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Abstract: This paper proposes a multi-stage stochastic programming formulation based on affine decision
rules for the reservoir management problem. Our approach seeks to find a release schedule that balances
flood control and power generation objectives while considering realistic operating conditions as well as
variable water head. To deal with the non-convexity introduced by the variable water head, we implement a
simple, yet effective, successive linear programming algorithm. We also introduce a novel non-linear inflow
representation that captures serial correlation of arbitrary order. We test our method on a real river system
and discuss policy implications. Our results namely show that our method can decrease flood risk compared
to historical decisions, albeit at the cost of reduced final storages.
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Sara Séguin and Pierre-Luc Carpentier. This research was supported by the Natural Sciences and Engineering
Reasearch Council of Canada (NSERC) and Hydro-Québec through the Industrial Research Chair on the
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1 Nomenclature

1.1 Sets and parameters

T Total number of periods
L Length of look-ahead period (L ≤ T )
Tt,L Look-ahead period of L periods starting at time t
L Lead times
Kprod. ref. Piecewise linear segments approximating the reference production curve
Kflood dmg. Piecewise linear segments approximating the flood damage curve
Kf.val. Piecewise linear segments approximating the storage value function curve
I Set of plants
Ievac Set of plants with evacuation curve constraints
J Set of reservoirs
j+(i), j−(i) Unique reservoir upstream or downstream of plant i, respectively

Hrefi Reference water head at plant i

N refjt Reference water level at reservoir j

λil Fraction of the releases from plant i reaching the unique downstream reservoir after l periods
δmini , δmaxi Minimum and maximum water delays for plant i
γj Relative importance of flood damages at reservoir j
φ Relative importance of power generation objectives compared to flood control
αjt Average proportion of the total inflows entering reservoir j at time t

li, li Upper and lower bounds on total spillage at plant i
ri, ri Upper and lower bounds on releases at plant i

f
i
, f i Upper and lower bounds on total releases/total flow at plant i

∆̄i Maximum flow variation between periods at plant i
sj , sj Upper and lower bounds on storage at reservoir j

l∆i , l
0
i Parameters for the linear approximation of the evacuation curve at plant i

p∆
ik, p

0
ik Parameters for the kth segment of piecewise linear approximation of the reference production function for

plant i
n∆
j , n

0
j Parameters for the linear approximation of the water level curve for reservoir j

e∆jk, e
0
jk Parameters for the kth segment of piecewise linear approximation of the flood penalty at reservoir j

s∆jk, s
0
jk Parameters for the kth segment of piecewise linear approximation of the final water value function at reservoir j

νt Price of 1 MWh during time t
η Number of hours per period

1.2 Decision variables

Rit Releases at plant i during time t
Lit Spills at plant i during time t
Fit Total flow at plant i during time t
Sjt, S̄jt Storage and value of storage at reservoir j at the end of time t
Ejt, Ējt Floods and flood damages at reservoir j at the end of time t
Hit Relative water head at plant i and time t
Pit, Ptotalit Reference and real production at plant i and time t
Njt Water level at reservoir j and time t

Ofloodst Cost associated with floods at time t

Oprodt Cost associated with electricity generation and final value of storage at time t

1.3 Random variables

ξt Total inflows over all reservoirs during time t
ξjt Inflows at reservoir j during time t
ζt Logged (total) inflows during time t
%t Residuals at time t
Gt Information known at time t
Ξt Dynamic uncertainty set given Gt
Ξ̂t Exterior polyhedral approximation of Ξt
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2 Introduction

This paper considers the optimal operation of a multi-reservoir hydro-electrical system over a given time

horizon subject to uncertainty on inflows. We seek to balance hydro-electrical production and flood control

while respecting a host of operating constraints on storages, spills, releases and water balance. Our model

explicitly considers water delays as well as variable water head. In addition, we consider inflow persistence

through ARIMA time series of arbitrary order.

As mentioned in [1], this stochastic multi-stage non-convex problem is extremely challenging to solve.

The variable water head and the associated non-convexity make it impractical to find a globally optimal

solution while the multi-dimensional nature of the problem often requires various simplifications that may

lead to policies of limited practical use [2].

To solve this problem, we propose a stochastic program based on affine decision rules, non-linear ARIMA

time series and a successive linear programming (SLP) algorithm. We incorporate our lightweight model in a

rolling horizon framework and test it with historical inflows. Our approach builds on previous work [3, 4], but

makes important improvements in terms of modeling and empirical results, namely regarding flood reduction.

Following the work of [5, 6], affine decision rules have gained some attention for reservoir management

problems and other energy-related problems [3, 7]. Although they do not guarantee optimality in general,

these simple parametric policies often lead to good-quality solutions that can be obtained very efficiently.

Unlike competing methods such as traditional stochastic dynamic programming (SDP) [8] and various

other extensions such as sampling stochastic dynamic programming [9] and SDP based on improved dis-

cretization schemes [10], affine decision rules do not require discretizing the state-space, which results in

important computational gains.

As illustrated in [4], affine decision rules also make it possible to consider long water delays as well as

highly persistent inflows without increasing the computational burden as would be the case of algorithms

belonging to the family of SDP. Considering these long inflow delays can be essential to avoid overly optimistic

solutions in the face of floods [4, 8, 11].

Contrary to scenario-tree based stochastic programming and stochastic dual dynamic programming (SDDP),

these decision rules also provide easily implementable policies that can be computed off-line and used by op-

erators for simulations.

This paper also extends [4] and [7] by introducing a new inflow representation based on a simple non-

linear time series model. Although this leads to a non-convex support, the resulting model has nice statistical

interpretation and good forecasting ability.

By exploiting this representation along with affine decision rules, we are able to obtain a compact bilinear

expression for the objective function. In order to tackle the non-convexity, we implement a simple SLP algo-

rithm. These algorithms have been successfully utilized in hydro-electrical reservoir management problems

in the context of stochastic programs based on scenario-trees [12], distributionally robust optimization [13]

as well as at the operational level for deterministic and stochastic optimization, namely at Hydro-Québec.

These experimental results suggest that this simple algorithm can provide good quality solutions since the ob-

jective is bilinear and therefore well approximated by a linear first-order Taylor approximation in a restricted

neighborhood.

Considering variable water head is important since it captures the fact that a better production schedule

can produce more electricity by using less water than the corresponding optimal plan with fixed head [14].

This is also an important consideration from an operational perspective in various regions such as Qubec

where cascaded river systems are widespread. Evaluating water head is an important advantage of our method

compared with SDDP since this method relies on convexity assumptions to obtain hyperplanes bounding the

optimal cost-to-go functions [15, 16, 17].
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The paper is structured as follows. We present the deterministic reservoir management problem in

Section 3. We then discuss our non-linear inflow representation and the associated non-convex uncertainty

set in Section 4. Section 5 presents the multi-stage stochastic program based on affine decision rules as well

as the SLP algorithm used to solve it approximately. We then present the river system used for our numerical

experiments in Section 6. Section 7 discusses results and Section 8 draws concluding comments.

3 Deterministic formulation

3.1 Daily river operations

River operators must determine the average water release that will flow through the turbines of the power-

house i during day τ = t + l where τ ∈ Tt,L = {t, · · · , t + L − 1}.1 Because of plant specificities and other

physical limitations, the total releases are required to reside within some closed interval:

ri ≤ Riτ ≤ r̄i ∀i ∈ I, τ ∈ Tt,L. (1)

Based on physical characteristics of the sites, a certain amount of water can also be unproductively spilled:

li ≤ Liτ ≤ l̄i ∀i ∈ I, τ ∈ Tt,L. (2)

Certain sites i ∈ Ievac ⊂ I can also evacuate water through a separate spillway. Due to the physical

structure of these evacuators, the maximal amount of water that can be physically spilled is bounded by

a function of Sjτ , the storage (hm3) in the unique upstream reservoir j−(i) at the end of time τ . We

approximate these functions with affine functions parametrized by l∆i , l
0
i ∈ R to obtain:

Liτ ≤ l∆i Sj−(i)τ + l0i , ∀i ∈ Ievac, τ ∈ Tt,L. (3)

We define Fiτ = Riτ + Liτ as the total flow (hm3/day) ∀i ∈ I, τ ∈ Tt,L, which is simply the sum of

unproductive spillage and releases. These quantities are bounded for navigation and recreation purposes,

environmental needs as well as to ensure smooth ice formation during the winter months:

f
i
≤ Fiτ ≤ f̄i ∀i ∈ I, τ ∈ Tt,L. (4)

To avoid plant damages, we also ensure that the total flow does not change excessively from one day to

the next:

|Fiτ −Fiτ−1| ≤ ∆̄i ∀i ∈ I, τ ∈ Tt,L.2 (5)

We require that the final water storage at the end of time τ at reservoir j lie within fixed bounds:

sj ≤ Sjτ ≤ s̄j ∀j ∈ J, τ ∈ Tt,L. (6)

Given very wet conditions, it is possible that the upper bound constraint (6) is violated. We there-

fore introduce the non-negative variable Ejτ ≥ 0 representing floods and modify the second inequality to:

Sjτ − Ejτ ≤ s̄j ,∀j ∈ J, τ ∈ Tt,L. 3

1For the level of granularity considered by our model (daily decisions), the different turbines are aggregated and it is assumed
that no maintenance occurs so that all turbines are available for power generation.

2Fi,t+l are already known at time t for any l ≤ 0.
3For sake of simplicity, it is assumed that floods remain in the reservoir. Although physically possible in some cases when

either sj > 0 or reservoirs represent“useful” storages, we do not consider lower bounds violations.
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We model the flood severity ($) as a piecewise linear increasing convex function of floods, which reflects

the assumption that greater floods have increasing marginal consequences. We specifically introduce the

decision variable Ējτ ≥ 0 and impose:

Ējτ ≥ e∆
jkEjτ + e0

jk,∀k ∈ Kflood dmg., (7)

for all j, τ where Kflood dmg. = {1, · · · ,Kflood dmg.} and e∆
jk, e

0
jk define the hyperplanes.4

Water balance constraints ensure that the current storage is given as the previous storage plus the net

inflow. The net inflow is itself defined as the sum, over all upstream reservoirs, of past releases (hm3/day)

weighted by the flow delay coefficients plus the daily inflows ξjt (hm3/day) during time τ less the releases

from all plants during the day (hm3/day):

Sj,τ = Sj,τ−1
5 +

∑
i−∈I−(j)

min{δmax
i− ,τ−1}∑

l̄=δmin
i−

λi− l̄Fi−,τ−l̄ −
∑

i+∈I+(j)

Fi+,τ+l + ξjt, (8)

for all j ∈ J, τ ∈ Tt,L where δmini− and δmaxi− represent the minimum and maximum time taken for a drop

of water released from plant i−(j) ≡ i− to reach reservoir j. We make the simplifying assumptions that

ξjt = αjtξt where αjt is the average proportion of inflows entering reservoir j at time t and ξt are the inflows

over the entire catchment at time t.

As is customarily done, we model the final water value function with a piecewise linear increasing concave

function [18]. More precisely, we introduce the decision variable S̄jτ ≥ 0 and impose :

S̄jτ ≤ s∆
jkSjτ + s0

jk,∀k ∈ Kf.val., (9)

for all j, τ where Kf.val. = {1, · · · ,Kf.val.} and s∆
jk, s

0
jk define the hyperplanes, which are based on the output

of other long-term scheduling tools.

The total power produced (in MW) during time τ for plant i is taken as the product of the reference

production Piτ at some fixed reference water head times the relative water head Hiτ [19, 20, 12]:

Ptotaliτ = PiτHiτ . ∀i ∈ I, τ ∈ Tt,L. (10)

The relative water head is given by the net water head divided by the reference water head Hrefi :

Hiτ = (Nj−τ −Nj+τ )/Hrefi ∀i ∈ I, τ ∈ Tt,L. (11)

The net water head is simply the difference between forebay Nj+τ and tailrace Nj−τ elevations during

time τ , where j+ ≡ j+(i) and j− ≡ j−(i) respectively represent the reservoir upstream and downstream of

plant i.

The forebay and tailrace elevation (m) at a given plant i are concave increasing functions of the average

storage in the upstream and downstream reservoir during time τ respectively. These functions are sufficiently

well approximated by affine functions of the water storage in the associated reservoir:

Nj−τ = n0
j− + n∆

j−Sj−τ ∀j ∈ J, τ ∈ Tt,L (12a)

Nj+τ = n0
j+ + n∆

j+Sj+τ ∀j ∈ J, τ ∈ Tt,L, (12b)

4In reality, the impact of floods are often non-convex due to threshold effects and other complex physical phenomenon [11].
However, we believe our model is satisfactory since our policies yield very limited floods when tested on historical scenarios.

5Sj,t+l are already known at time t for any l ≤ 0.
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where n0
j , n

∆
j ∈ R,∀j. For plants where the downstream reservoir is sufficiently far, the tailrace water

level is taken as a constant Nj− = N ref
j+ .

The reference production itself depends on the total flows (hm3/day). For every i and τ , we use the

following approximation for the reference production function by using Kprod. ref. ∈ N hyperplanes:

Piτ ≤ p∆
ikFiτ + p0

ik,∀k ∈ Kprod. ref., (13)

where Kprod. ref. = {1, · · · ,Kprod. ref.} and p∆
ik, p

0
ik ∈ R. Each piecewise function is increasing only on a

subset of its domain to reflect negative tailrace effects caused by excessive flows. Indeed, for each plant, we

have p∆
ik > 0, k ∈ K \Kprod. ref. and p∆

iKprod. ref. < 0. Section 6 provides concrete examples and additional

details.

3.2 Biobjective problem

We wish to find a production plan that balances some systemic measure of flood occurrence while maximizing

electricity production and avoiding completely emptying the reservoirs at the end of the horizon.

Based on previous work [3], we let γj ≥ 0 reflect the relative importance of floods at reservoir j where∑
j∈J γj = 1. We then consider Ofloodsτ , the weighted flood damages over the entire catchment at time

τ ∈ Tt,L ($), which is given by the following simple relationship:

Ofloodsτ =
∑
j∈J

γj Ējτ . (14)

We evaluate the hydro-electric productive benefits associated to a reservoir release schedule at time

τ ∈ Tt,L by considering the (negative) total hydroelectric production value and the value of the final storage

of reservoirs ($):

Oprodτ =

{
−
∑
i∈Iprod P

total,
i,τ ηντ −

∑
j∈J S̄jτ if τ = t+ L− 1

−
∑
i∈Iprod Ptotali,τ ηντ else,

(15)

where η is the number of hours per period, ντ is the price of 1 MWh6 and S̄jτ indicates the final value of

this water storage.

Finally, at the beginning of time t ∈ T, we seek to minimize

t+L−1∑
τ=t

(
(1− ϕ)Ofloodsτ + ϕOprodτ

)
, (16)

for some ϕ ∈ [0, 1] reflecting the relative importance of the aggregate production measure Oprodτ compared

to the aggregated flood measure Ofloodsτ .

4 Incorporating uncertainty

We want to model {ξt}t∈Z, the discrete time stochastic process representing total inflows. At each time

t ∈ T = {1, · · · , T} for the lead times L = {0, · · · , L − 1}, we assume that the ξ ≡ ξ[t,t+L−1] lie within the

following set with probability 1:

6Electricity generation is assumed constant throughout each period τ . We also assume that electricity prices are known
constants, which makes sense in the case of Hydro-Québec.



6 G–2017–13 Les Cahiers du GERAD

Ξt
8 =

ξ ∈ RL

∣∣∣∣∣∣∣∣∣∣
∃ζ, % ∈ RL

ξt+l = eζt+l ,∀l ∈ L
ζ = Vt%+ vt

W% ≤ w


(17a)

(17b)

(17c)

(17d)

Representation (17) essentially states that the logarithms of inflows follow some ARIMA process, whose

structure is codified by the matrix Vt and the vector vt, and where the residuals % are random variables

taking values in the polyhedral set P = {% ∈ RL : W% ≤ w}.

This representation captures commonly used inflow representations as a particular case. For instance,

considering large P and assuming %[t,t+L−1] follow a multivariate normal distribution implies that the in-

flows are correlated and approximately follow the popular log-normal distribution, often used in reservoir

management problems [21, 17, 22].

The exponential function used in Equation (17b) also possesses various intuitive and statistically appealing

properties. Indeed, the function ensures non-negativeness of inflows and belongs to the family of Box-Cox

transforms commonly used to obtain a more adequate fit with a theoretical model [23].

5 Stochastic multi-stage formulation

We consider a dynamic setting where the inflows are progressively revealed as time unfolds over the horizon of

T days. At each time t ∈ T, the decision maker fixes a sequence of policies to be implemented at future times

τ = t, · · · , t+L− 1 under the assumptions that the future inflows ξ[t,t+L−1] belong to Ξt. Decisions must be

non-anticipative in the sense that each Xτ must only be a function of the past random variables ξ[τ−1].

5.1 Affine decision rules

Solving the true multistage problem to optimality requires considering arbitrary functions, which will lead

to an intractable problem. We therefore limit ourselves to affine policies, which are suboptimal but might

still capture well the general structure of future decisions. These functions take the following form at time

τ = t+ l for t ∈ T and l ∈ L:

Xkτ (ξ) = X 0
kτ +

t+L−1∑
τ ′=t

X τ
′

kτξτ ′ ,
9 (18)

As mentioned in [3, 24], we replace each decision variable in the deterministic formulation by its associated

affine decision in the stochastic model. To ensure that the inequalities hold with probability 1, we solve

an optimization problem. For instance, constraint (1) is respected with probability 1 if maxξ∈Ξt R
0
it +∑t+L−1

t′=t Rt′itξt′ ≤ r̄. However, this optimization problem is intractable given our choice of Ξt, since this set

is not generally convex for an arbitrary t ∈ T (see the Appendix A.3). Fortunately, it is possible to obtain

the following exterior polyhedral conservative approximation:10

Ξ̂t =
L�
l=1

[
e

min
W%≤w

V >l %+vt,l
, e

max
W%≤w

V >l %+vt,l
]
. (19)

8ζ ≡ ζ[t,t+L−1] and % ≡ %[t,t+L−1] represent random variables for the next future L days. We fix Vt ∈ RL×L, W ∈ Rc×L,

vt ∈ RL and w ∈ Rc for some c ∈ N.
9In this case, k ∈ {nτ−1 + 1, · · · , nτ−1 + nτ} and nτ ∈ N represents the number of decisions at time τ . X 0

kτ ,X
τ ′
kτ ∈

R, ∀k, τ become the decision variables in our deterministic equivalent formulation. Non-anticipativity is respected by imposing

X τ ′kτ = 0,∀τ ′ ≥ τ .
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We then use strong linear programming duality to write the deterministic equivalent as a a large linear

program (see [3] for details).

5.2 Objective function and composite risk

We define the (composite) risk of the production plan at the beginning of time t as:

E

[
L−1∑
l=0

(
(1− ϕ)Ofloodst+l (ξ) + ϕOprodt+l (ξ)

)
|Gt−1

]
.11 (20)

By linearity of the conditional expectation, it follows that this composite risk is simply a convex combi-

nation of the flood risk and the production risk. Appendix B details the analytical expression of these terms.

5.3 Using successive linear programming to approximate the true problem

Due to (10), (20) contains a bilinear term (see Appendix B for details). In order to deal with this non-

convexity, we consider a commonly used first order Taylor approximation, which is detailed in the Appendix C

as well as a SLP algorithm based on the general trust-region algorithm of [26]. Our algorithm begins by

considering the linear problem of minimizing flood damages and builds on this solution.

The SLP algorithm displayed very rapid convergence and after only 4 iterations, the flood and production

risk remained roughly constant. We obtained similar results with different stopping criteria, period of the

year and weights ϕ in the objective function (20).

5.4 Rolling horizon simulation

We embed the SLP algorithm within a broader rolling horizon simulation that reflects the real behavior of

river operators (see Figure 1).

6 The Gatineau river system

We apply our framework to the Gatineau river in Western Qubec. This hydro-electrical complex is part

of the larger Outaouais catchment and is managed by Hydro-Québec. It is composed of 5 reservoirs and 3

run-of-the river plants.

The first 2 head reservoirs, Baskatong and Cabonga have storage capacity of 1563 hm3 and 3049 hm3,

respectively, while the remaining downstream reservoirs Paugan, Chelsea and Rapides-Farmers have virtu-

ally none.

The Baskatong reservoir is the largest of the larger Outaouais-Gatineau catchment and plays a critical role

in the management of the river. It is used to manage flood risk during the freshet as well as baseflow during

summer. Furthermore, it is located upstream of the town of Maniwaki, which has witnessed 4 significant

floods in the past and therefore imposes extremely tight operating constraints on water flows at this segment.

The three run-of-the-river plants Paugan, Chelsea and Rapides-Farmers have relatively small installed

capacity. As illustrated in Figure 2, up to some critical threshold, increasing flow will increase the reference

production. On the other hand, excessive releases and spills above this value will have negative effect on

water head, which is captured with an additional linear segment of negative slope.

10Using properties of the exponential and P , we can check that Ξt ⊆ Ξ̂t. The set Ξ̂t is simply the Cartesian product of
intervals (i.e. a box) and can therefore be represented with only 2L hyperplanes.

11Gt = σ(%τ : τ ≤ t) is the σ-algebra generated by the past %τ and that we can simply interpret as the information known at
time t [25].



8 G–2017–13 Les Cahiers du GERAD

Generate
inflow

trajectory
start

Max # of
scens.

reached?
end

Minimize
flood risk

Initial
solu-
tion

Minimize
composite
risk with

SLP

Incumbent
solu-
tion

Stop.
criteria

reached?

Optimal
con-

trols/decisions

Simulate
river

operations

Move 1
time step &

compute init.
conditions

End of
horizon

reached?

no

yes

yes

no

yes

no

Rolling horizon
& simulation

SLP algorithm

Figure 1: Flow chart for the rolling horizon simulation algorithm
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7 Numerical experiments

7.1 Daily inflows

We consider 12 years of historical daily inflows provided by Hydro-Québec. We calibrated our model on 6

years of in-sample data 1999–2004, but we also tested our framework on 6 additional out-of-sample years

2008–2013, which are on average wetter than the in-sample years.

7.2 Model performance under hard synthetic scenario compared with alternative in-
flow representations

The non-linear ARMA representation (17) offers significant advantages over other alternative inflow repre-

sentations. This is illustrated in Table 1, which shows the results of the flood minimizing solutions12 with

three different inflow representations. Results were obtained by considering the 12 historical scenarios during

the freshet under the same hard stress test where the initial storages are fixed at very high levels.

The first naive representation is a static uncertainty set that consists of intervals around the historical

sample mean and does not explicitly consider serial correlation. Details can be found in [3]. The second one

considers the linear ARMA(1,1) model described in [4], which is similar to (17), but does not take into account

the non-linear log transformation. The third model is based on the non-linear ARMA model presented in

this paper where ξt = eζt+µ̂t , µ̂t is the sample log average and the AIC criterion suggests that the ζt follow

an AR(4) model.

Table 1: Impact of different uncertainty representations 13

Baskatong
storage violations

(hm3)

Maniwaki
flow violations

(m3/s)

Energy
(GWh)

Final
Volume

(106 hm3)

Non-linear ARMA 0 0 140.44 22.22
Linear ARMA 1605.07 27.63 147.28 40.33
Naive forecast 1768.26 28.08 136.42 43.56

The absence of violations in the case of these extremely challenging stress tests is very encouraging.

Moreover, these flood reduction objectives are achieved without sacrificing much energy generation compared

to the best model. These results suggest that Hydro-Québec can maintain higher storages without violating
operating constraints nor social obligations. However, Table 1 reveals that maintaining higher storage is of

questionable value as a significant amount of water needs to be evacuated out of the system to avoid floods.

7.3 Model performance under realistic historical conditions compared with historical
decisions

7.3.1 Flood reduction

Next, we consider the very wet historical scenario of fall 2003. Figure 3 illustrates that these meteorological

conditions led to very high storages at the Baskatong and Cabonga reservoirs around early November and in

turn to upper flow bounds violations of 55 m3/s at the downstream town of Maniwaki on 3 occasions during

the period November 14 to December 13.

Figure 3 reveals that our model out-performed the historical decisions since the production plan leads

to solutions that respect all operating constraints. We are able to respect flow bounds at Maniwaki by

emptying the Baskatong reservoir faster and better anticipating the very large inflows at times 5 and 6. Our

release schedule maintains approximately the same final storages in Baskatong as the historical decisions,

12We set ϕ = 0 in the objective (16), which reflects the real behaviour of operators in such a critical situation.
13Values in the table represent the sum over 12 scenarios.
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which illustrates the importance of properly timing the decisions.14 However, as in Section 7.2, a significant

amount of water is released from Cabonga out of the system.15
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Figure 3: Model results on hard historical scenario16

7.3.2 Energy generation

To validate the utility of our approach for electricity generation purposes, we tested our model in the summer

for the years 1999–2003.17 We considered this period, since it represents the moment where the reservoirs

are relatively full, there are no pressing flood risks and it is possible to exploit the variable water head to

derive operating efficiencies. Table 2 reveals that our model yields an average energy increase of 0.3 % over

a 30 day horizon relative to the historical production plan. These figures are obtained by using the same

amount of water as the historical plan and avoiding spillage and floods.

14We consider November 14 as the starting period, which is the day the Baskatong storage reached a level very close to
maximal normal operating limits. We therefore naturally fix ϕ = 0 and only focus on minimizing flood risk for the catchment.
We fixed the initial storages at their historical levels and used the realized inflows over this 30 day period.

15This result suggests that under hard scenarios, it is very hard to simultaneously reduce floods and maintain the same level
of storage.

16The time series ‘Average’ represents the daily average storages at Cabonga, daily average storages at Baskatong and the
daily average flows at Maniwaki, respectively. These averages are computed over the 5 years 1999-2003 using the historical data.
The time series ‘Average’, ’Historical’ and ’Model’ correspond to the left axis, while the right axis corresponds to the ’Inflows’
time series. Upper and lower bounds are indicated by solid black lines.

17The summer period corresponds to the days 200–229. We only considered the years 1999–2003, because the data for the
historical production plan for the years 2008–2013 was not available.

18Value in this table where obtained by setting ϕ = 1 and focusing on energy production.
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Table 2: Energy generation increase (%) with model water head 18

Year Paugan Chelsea Rapides-Farmers Total

1999 0.5 -6.5 10.1 0.2
2000 0.4 -5.4 8.6 0.4
2001 0.5 -5.2 8.0 0.4
2002 0.4 -3.5 5.4 0.2
2003 0.1 -3.5 5.1 0.0

Average 0.4 -4.8 7.4 0.3

8 Conclusion

This paper presents encouraging evidence that stochastic programming models based on affine decision rules

can improve short-term river management operations. Our framework based on non-linear time series and

a SLP algorithm can successfully consider important phenomenon such as water delays, variable water head

and inflow persistence of arbitrary order.

More importantly, our model can yield sizable improvements when compared with historical decisions.

We also show that it is possible to find feasible release schedules with storage considerably larger than

average historical levels, even with high inflows. This suggests it is possible to revise the drawdown-refill

cycle currently used in practice to maintain higher storage and limit unproductive spills.

Finally, the simple convex combination of flood control and production objectives we consider can allow

river operators to easily explore the solution space. Although we could not give additional results due to lack

of space, it is interesting to assess possible trade-offs using different inflow simulations. Since our model is

extremely fast to solve, it is highly feasible to perform such sensitivity analysis in a realistic setting.

A Details on Ξt

A.1 Time series model linking ζ and %

We assume that at each time t ∈ Z, there exists some finite constant v̄t such that ζt = ln ξt − v̄t19 are zero

mean random variables that satisfy the equation:

φ(B)ζt = θ(B)%t, (21)

where B represents the backshift operator acting on time indices such that Bpζt = ζt−p for all t, p ∈ Z [27, 28],

φ(B) = 1−
∑p
i=1 φiB

i and θ(B) = 1 +
∑q
i=1 θiB

i with φi, θi ∈ R for p, q ∈ N.

We also suppose {%t} are second order stationary zero-mean i.i.d. random variables [27] and that we can

find ψ(B) =
∑∞
i=0 ψiB

i where φ(B)ψ(B) = θ(B) such that
∑∞
i=0 |ψi| < ∞. Under suitable conditions on

φ(B) and θ(B), the representation ζt = ψ(B)%t holds and is essentially unique [28].

We then exploit the following linear decomposition:

ζ̂t(l) ≡ E [ζt+l|Gt] =

l−1∑
i=0

ψi%t+l−i (22)

ρt(l) ≡ ζt+l − ζ̂t(l) =

l−1∑
i=0

ψi%t+l−i, (23)

for any t ∈ T and l ∈ L. ζ̂t(l) can be naturally interpreted as a forecast of ζt+l given information up to time t

and ρt(l) as the forecast error.

19Given S years of data where ξt,i represents the inflows on the tth period of the ith series, we can namely consider

v̄t =
∑S
i=1

1
S

ln ξt,i, ∀t, the sample daily logged mean, which is also used in [17].
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If we set ρt−1,L ≡ (ρt−1(1), · · · , ρt−1(L))> for any t ∈ Z, we can then express the forecast error vector

ρt−1,L as a linear function of the independent %[t,t+L−1]. More specifically, ρt−1,L = Vt%[t,t+L−1] holds for all

L ∈ {1, · · · , T − t+ 1}, where Vt ≡ V ∈ RL×L is the following invertible and lower triangular square matrix,

which is constant across all t ∈ Z:

V =


1 · · · 0

ψ1 1
...

...
. . .

ψL−1 · · · ψ1 1

 (24)

We then have the system of equalities:

ζ[t,t+L−1] = ζ̂t−1,L + V %[t,t+L−1] (25)

and it follows that ξt+l = ev̄t+l+ζ̂t−1(l+1)+ρt−1(l+1),∀l ∈ L and ζ̂t−1,L + v̄[t,t+L−1] ≡ vt ∈ RL in represen-

tation (17) where ζ̂t−1,L ≡ (ζ̂t−1(1), · · · , ζ̂t−1(L))> and v̄[t,t+L−1] = (v̄t, · · · , v̄t+L−1)>. For more details,

see [4].

A.2 Polyhedral support of the %t

We fix some ε > 0 and consider the following polyhedron:

P = {% ∈ RL :

L∑
i=1

|%i| ≤ L
√
εσ2
%; |%i| ≤

√
Lεσ2

%,∀i}. (26)

This set is motivated by Markov’s inequality. Indeed, for the independent random variables %̃ ≡ %[t,t+L−1],

we know that P(%̃ ∈ P ) ≥ 1− ε−1. For more details, see [4].

A.3 Counterexample showing that Ξt is generally non-convex

We show that in general, Ξt is not convex for an arbitrary t ∈ T. Consider the following instance:

V =

(
1 0
−1 1

)
vt = (0, 0)>

P = {% ∈ RL : −1 ≤ %l ≤ 1,∀l = 1, · · · , L;

L∑
i=1

|%i| ≤
√
L}

L = 2.

Figure 4 displays Ξt = {ξ ∈ RL : ∃% ∈ P, ξl = exp(V >l %),∀l = 1, · · · , L} and illustrates that Ξt is in

general not convex.

For a slightly more formal demonstration, it is possible to show that given the two points %̂1 = (1−
√

2, 1)>

∈ P and %̂2 = (
√

2− 1, 1)> ∈ P illustrated in Figure 4 as well as λ = 1
2 , there exists no % ∈ P such that:

λ

(
eV
>
1 %̂1

eV
>
2 %̂1

)
+ (1− λ)

(
eV
>
1 %̂2

eV
>
2 %̂2

)
=

(
eV
>
1 %

eV
>
2 %

)
. (27)

Equivalently, we can show that ∀% ∈ P ,∥∥∥∥∥
(
eV
>
1 %

eV
>
2 %

)
− λ

(
eV
>
1 %̂1

eV
>
2 %̂1

)
+ (1− λ)

(
eV
>
1 %̂2

eV
>
2 %̂2

)∥∥∥∥∥
∞

> 0.
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This can be shown by solving the following linear program and observing that its optimal value is strictly

larger than 0:

min
%+≥0,%−≥0,t≥0

t

s. t.

2∑
i=1

(%+
i + %−i ) ≤

√
2

%+
i + %−i ≤ 1, ∀i = 1, 2

V >i (%+ − %−)− lλi ≤ t, i = 1, 2

lλi − V >i (%+ − %−) ≤ t, i = 1, 2,

where lλi = ln(λeV
>
i %̂1 + (1− λ)eV

>
i %̂2) is a known constant.

Figure 4: Non convex uncertainty set

B Analytical expression for the composite risk

B.1 Conditional expected value of
∑L−1

l=0 O
floods
t+l (ξ) and

∑L−1
l=0 O

prod
t+l (ξ)

By considering affine decision rules, deriving an analytical expression for the flood and production risk

becomes straightforward. Indeed,

E

[
L−1∑
l=0

Ofloodst+l (ξ)|Gt−1

]
=

L−1∑
l=0

∑
j∈J

γjE
[
Ēj,t+l(ξ)|Gt−1

]
, (28)

where

E
[
Ēj,t+l(ξ)|Gt

]
= Ē0

j,t+l +

L−1∑
l′=0

Ēt+l
′

j,t+lE [ξt+l′ |Gt] . (29)

The production risk is defined as:

E

[
L−1∑
l=0

Oprodt+l (ξ)|Gt−1

]
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= −
L−1∑
l=0

∑
i∈Iprod

E [Pi,t+l(ξ)Hi,t+l(ξ)|Gt−1]

−
∑
j∈J

E
[
S̄j,t+L−1(ξ)|Gt−1

]
. (30)

The conditional expected value of the final value of storages E
[
S̄j,t+L−1(ξ)|Gt−1

]
is defined similarly

to (29) while E [Pi,t+l(ξ)Hi,t+l(ξ)|Gt−1], which involves the product of two affine functions, is defined as:

E [Pi,t+l(ξ)Hi,t+l(ξ)|Gt−1] = P0
i,t+lH0

i,t+l

+

L−1∑
k=0

(P0
i,t+lHki,t+l +H0

i,t+lPki,t+l)E [ξt+k|Gt−1]

+

L−1∑
m=0

L−1∑
k=0

Pmi,t+lHki,t+lE [ξt+mξt+k|Gt−1] . (31)

The conditional expectations E [ξt+k|Gt−1] and E [ξt+kξt+m|Gt−1] in (29) and (31) are detailed in the

following Section B.2.

B.2 Conditional expected value of ξt+l

Theorem 1 For any t ∈ Z and l ∈ N:

E [ξt+l|Gt] = eζ̂t(l) · E
[
eρt(l)

]
(32)

and for k ≥ l ≥ 1:

E [ξt+lξt+k|Gt] = eζ̂t(l)+ζ̂t(k) · E
[
e
∑k−l−1

i=0 ψi%t+k−i

]
· E
[
e
∑k−1

i=k−l(ψi+ψl−k+i)%t+k−i

]
. (33)

Proof. This is a direct application of Theorem 34.3 of [25] together with the observation that the {%t}
are independent and hence eρt(l) = e

∑l−1
i=0 ψi%t+l−i is independent of {%τ}tτ=−∞, which in turn implies that

E
[
eρt(l)|Gt

]
= E

[
eρt(l)

]
.

At time t, eζ̂t(l) is a known deterministic value for any l ∈ N that depends on the past observed {%τ}tτ=−∞.

To compute E
[
e
∑k

i=0 χi%t+i

]
for any k ∈ {0, · · · , L} and χi ∈ R,∀i ∈ {0, · · · , L}, we perform Monte Carlo

simulation.

C First order Taylor approximation of the composite risk

We first fix E [Pi,t+l(ξ)Hi,t+l(ξ)|Gt−1] ≡ Fi,t+l(Hi,t+l,Pi,t+l) where Hi,t+l = (H0
i,t+l,H

t+1
i,t+l, · · · ,H

t+L−1
i,t+l )> ∈

RL and Pi,t+l = (P0
i,t+l,P

t+1
i,t+l, · · · ,P

t+L−1
i,t+l )> ∈ RL. Given the point (Ĥ>i,t+l, P̂>i,t+l)> ∈ R2L, we then obtain:
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Fi,t+l(Hi,t+l,Pi,t+l)
≈ Fi,t+l(Ĥi,t+l, P̂i,t+l)

+ Ĥ0
i,t+l(P0

i,t+l − P̂0
i,t+l)

+

L−1∑
k=0

Ĥki,t+l(P0
i,t+l − P̂0

i,t+l)E [ξt+k|Gt−1]

+ P̂0
i,t+l(H0

i,t+l − Ĥ0
i,t+l)

+

L−1∑
k=0

P̂ki,t+l(H0
i,t+l − Ĥ0

i,t+l)E [ξt+k|Gt−1]

+

L−1∑
k=0

P̂0
i,t+l(Ht+ki,t+l − Ĥ

t+k
i,t+l)E [ξt+k|Gt−1]

+

L−1∑
m=0

L−1∑
k=0

P̂t+mi,t+l(H
t+k
i,t+l − Ĥ

t+k
i,t+l)E [ξt+mξt+k|Gt−1]

+

L−1∑
k=0

Ĥ0
i,t+l(Pt+ki,t+l − P̂

t+k
i,t+l)E [ξt+k|Gt−1]

+

L−1∑
m=0

L−1∑
k=0

Ĥt+mi,t+l(P
t+k
i,t+l − P̂

t+k
i,t+l)E [ξt+mξt+k|Gt−1] (34)
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