5 − 8β2

1β2β3β5 − 4β2
1β

2
3 − 4β1β

2
2β3 + 4β1β2β3 + β3

2 − β2
2

24β3
1β3(−β1β2β5 + β2

2β5 + β1β3 − β3)
;

α3 =
12β3

1β3β5 − 8β2
1β3β5 − 4β2

1β3 + β1β2 + 4β1β3 − β2
24β2

1β3(β1β2β5 − β2
2β5 − β1β3 + β3)

;

α4 =
12β3

1β
2
3 − 4β2

1β2β3 − 8β2
1β

2
3 + 4β1β

2
2β3 + β1β

2
2 − β3

2

24β2
1β3(−β1β2β5 + β2

2β5 + β1β3 − β3)
;

α1 = 1− α2 − α3 − α4.

(1)

Other values than the classical ones appear in the literature. Gill [6] proposes the values

α =

(
1

6
,

1

3
(1− 1√

2
),

1

3
(1 +

1√
2

),
1

6

)
,

β =

(
1

2
,

1

2
, 1− 1√

2
, 1− 1√

2
, 1, 1 +

1√
2

)
which minimize storage requirements by reusing function evaluations. Ralston [10] suggests the values

α =

(
263

1812
+

2
√

5

151
,−250

√
5

957
+

125

3828
,

3426304

5924787
+

553984
√

5

1974929
,

10

41
− 4
√

5

123

)
,

β =

(
2

5
,

7

8
− 3
√

5

16
,

3785

1024
− 405

√
5

256
, 1, −1523

√
5

1276
− 975

2552
,

93408

48169
+

203968
√

5

240845

)

that minimize the theoretical truncation error, i.e., the coefficient multiplying the h4 error term. Some of

these parameters are negative.

The present work suggests to determine values of α and β by tailoring them to a specific family of systems

of ODE. More precisely, the question is formulated in Section 3 as a blackbox optimization problem, in which

the blackbox takes as input values of β1 and β5, uses them to solve a subset of the elements of the family of

ODE, and returns a measure of the overall numerical error. A blackbox optimization solver then identifies

the values of β1 and β5 that minimize the error. Computational experiments are conducted on two families

of systems of ODE, and comparisons with the classical, Gill’s and Ralston’s parameters are presented in

Section 4.
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3 Blackbox formulation

Two families of systems of ODE, denoted A and B, are considered in this work. Each of them is parame-

terized by an integer ` that defines the number of equations. The systems, initial conditions, and analytical

solutions are

A :


y′i(t) =

(
yi
t

)2
+ i(i+1)

2yi+1
− i2

t , i = 1, 2, . . . , `− 1

y′`(t) =
(
y`
t

)2
+ `

2y1
− `2

t ,

with yi(1) = i, i = 1, 2, . . . , `,

solution: yi(t) = i
√
t i = 1, 2, . . . , `.

B :


y′i(t) =

y2i
t(1+i) − (1 + i)

√
(i+1)(2+i+yi+1)

2+i−yi+1
, i = 1, 2, . . . , `− 1

y′`(t) =
y2`

t(1+`) − (1 + `)
√

2+y1
2−y1 ,

with yi(1) = 1− i, i = 1, 2, . . . , `,

solution: yi(t) = (1+i)(1−i t2)
1+i t2 i = 1, 2, . . . , `.

For both families, the Runge-Kutta will be used to estimate the value y(4) from the initial solution y(1)

for a collection of values of ` and n. For a given value of the number of steps n, the step size used in the

Runge-Kutta method will be h = 3
n . In the region of interest, both ODE systems and their solutions are well

defined and in C∞.

In order to assess the quality of the Runge-Kutta algorithmic parameters, the extended-valued function

ψ : R2 7→ R∪{∞} returning a measure of the error produced by the application of Runge-Kutta is introduced.

The function ψ consists of a simulation that takes as input the real values β1 and β5, then applies Equation (1)

to determine the parameters α ∈ R4 and β ∈ R6, and then uses these values to launch the Runge-Kutta

method on a collection of ODE. Formally, the function ψ returns:

ψ(β1, β5) =


(

7∑
`=4

150∑
n=145

e2`,n

) 1
2

if Runge-Kutta succeeds with (α, β)

∞ otherwise

where e`,n = ‖yn − y(4)‖2 is the two-norm of Runge-Kutta approximation error. There are situations where

Runge-Kutta fails to solve to system, for example

i- when β1 = 1
2 and β5 = 1, the denominator used to compute β3 in Equation (1) is null;

ii- the intermediate value γ required to compute β2 Equation (1) is negative;

iii- applying Runge-Kutta numerically fails as the vector yn grows unbounded (it is the case with the

classical parameters on system A with ` = 9 equations and n = 150 steps).

The error measure ψ takes into account a total of 24 systems of ODE. The number of equations ` ranges from

4 to 7 and the number of steps n ranges from 145 to 150. Of course, these values could have been chosen

differently, thereby leading to a different analysis.

The question of tuning the Runge-Kutta algorithmic parameters reduces to an unconstrained optimization

problem in R2 compactly written as

min
β1,β5

ψ(β1, β5). (2)

This problem falls into the realm of blackbox optimization [1] in which a simulation needs to be launched

in order to compute the objective function value. The iterative nature of the Runge-Kutta method makes

it improbable that the objective function is differentiable. Figure 1 plots the least value between ψ and 2

for various values of β1 and β5 on the system A. The holes in the plot surface correspond to values of the

parameters for which the system (1) has no real solutions, i.e., when ψ = ∞. The error function ψ to be

minimized is clearly nonsmooth.
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Figure 1: Graph of the nonsmooth error function for family A

4 Numerical experiments

Coding of the Runge-Kutta methods and of the objective function ψ was done in Matlab. The NOMAD [8]

implementation1 of the mesh adaptive direct search (Mads) algorithm [3] is used to solve Problem (2).

Mads is designed for constrained or unconstrained blackbox optimization in which the functions defining

the objective and constraints are typically computed through a time-consuming computer simulation. Many

blackbox optimization applications are listed in the survey [1]. Mads is supported by a rigorous convergence

analysis [3] based on the Clarke nonsmooth calculus [5].

NOMAD is launched within Matlab using all the default options, from the starting point (β1, β5) = (0.5, 0)

which corresponds to the classical parameters, and it terminates after a total of 100 blackbox evaluations.

The actual Matlab syntax is

nomad(@fun,[0.5,0],[],[], nomadset(’max_bb_eval’,100));

in which the first parameter is the function that returns ψ, the second is the initial solution ([β1, β5] from the

classical parameters). The third and fourth are the bounds (none) and the last one provides the termination

criteria for NOMAD.

Each blackbox evaluation takes β1 and β5 as input, extends these parameters to create α ∈ R4 and β ∈ R6

and then returns the value ψ after solving all 24 systems of ODE. Figure 2 gives a high-level illustration of

the blackbox optimization framework.

NOMAD
β1, β5

�

Blackbox

-Solve Equation (1) for α, β
-Run RK on 24 systems of ODE
-Compute error norms e`,n

ψ
-

Figure 2: The NOMAD solver pilots the blackbox optimization process

1Software available at https://www.gerad.ca/nomad

https://www.gerad.ca/nomad
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The optimal values of α and β produced by NOMAD for each family A and B are reported in Table 1.

Table 1: Optimal parameters produced by NOMAD

Family

A α = ( 0.1176, 0.0580, 0.6594, 0.1650 ),
β = ( 0.0328, 0.5052, 3.8995, 1.0000, -15.2460, 1.9777 )

B α = ( 0.1803, -11.6094, 12.2241, 0.2051 ),
β = ( 0.6305, 0.6229, 0.0143, 1.0000, -21.7739, 22.4784 )

Table 2 compares the three parameter values from the literature to the two produced by the optimization

process on the training set of ODE with ` ∈ {4, 5, 6, 7} and n ∈ {145, 146, . . . , 150}. For both families,

the table provides the corresponding objective function value ψ. Without any surprise, the smallest value

for family A corresponds to the one generated by NOMAD on that family. A similar conclusion holds for

family B. With family B, the gain produced by the optimization is by a factor of 5 over the parameters from

the literature. With family A, the gain is by a factor of more than 300.

Table 2: Objective function value for both families of ODE with different parameters

Family A Family B
training cross-validation training cross-validation

Parameters ψ average worst ψ average worst

Classic 1.364 1.000 1.000 2.565e-06 1.000 1.000
Ralston 1.055 0.757 0.774 2.254e-06 0.899 0.972
Gill 1.363 0.999 1.000 2.170e-06 0.866 0.909
NOMADA 0.0037 0.025 0.071 1.865e-06 0.728 0.968
NOMADB 1.834 1.397 1.737 4.758e-07 0.248 0.547

The table also summarizes the relative gain with respect to the classical parameters on other systems of

ODE within the same families. For each family A and B, a cross-validation group of 24 systems of ODE is

solved: The number of equations ` ranges from 3 to 8 and the number of steps n takes the values 120, 140,

160 and 180. None of these cross-validation systems overlaps with the training ones used to construct ψ. For

each cross-validation family, the average and worst error (over the 24 systems) are reported for each of the

five parameters in Table 2. These values are normalized so that the classical values equal 1. Once again, the

optimized parameters outperform the three sets of parameters from the literature. On average, the gain over

the classical parameters is by a factor of 40 for family A, and the gain is by a factor of 4 for B. The worst

case associated to the optimized parameters is also systematically preferable to the classical parameters.

Figure 3 illustrates additional cross-validation tests. The figure plots the base 10 logarithm of the error

term e`,n using a fixed number of steps n = 150, and for some values of ` outside of the training set {4, 5, 6, 7}.
The plot on the left shows that the NOMADA parameters outperforms the four other sets of parameters for

all values of ` ranging from 3 to 10 on family A. Only the NOMADA parameters allow to solve the systems

with 9 and 10 equations. The four other methods generate unbounded values. The NOMADA parameters

fail to solve systems with 11 or more equations. The right part of the figure illustrates the same comparison

but for family B and for larger systems: the number of equations ` varies form 3 to 25. Here, the NOMADB
parameters systematically dominates the four others. The same behavior is observed for larger values of `.
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Figure 3: Comparison of solutions on larger systems of ODE

For comparison, the Matlab adaptive routine ode45 was launched on both families. In both cases, the

errors are important. Figure 4 shows the solutions produced by ode45 on the problems of family A with

` ∈ {4, 5, 6}. A difficulty arises when ` = 5, as one of the function is clearly not convex. The top curve on

the central plot fails to be a good approximation of the solution y5(t) = 5
√
t since at t = 4, the Runge-Kutta

approximation yn > 12 is far from the exact solution y5(4) = 10. The plot on the right with ` = 6 reports

values of the order of 1014. Much smaller errors are observed on family B.

1 1.5 2 2.5 3 3.5 4
t

1

2

3

4

5

6

7

8

9

y i

Family A with 4 equations

1 1.5 2 2.5 3 3.5 4
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2

4

6

8

10

12

14

y i

Family A with 5 equations

1 1.5 2 2.5 3 3.5 4
t

0

2

4

6

8

10

12

y i

×1014 Family A with 6 equations

Figure 4: Solutions produced by the Matlab ode45 command on family A

5 Discussion

Designers of algorithms often provide default values for their algorithmic parameters. The objective of this

paper is to show that these parameters can be customized to improve the quality of the results on some families

of problems. This is achieved by formulating a blackbox optimization problem, and using an appropriate

optimization solver.

The methodology is applied to tune the parameters of the fourth-order Runge-Kutta methods on two

families of ODE. The optimized parameters are specifically tuned for each family and may not be pertinent

for use with other families.
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