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– Library and Archives Canada, 2017

GERAD HEC Montréal
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tivité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publication.
Si vous pensez que ce document enfreint le droit d’auteur, contactez-
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Abstract: For optimization problems involving many nonlinear inequality constraints, we extend the bound-
constrained (BCL) and linearly-constrained (LCL) augmented-Lagrangian approaches of LANCELOT and
MINOS to an algorithm that solves a sequence of nonlinearly constrained augmented Lagrangian subproblems
whose nonlinear constraints satisfy the LICQ everywhere. The NCL algorithm is implemented in AMPL and
tested on large instances of a tax policy model that could not be solved directly by any of the state-of-the-art
solvers that we tested due to degeneracy. Algorithm NCL with IPOPT as subproblem solver proves to be
effective, with IPOPT achieving warm starts on each subproblem.

Acknowledgments: We are extremely grateful to the developers of AMPL and IPOPT for making the
development and evaluation of Algorithm NCL possible. We are especially grateful to Mehiddin Al-Baali and
other organizers of the NAO-IV conference Numerical Analysis and Optimization at Sultan Qaboos University,
Muscat, Oman, which brought the authors and AMPL developers together in January 2017.
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1 Introduction

We consider constrained optimization problems of the form

NCO minimize
x∈Rn

φ(x)

subject to c(x) ≥ 0, Ax ≥ b, ` ≤ x ≤ u,

where φ(x) is a smooth nonlinear function, c(x) ∈ Rm is a vector of smooth nonlinear functions, and Ax ≥ b
is a placeholder for a set of linear inequality or equality constraints, with x lying between lower and upper

bounds ` and u.

In some applications where m � n, there may be more than n constraints that are essentially active

at a solution. The constraints do not satisfy the linear independence constraint qualification (LICQ), and

general-purpose solvers are likely to have difficulty converging. Some form of regularization is required. We

achieve this by adapting the augmented Lagrangian algorithm of the general-purpose optimization solver

LANCELOT [4, 5, 13] to derive a sequence of regularized subproblems denoted in the next section by NCk.

2 BCL, LCL, and NCL methods

The theory for the large-scale solver LANCELOT is best described in terms of the general optimization problem

NECB minimize
x∈Rn

φ(x)

subject to c(x) = 0, ` ≤ x ≤ u

with nonlinear equality constraints and bounds. We let x∗ denote a local solution of NECB and (y∗, z∗) denote

associated multipliers. LANCELOT treats NECB by solving a sequence of bound-constrained subproblems of

the form

BCk minimize
x

L(x, yk, ρk) = φ(x)− yTkc(x) + 1
2ρk‖c(x)‖2

subject to ` ≤ x ≤ u,

where yk is an estimate of the Lagrange multipliers y∗ for the equality constraints. This was called a bound-

constrained Lagrangian (BCL) method by Friedlander and Saunders [8], in contrast to the LCL (linearly
constrained Lagrangian) methods of Robinson [16] and MINOS [14], whose subproblems LCk contain bounds as

in BCk and also linearizations of the equality constraints at the current point xk (including linear constraints).

In order to treat NCO with a sequence of BCk subproblems, we convert the nonlinear inequality constraints

to equalities to obtain

NCO′ minimize
x, s

φ(x)

subject to c(x)− s = 0, Ax ≥ b, ` ≤ x ≤ u, s ≥ 0

with corresponding subproblems (including linear constraints)

BCk
′ minimize

x, s
L(x, yk, ρk) = φ(x)− yTk(c(x)− s) + 1

2ρk‖c(x)− s‖2

subject to Ax ≥ b, ` ≤ x ≤ u, s ≥ 0.

We now introduce variables r = −(c(x)− s) into BCk
′ to obtain the nonlinearly constrained Lagrangian (NCL)

subproblem

NCk minimize
x, r

φ(x) + yTkr + 1
2ρk‖r‖

2

subject to c(x) + r ≥ 0, Ax ≥ b, ` ≤ x ≤ u,
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in which r serves to make the nonlinear constraints independent. Assuming existence of finite multipliers

and feasibility, for ρk > 0 and larger than a certain finite value, the NCL subproblems should cause yk to
approach y∗ and most of the solution (x∗k, r

∗
k, y
∗
k, z
∗
k) of NCk to approach (x∗, y∗, z∗), with r∗k approaching zero.

Problem NCk is analogous to Friedlander and Orban’s formulation for convex quadratic programs [7,

Equation (3.2)]. See also Arreckx and Orban [2], where the motivation is the same as here, achieving reliability

when the nonlinear constraints don’t satisfy LICQ.

Note that for general problems NECB, the BCL and LCL subproblems contain linear constraints (bounds

only, or linearized constraints and bounds). Our NCL formulation retains nonlinear constraints in the NCk
subproblems, but simplifies them by ensuring that they satisfy LICQ. On large problems, the additional

variables r ∈ Rm in NCk may be detrimental to active-set solvers like MINOS or SNOPT [9] because they

increase the number of degrees of freedom (superbasic variables). Fortunately they are easily accommodated

by interior methods, as our numerical results show for IPOPT [17, 10]. We trust that the same will be true

for KNITRO [3, 12].

2.1 The BCL algorithm

The LANCELOT BCL method is summarized in Algorithm BCL. Each subproblem BCk is solved with a specified

optimality tolerance ωk, generating an iterate x∗k and the associated Lagrangian gradient z∗k ≡ ∇L(x∗k, yk, ρk).

If ‖c(x∗k)‖ is sufficiently small, the iteration is regarded as “successful” and an update to yk is computed

from x∗k. Otherwise, yk is not altered but ρk is increased.

Key properties are that the subproblems are solved inexactly, the penalty parameter is increased only

finitely often, and the multiplier estimates yk need not be assumed bounded. Under certain conditions, all

iterations are eventually successful, the ρk’s remain constant, the iterates converge superlinearly, and the

algorithm terminates in a finite number of iterations.

Algorithm 1 BCL (Bound-Constrained Lagrangian Method for NECB)

1: procedure BCL(x0, y0, z0)
2: Set penalty parameter ρ1 > 0, scale factor τ > 1, and constants α, β > 0 with α < 1.
3: Set positive convergence tolerances η∗, ω∗ � 1 and infeasibility tolerance η1 > η∗.
4: k ← 0, converged ← false
5: repeat
6: k ← k + 1
7: Choose optimality tolerance ωk > 0 such that limk→∞ ωk ≤ ω∗.
8: Find (x∗k, z

∗
k) that solves BCk to within ωk.

9: if ‖c(x∗k)‖ ≤ max(η∗, ηk) then
10: y∗k ← yk − ρkc(x∗k)
11: xk ← x∗k, yk ← y∗k, zk ← z∗k update solution estimates
12: if (xk, yk, zk) solves NECB to within ω∗, converged ← true
13: ρk+1 ← ρk keep ρk
14: ηk+1 ← ηk/(1 + ρβk+1) decrease ηk
15: else
16: ρk+1 ← τρk increase ρk
17: ηk+1 ← η0/(1 + ραk+1) may increase or decrease ηk
18: end if
19: until converged
20: x∗ ← xk, y∗ ← yk, z∗ ← zk
21: end procedure

Note that at step 8 of Algorithm BCL, the inexact minimization would be typically carried out from the

initial guess (x∗k, z
∗
k). However, other initial points are possible. At step 12, we say that (xk, yk, zk) solves

NECB to within ω∗ if the largest dual infeasibility is smaller than ω∗.
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Algorithm 2 NCL (Nonlinearly Constrained Lagrangian Method for NCO)

1: procedure NCL(x0, r0, y0, z0)
2: Set penalty parameter ρ1 > 0, scale factor τ > 1, and constants α, β > 0 with α < 1.
3: Set positive convergence tolerances η∗, ω∗ � 1 and infeasibility tolerance η1 > η∗.
4: k ← 0, converged ← false
5: repeat
6: k ← k + 1
7: Choose optimality tolerance ωk > 0 such that limk→∞ ωk ≤ ω∗.
8: Find (x∗k, r

∗
k, y
∗
k, z
∗
k) that solves NCk to within ωk.

9: if ‖r∗k‖ ≤ max(η∗, ηk) then
10: y∗k ← yk + ρkr

∗
k

11: xk ← x∗k, rk ← r∗k, yk ← y∗k, zk ← z∗k update solution estimates
12: if (xk, yk, zk) solves NCO to within ω∗, converged ← true
13: ρk+1 ← ρk keep ρk
14: ηk+1 ← ηk/(1 + ρβk+1) decrease ηk
15: else
16: ρk+1 ← τρk increase ρk
17: ηk+1 ← η0/(1 + ραk+1) may increase or decrease ηk
18: end if
19: until converged
20: x∗ ← xk, r∗ ← rk, y∗ ← yk, z∗ ← zk
21: end procedure

2.2 The NCL algorithm

To derive a stabilized algorithm for problem NCO, we modify Algorithm BCL by introducing r and replacing

the subproblems BCk by NCk. The resulting method is summarized in Algorithm NCL. The update to yk
becomes y∗k ← yk − ρk(c(x∗k) − s∗k) = yk + ρkr

∗
k, the value satisfied by an optimal y∗k for subproblem NCk.

Step 8 of Algorithm NCL would typically use (x∗k, r
∗
k, y
∗
k, z
∗
k) as initial guess, and that is what we use in our

implementation below.

3 An application: optimal tax policy

Some challenging test cases arise from the tax policy models described in [11]. With x = (c, y), they take the

form

TAX maximize
c, y

∑
i λiU

i(ci, yi)

subject to U i(ci, yi)− U i(cj , yj) ≥ 0 for all i, j
λT (y − c) ≥ 0

c, y ≥ 0,

where ci and yi are the consumption and income of taxpayer i, and λ is a vector of positive weights. The

utility functions U i(ci, yi) are each of the form

U(c, y) =
(c− α)1−1/γ

1− 1/γ
− ψ (y/w)1/η+1

1/η + 1
,

where w is the wage rate and α, γ, ψ and η are taxpayer heterogeneities. More precisely, the utility functions

are of the form

U i,j,k,g,h(cp,q,r,s,t, yp,q,r,s,t) =
(cp,q,r,s,t − αk)1−1/γh

1− 1/γh
− ψg

(yp,q,r,s,t/wi)
1/ηj+1

1/ηj + 1
,

where (i, j, k, g, h) and (p, q, r, s, t) run over na wage types, nb elasticities of labor supply, nc basic need

types, nd levels of distaste for work, and ne elasticities of demand for consumption, with na, nb, nc, nd, ne

determining the size of the problem, namely m = T (T − 1) nonlinear constraints, n = 2T variables, with

T := na× nb× nc× nd× ne.
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Table 1 summarizes results for a 4D example (ne = 1 and γ1 = 1). The first term of U(c, y) becomes

log(c− α), the limit as γ → 1. Problem NCO and Algorithm NCL were formulated in the AMPL modeling
language [6]. The solvers SNOPT [9] and IPOPT [17] were unable to solve NCO itself, but Algorithm NCL

was successful with IPOPT solving the subproblems NCk. We use a default configuration of IPOPT with

MUMPS [1] as symmetric indefinite solver to compute search directions. We set the optimality tolerance for

IPOPT to ωk = 10−6 throughout, and specified warm starts for k ≥ 2 using options warm start init point=yes

and mu init=1e-4. These options greatly improved the performance of IPOPT on each subproblem compared

to cold starts, for which mu init=0.1. It is helpful that only the objective function of NCk changes with k.

Table 1: NCL results on a 4D example with na, nb, nc, nd = 11, 3, 3, 2, giving m = 39006, n = 395. Itns refers to IPOPT’s
primal-dual interior point method, and Time is seconds on an Apple iMac with 2.93 GHz Intel Core i7.

k ρk ηk ‖r∗k‖∞ φ(x∗k) Itns Time

1 102 10−2 3.1e-03 -2.1478532e+01 125 42.8
2 102 10−3 1.3e-03 -2.1277587e+01 18 6.5
3 103 10−3 6.6e-04 -2.1177152e+01 27 9.1
4 103 10−4 5.5e-04 -2.1110210e+01 31 10.8
5 104 10−4 2.9e-04 -2.1066664e+01 57 24.3
6 105 10−4 6.5e-05 -2.1027152e+01 75 26.8
7 105 10−5 5.2e-05 -2.1018896e+01 130 60.9
8 106 10−5 9.3e-06 -2.1015295e+01 159 81.8
9 106 10−6 2.0e-06 -2.1014808e+01 139 70.0
10 107 10−6 2.1e-07 -2.1014800e+01 177 97.6

For this example, problem NCO has m = 39006 nonlinear inequality constraints and one linear constraint

in n = 395 variables x = (c, y), and nonnegativity bounds. Subproblem NCk has 39007 constraints and 39402
variables when r is included. Fortunately r does not affect the complexity of each IPOPT iteration, but

greatly improves stability. In contrast, active-set methods like MINOS and SNOPT are very inefficient on the

NCk subproblems because the large number of inequality constraints leads to thousands of minor iterations,

and the presence of r (with no bounds) leads to thousands of superbasic variables. About 3.2n constraints

were within 10−6 of being active.

Table 2 summarizes results for a 5D example. The NCk subproblems have m = 32220 nonlinear constraints

and n = 360 variables, leading to 32581 variables including r. Again the options warm start init point=yes

and mu init=1e-4 for k ≥ 2 led to good performance by IPOPT on each subproblem. About 3n constraints

were within 10−6 of being active.

Table 2: NCL results on a 5D example with na, nb, nc, nd, ne = 5, 3, 3, 2, 2, giving m = 32220, n = 360.

k ρk ηk ‖r∗k‖∞ φ(x∗k) Itns Time

1 102 10−2 7.0e-03 -4.2038075e+02 95 41.1
2 102 10−3 4.1e-03 -4.2002898e+02 17 7.2
3 103 10−3 1.3e-03 -4.1986069e+02 20 8.1
4 104 10−3 4.4e-04 -4.1972958e+02 48 25.0
5 104 10−4 2.2e-04 -4.1968646e+02 43 20.5
6 105 10−4 9.8e-05 -4.1967560e+02 64 32.9
7 105 10−5 6.6e-05 -4.1967177e+02 57 26.8
8 106 10−5 4.2e-06 -4.1967150e+02 87 46.2
9 106 10−6 9.4e-07 -4.1967138e+02 96 53.6

For much larger problems of this type, we found that it was helpful to reduce mu init more often, as

illustrated in Table 3. The NCk subproblems here have m = 570780 nonlinear constraints and n = 1512

variables, leading to 572292 variables including r. Note that the number of NCL iterations is stable (k ≤ 10),

and IPOPT performs well on each subproblem with decreasing mu init. This time about 6.6n constraints

were within 10−6 of being active.

Note that the LANCELOT approach allows early subproblems to be solved less accurately. It may save

time to set ωk = ηk (say) rather than ωk = ω∗ throughout.
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Table 3: NCL results on a 5D example with na, nb, nc, ne, ne = 21, 3, 3, 2, 2, giving m = 570780, n = 1512.

k ρk ηk ‖r∗k‖∞ φ(x∗k) mu init Itns Time

1 102 10−2 5.1e-03 -1.7656816e+03 10−1 825 7763.3
2 102 10−3 2.4e-03 -1.7648480e+03 10−4 66 472.8
3 103 10−3 1.3e-03 -1.7644006e+03 10−4 106 771.3
4 104 10−3 3.8e-04 -1.7639491e+03 10−5 132 1347.0
5 104 10−4 3.2e-04 -1.7637742e+03 10−5 229 2450.9
6 105 10−4 8.6e-05 -1.7636804e+03 10−6 104 1096.9
7 105 10−5 4.9e-05 -1.7636469e+03 10−6 143 1633.4
8 106 10−5 1.5e-05 -1.7636252e+03 10−7 71 786.1
9 107 10−5 2.8e-06 -1.7636196e+03 10−7 67 725.7
10 107 10−6 5.1e-07 -1.7636187e+03 10−8 18 171.0

4 AMPL models, data, and scripts

Algorithm NCL has been implemented in the AMPL modeling language [6] and tested on problem TAX. The

following sections list each relevant file. The files are available from [15].

4.1 Tax model

File pTax5Dncl.mod codes subproblem NCk for problem TAX with five parameters w, η, α, ψ, γ, using

µ := 1/η. Note that for U(c, y) in the objective and constraint functions, the first term (c− α)1−1/γ/(1− 1/γ)

is replaced by a piecewise-smooth function that is defined for all values of c and α (see [11]).

Primal regularization 1
2δ‖(c, y)‖2 with δ = 10−8 is added to the objective function to promote uniqueness

of the minimizer. The vector r is called R to avoid a clash with subscript r.

1 # pTax5Dncl.mod

2 # An NLP to solve a taxation problem with 5-dimensional types of tax payers.

3 #

4 # 29 Mar 2005: Original AMPL coding for 2-dimensional types by K. Judd and C.-L. Su.

5 # 20 Sep 2016: Revised by D. Ma and M. A. Saunders.

6 # 08 Nov 2016: 3D version created.

7 # 08 Dec 2016: 4D version created.

8 # 10 Mar 2017: Piece -wise smooth utility function created.

9 # 12 Nov 2017: pTax5Dncl.mod derived from pTax5D.mod.

10 # 08 Dec 2017: pTax5Dncl files added to multiscale website.

11

12 # Define parameters for agents (taxpayers)

13 param na; # number of types in wage

14 param nb; # number of types in eta

15 param nc; # number of types in alpha

16 param nd; # number of types in psi

17 param ne; # number of types in gamma

18 set A := 1..na; # set of wages

19 set B := 1..nb; # set of eta

20 set C := 1..nc; # set of alpha

21 set D := 1..nd; # set of psi

22 set E := 1..ne; # set of gamma

23 set T = {A,B,C,D,E}; # set of agents

24

25 # Define wages for agents (taxpayers)

26 param wmin; # minimum wage level

27 param wmax; # maximum wage level

28 param w {A}; # i, wage vector

29 param mu{B}; # j, mu = 1/eta# mu vector

30 param mu1{B}; # mu1[j] = mu[j] + 1

31 param alpha{C}; # k, ak vector for utility

32 param psi{D}; # g

33 param gamma{E}; # h

34 param lambda{A,B,C,D,E}; # distribution density

35 param epsilon;

36 param primreg default 1e-8; # Small primal regularization

37
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38 var c{(i,j,k,g,h) in T} >= 0.1; # consumption for tax payer (i,j,k,g,h)

39 var y{(i,j,k,g,h) in T} >= 0.1; # income for tax payer (i,j,k,g,h)

40 var R{(i,j,k,g,h) in T, (p,q,r,s,t) in T:

41 !(i=p and j=q and k=r and g=s and h=t)} >= -1e+20, <= 1e+20;

42

43 param kmax default 20; # limit on NCL itns

44 param rhok default 1e+2; # augmented Lagrangian penalty parameter

45 param rhofac default 10.0; # increase factor

46 param rhomax default 1e+8; # biggest rhok

47 param etak default 1e-2; # opttol for augmented Lagrangian loop

48 param etafac default 0.1; # reduction factor for opttol

49 param etamin default 1e-8; # smallest etak

50 param rmax default 0; # max r (for printing)

51 param rmin default 0; # min r (for printing)

52 param rnorm default 0; # ||r||_inf

53 param rtol default 1e-6; # quit if biggest |r_i| <= rtol

54

55 param nT default 1; # nT = na*nb*nc*nd*ne

56 param m default 1; # nT*(nT -1) = no. of nonlinear constraints

57 param n default 1; # 2*nT = no. of nonlinear variables

58

59 param ck{(i,j,k,g,h) in T} default 0; # current variable c

60 param yk{(i,j,k,g,h) in T} default 0; # current variable y

61 param rk{(i,j,k,g,h) in T, (p,q,r,s,t) in T: # current variable r = - (c(x) - s)

62 !(i=p and j=q and k=r and g=s and h=t)} default 0;

63 param dk{(i,j,k,g,h) in T, (p,q,r,s,t) in T: # current dual variables (y_k)

64 !(i=p and j=q and k=r and g=s and h=t)} default 0;

65

66 minimize f:

67 sum{(i,j,k,g,h) in T}

68 (

69 (if c[i,j,k,g,h] - alpha[k] >= epsilon then

70 - lambda[i,j,k,g,h] *

71 ((c[i,j,k,g,h] - alpha[k])^(1 -1/ gamma[h]) / (1-1/ gamma[h])

72 - psi[g]*(y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j])

73 else

74 - lambda[i,j,k,g,h] *

75 (- 0.5/ gamma[h] * epsilon ^(-1/ gamma[h]-1) * (c[i,j,k,g,h] - alpha[k])^2

76 + ( 1+1/ gamma[h])* epsilon ^(-1/ gamma[h] ) * (c[i,j,k,g,h] - alpha[k])

77 + (1/(1 -1/ gamma[h]) - 1 - 0.5/ gamma[h]) * epsilon ^(1 -1/ gamma[h])

78 - psi[g]*(y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j])

79 )

80 + 0.5 * primreg * (c[i,j,k,g,h]^2 + y[i,j,k,g,h]^2)

81 )

82 + sum{(i,j,k,g,h) in T, (p,q,r,s,t) in T: !(i=p and j=q and k=r and g=s and h=t)}

83 (dk[i,j,k,g,h,p,q,r,s,t] * R[i,j,k,g,h,p,q,r,s,t]

84 + 0.5 * rhok * R[i,j,k,g,h,p,q,r,s,t]^2);

85

86 subject to

87

88 Incentive {(i,j,k,g,h) in T, (p,q,r,s,t) in T:

89 !(i=p and j=q and k=r and g=s and h=t)}:

90 (if c[i,j,k,g,h] - alpha[k] >= epsilon then

91 (c[i,j,k,g,h] - alpha[k])^(1 -1/ gamma[h]) / (1-1/ gamma[h])

92 - psi[g]*(y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j]

93 else

94 - 0.5/ gamma[h] *epsilon ^(-1/ gamma[h] -1)*(c[i,j,k,g,h] - alpha[k])^2

95 + (1+1/ gamma[h])* epsilon ^(-1/ gamma[h] )*(c[i,j,k,g,h] - alpha[k])

96 + (1/(1 -1/ gamma[h]) - 1 - 0.5/ gamma[h])* epsilon ^(1 -1/ gamma[h])

97 - psi[g]*(y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j]

98 )

99 - (if c[p,q,r,s,t] - alpha[k] >= epsilon then

100 (c[p,q,r,s,t] - alpha[k])^(1 -1/ gamma[h]) / (1-1/ gamma[h])

101 - psi[g]*(y[p,q,r,s,t]/w[i])^mu1[j] / mu1[j]

102 else

103 - 0.5/ gamma[h] *epsilon ^(-1/ gamma[h] -1)*(c[p,q,r,s,t] - alpha[k])^2

104 + (1+1/ gamma[h])* epsilon ^(-1/ gamma[h] )*(c[p,q,r,s,t] - alpha[k])

105 + (1/(1 -1/ gamma[h]) - 1 - 0.5/ gamma[h])* epsilon ^(1 -1/ gamma[h])

106 - psi[g]*(y[p,q,r,s,t]/w[i])^mu1[j] / mu1[j]

107 )
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108 + R[i,j,k,g,h,p,q,r,s,t] >= 0;

109

110 Technology:

111 sum{(i,j,k,g,h) in T} lambda[i,j,k,g,h]*(y[i,j,k,g,h] - c[i,j,k,g,h]) >= 0;

4.2 Tax model data

File pTax5Dncl.dat provides data for a specific problem.

1 # pTax5Dncl.dat

2 # 08 Dec 2017: pTax5Dncl files added to multiscale website.

3

4 data;

5

6 let na := 5;

7 let nb := 3;

8 let nc := 3;

9 let nd := 2;

10 let ne := 2;

11

12 # Set up wage dimension intervals

13 let wmin := 2;

14 let wmax := 4;

15 let {i in A} w[i] := wmin + ((wmax -wmin )/(na -1))*(i-1);

16

17 data;

18

19 param mu :=

20 1 0.5

21 2 1

22 3 2 ;

23

24 # Define mu1

25 let {j in B} mu1[j] := mu[j] + 1;

26

27 data;

28

29 param alpha :=

30 1 0

31 2 1

32 3 1.5;

33

34 param psi :=

35 1 1

36 2 1.5;

37

38 param gamma :=

39 1 2

40 2 3;

41

42 # Set up 5 dimensional distribution

43 let {(i,j,k,g,h) in T} lambda[i,j,k,g,h] := 1;

44

45 # Choose a reasonable epsilon

46 let epsilon := 0.1;

4.3 Initial values

File pTax5Dinitial.run solves a simplified model to compute starting values for Algorithm NCL. The

nonlinear inequality constraints are removed, and y = c is enforced. This model solves easily with MINOS or

SNOPT on all cases tried. Solution values are output to file p5Dinitial.dat.

1 # pTax5Dinitial.run

2 # 08 Dec 2017: pTax5Dncl files added to multiscale website.

3

4 # Define parameters for agents (taxpayers)
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5 param na := 5; # number of types in wage

6 param nb := 3; # number of types in eta

7 param nc := 3; # number of types in alpha

8 param nd := 2; # number of types in psi

9 param ne := 2; # number of types in gamma

10 set A := 1..na; # set of wages

11 set B := 1..nb; # set of eta

12 set C := 1..nc; # set of alpha

13 set D := 1..nd; # set of psi

14 set E := 1..ne; # set of gamma

15 set T = {A,B,C,D,E}; # set of agents

16

17 # Define wages for agents (taxpayers)

18 param wmin := 2; # minimum wage level

19 param wmax := 4; # maximum wage level

20 param w {i in A} := wmin + ((wmax -wmin )/(na -1))*(i-1); # wage vector

21

22 # Choose a reasonable epsilon

23 param epsilon := 0.1;

24

25 # mu vector

26 param mu {B}; # mu = 1/eta

27 param mu1{B}; # mu1[j] = mu[j] + 1

28 param alpha {C};

29 param gamma {E};

30 param psi {D};

31

32 var c {(i,j,k,g,h) in T} >= 0.1;

33 var y {(i,j,k,g,h) in T} >= 0.1;

34

35 maximize f: sum{(i,j,k,g,h) in T}

36 if c[i,j,k,g,h] - alpha[k] >= epsilon then

37 (c[i,j,k,g,h] - alpha[k])^(1 -1/ gamma[h]) / (1-1/ gamma[h])

38 - psi[g] * (y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j]

39 else

40 - 0.5/ gamma[h] *epsilon ^(-1/ gamma[h] -1)*(c[i,j,k,g,h] - alpha[k])^2

41 + (1+1/ gamma[h])* epsilon ^(-1/ gamma[h]) *(c[i,j,k,g,h] - alpha[k])

42 + (1/(1 -1/ gamma[h]) -1 - 0.5/ gamma[h])* epsilon ^(1-1/ gamma[h])

43 - psi[g] * (y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j];

44

45 subject to

46 Budget {(i,j,k,g,h) in T}: y[i,j,k,g,h] - c[i,j,k,g,h] = 0;

47

48 let {(i,j,k,g,h) in T} y[i,j,k,g,h] := i+1;

49 let {(i,j,k,g,h) in T} c[i,j,k,g,h] := i+1;

50

51 data;

52

53 param mu :=

54 1 0.5

55 2 1

56 3 2 ;

57

58 # Define mu1

59 let {j in B} mu1[j] := mu[j] + 1;

60

61 data;

62

63 param alpha :=

64 1 0

65 2 1

66 3 1.5;

67

68 param psi :=

69 1 1

70 2 1.5;

71

72 param gamma :=

73 1 2

74 2 3;
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75

76 option solver minos;

77 option solver snopt;

78 option show_stats 1;

79

80 option minos_options ’ \

81 summary_file =6 \

82 print_file =9 \

83 scale=no \

84 print_level =0 \

85 *minor_iterations =200 \

86 major_iterations =2000\

87 iterations =50000 \

88 optimality_tol =1e-7 \

89 *penalty =100.0 \

90 completion=full \

91 *major_damp =0.1 \

92 superbasics_limit =3000\

93 solution=yes \

94 *verify_level =3 \

95 ’;

96

97 option snopt_options ’ \

98 summary_file =6 \

99 print_file =9 \

100 scale=no \

101 print_level =0 \

102 major_iterations =2000\

103 iterations =50000 \

104 optimality_tol =1e-7 \

105 *penalty =100.0 \

106 superbasics_limit =3000\

107 solution=yes \

108 *verify_level =3 \

109 ’;

110

111

112 display na ,nb,nc,nd,ne;

113 solve;

114 display na ,nb,nc,nd,ne;

115 display y,c >p5Dinitial.dat;

116 close p5Dinitial.dat;

4.4 NCL implementation

File pTax5Dnclipopt.run uses files

pTax5Dinitial.run

pTax5Dncl.mod

pTax5Dncl.dat

pTax5Dinitial.dat

to implement Algorithm NCL. Subproblems NCk are solved in a loop until ‖r∗k‖∞ ≤ rtol = 1e-6, or ηk has

been reduced to parameter etamin = 1e-8, or ρk has been increased to parameter rhomax = 1e+8. The loop

variable k is called K to avoid a clash with subscript k in the model file.

Optimality tolerance ωk = 10−6 is used throughout to ensure that the solution of the final subproblem

NCk will be close to a solution of the original problem if ‖r∗k‖∞ is small enough for the final k (‖r∗k‖∞ ≤
rtol = 1e-6).

IPOPT is used to solve each subproblem NCk, with runtime options set to implement increasingly warm

starts.

1 # pTax5Dnclipopt.run

2 # 08 Dec 2017: pTax5Dncl files added to multiscale website.

3
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4 reset;

5 model pTax5Dinitial.run;

6 reset;

7 model pTax5Dncl.mod;

8 data pTax5Dncl.dat;

9 data; var include p5Dinitial.dat;

10

11 model;

12 option solver ipopt;

13 option show_stats 1;

14

15 option ipopt_options ’ \

16 dual_inf_tol =1e-6 \

17 max_iter =5000 \

18 ’;

19

20 # NCL method.

21 # kmax , rhok , rhofac , rhomax , etak , etafac , etamin , rtol

22 # are defined in the .mod file.

23

24 printf "NCLipopt log for pTax5D\n" > 5DNCLipopt.log;

25 display na , nb , nc, nd, ne, primreg > 5DNCLipopt.log;

26 printf " k rhok etak rnorm Obj\n" > 5DNCLipopt.log;

27

28 for {K in 1.. kmax}

29 { display na , nb , nc, nd, ne, primreg , K, kmax , rhok , etak;

30 if K == 2 then

31 {option ipopt_options $ipopt_options

32 ’ warm_start_init_point=yes \

33 mu_init =1e-4 \

34 ’};

35 if K == 4 then {option ipopt_options $ipopt_options ’ mu_init =1e-5’};

36 if K == 6 then {option ipopt_options $ipopt_options ’ mu_init =1e-6’};

37 if K == 8 then {option ipopt_options $ipopt_options ’ mu_init =1e-7’};

38 if K ==10 then {option ipopt_options $ipopt_options ’ mu_init =1e-8’};

39

40 solve;

41

42 let rmax := max({(i,j,k,g,h) in T, (p,q,r,s,t) in T:

43 !(i=p and j=q and k=r and g=s and h=t)} R[i,j,k,g,h,p,q,r,s,t]);

44 let rmin := min({(i,j,k,g,h) in T, (p,q,r,s,t) in T:

45 !(i=p and j=q and k=r and g=s and h=t)} R[i,j,k,g,h,p,q,r,s,t]);

46 display na , nb , nc, nd, ne, primreg , K, rhok , etak , kmax;

47 display K, kmax , rmax , rmin;

48 let rnorm := max(abs(rmax), abs(rmin )); # ||r||_inf

49

50 printf "%4i %9.1e %9.1e %9.1e %15.7e\n", K, rhok , etak , rnorm , f >> 5DNCLipopt.log;

51 close 5DNCLipopt.log;

52

53 if rnorm <= rtol then

54 { printf "Stopping: rnorm is small\n"; display K, rnorm; break; }

55

56 if rnorm <= etak then # update dual estimate dk; save new solution

57 {let {(i,j,k,g,h) in T, (p,q,r,s,t) in T:

58 !(i=p and j=q and k=r and g=s and h=t)}

59 dk[i,j,k,g,h,p,q,r,s,t] :=

60 dk[i,j,k,g,h,p,q,r,s,t] + rhok*R[i,j,k,g,h,p,q,r,s,t];

61 let {(i,j,k,g,h) in T} ck[i,j,k,g,h] := c[i,j,k,g,h];

62 let {(i,j,k,g,h) in T} yk[i,j,k,g,h] := y[i,j,k,g,h];

63 display K, etak;

64 if etak == etamin then { printf "Stopping: etak = etamin\n"; break; }

65 let etak := max(etak*etafac , etamin );

66 display etak;

67 }

68 else # keep previous solution; increase rhok

69 { let {(i,j,k,g,h) in T} c[i,j,k,g,h] := ck[i,j,k,g,h];

70 let {(i,j,k,g,h) in T} y[i,j,k,g,h] := yk[i,j,k,g,h];

71 display K, rhok;

72 if rhok == rhomax then { printf "Stopping: rhok = rhomax\n"; break; }

73 let rhok := min(rhok*rhofac , rhomax );
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74 display rhok;

75 }

76 }

77

78 display c,y; display na, nb , nc , nd, ne, primreg , rhok , etak , rnorm;

79

80 # Count how many constraint are close to being active.

81 data;

82 let nT := na*nb*nc*nd*ne; let m := nT*(nT -1); let n := 2*nT;

83 let etak := 1.0001e-10;

84 printf "\n m = %8i\n n = %8i\n", m, n >> 5DNCLipopt.log;

85 printf "\n Constraints within tol of being active\n\n" >> 5DNCLipopt.log;

86 printf " tol count count/n\n" >> 5DNCLipopt.log;

87

88 for {K in 1..10}

89 {

90 let kmax := card{(i,j,k,g,h) in T, (p,q,r,s,t) in T:

91 !(i=p and j=q and k=r and g=s and h=t)

92 and Incentive[i,j,k,g,h,p,q,r,s,t]. slack <= etak};

93 printf "%9.1e %8i %8.1f\n", etak , kmax , kmax/n >> 5DNCLipopt.log;

94 let etak := etak *10;

95 }

96 printf "Created 5DNCLipopt.log\n";

5 Conclusions

This work has been illuminating in several ways as we sought to improve our ability to solve examples of

problem TAX.

• Small examples of the tax model solve efficiently with MINOS and SNOPT, but eventually fail to

converge as the problem size increases.

• IPOPT also solves small examples efficiently, but eventually starts requesting additional memory for the

MUMPS sparse linear solver. The solver may freeze, or the iterations may diverge.

• The NCk subproblems are not suitable for MINOS or SNOPT because of the large number of variables

(x, r) and the resulting number of superbasic variables (although warm-starts are natural).

• It is often said that interior methods cannot be warm-started. Nevertheless, IPOPT has several runtime

options that have proved to be extremely helpful for implementing Algorithm NCL. For the results

obtained here, it has been sufficient to say that warm starts are wanted for k > 1, and that the IPOPT

barrier parameter should be initialized at decreasing values for later k (where only the objective of

subproblem NCk changes with k).

• The numerical examples of Section 3 had 3n, 3n and 6.6n constraints essentially active at the solution,

yet were solved successfully. They suggest that the NCL approach with an interior method as subproblem

solver can overcome LICQ difficulties on problems that could not be solved directly.
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