
Les Cahiers du GERAD ISSN: 0711–2440

Shortfall risk models when information
of loss function is incomplete

E. Delage,
S. Guo, H. Xu

G–2017–104

November 2017
Second revision: June 2020

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
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Abstract: Utility-based shortfall risk measure (SR) effectively captures decision maker’s risk attitude
on tail losses by an increasing convex loss function. In this paper, we consider a situation where
the decision maker’s risk attitude towards tail losses is ambiguous and introduce a robust version of
SR which mitigates the risk arising from such ambiguity. Specifically, we use some available partial
information or subjective judgement to construct a set of utility-based loss functions and define a
so-called preference robust SR (PRSR) through the worst loss function from the (ambiguity) set. To
implement PRSR in practice, we propose three approaches for constructing the ambiguity set. We
then apply the PRSR to optimal decision making problems and demonstrate how the latter can be
reformulated as tractable convex programs when the underlying exogenous uncertainty is discretely
distributed. In the case when the probability distribution is continuous, we propose a sample average
approximation scheme and show that it converges to the true problem in terms of the optimal value
and the optimal solutions as the sample size increases.

Keywords: Preference robust optimization, utility-based shortfall risk measure, preference elicitation,
linear programming, tractability, sample average approximation
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1 Introduction

In their highly influential work, Föllmer and Schied (2002) introduced the following utility-based

shortfall risk (SR) measure

SRP
l,λ(Z) := inf

t∈IR
{t : EP [l(−Z − t)] ≤ λ}, (1)

where Z : Ω → IR is a random variable in Lp(Ω,B, P ), defined on probability space (Ω,B, P ),

and representing a financial position, l : IR → IR is an increasing convex loss function which is

not identically constant, and where λ ∈ IR. Föllmer and Schied showed that SRP
l (Z) is a convex

risk measure (satisfying monitonicity, convexity and translation invariance). It is also known as the

family of risk measure that satisfies the principle of zero utility (see Buhlmann (1970)). In the case

when l(s) = s and λ = 0, SRP
l,λ(Z) coincides with the negative expected value. Alternatively, when

l(s) = max(τs, (1 − τ)s) with λ = 0, it is known as an expectile (see Bellini and Bignozzi (2015)),

and as the entropic risk measure when l(s) = eβs with β > 0. Finally, when l(·) takes the form of the

non-convex function 1(0,+∞](·), i.e., 1(0,+∞](s) = 1 if s ∈ (0,+∞], and 0 otherwise, SRP
l,λ(Z) coincides

with the popular non-convex value-at-risk measure VaRλ(Z).

Compared to many other monetary risk measures, a notable property of SR is that it is invariant

under randomization and is an elicitable risk measure, which is amenable to perform backtesting,

i.e., the activity of periodically comparing the forecast risk measure with the realized value of the

variable of interest in order to try to increase the accuracy of the forecasting methodology (Bellini

and Bignozzi (2015)). Some studies have also argued that it is more sensitive to financial losses from

extreme events (see Giesecke et al. (2008)) than value-at-risk and conditional value-at-risk, and has

favorable consistency properties for dynamic measurement of risks over time (see Weber (2006)).

From the discussions above, we can see clearly that the loss function l(·) plays an important role

in determining the distinct nature of SR. In practice, there could be considerable ambiguity in the

choice of l. For example, the decision maker could hesitate about the type of loss function that

best characterizes his preference, or a group of decision makers might fail to reach a consensus or

the prospect space is too large and/or too complex to elicit. In other words, the loss function l(·)
is not uniquely/explicitly given. To overcome the risk arising from model mis-specification, in these

circumstances, it might be sensible to use partially available information and/or subjective judgement

to construct a set of loss functions, denoted by L, and consider the worst SR based on the set to

mitigate the risk arising from ambiguity/misjudgement of the true loss function:

(PRSR) SRP
L (Z) := inf

{
t : sup

l∈L
EP [l(−Z − t)]− l(0) ≤ 0

}
. (2)

Here by setting λ = l(0), we focus on the class of normalized (i.e. ρ(Z) = 0 when Z = 0) convex

utility-based shortfall risk measures. We call SRP
L (Z) Preference Robust SR (PRSR) in that it returns

an estimate of the riskiness of Z which is guaranteed to bound from above the risk measured using

any SRP
l (Z) with l ∈ L.

A key element in the above model is the construction of the set L and our work will be strongly

inspired by principles that have been proposed in the preference robust optimization (PRO) literature.

In particular, Armbruster and Delage (2015) applied PRO in the context of expected utility maxi-

mization problems. They considered three classes of utility functions (namely concave, S-shaped and

functions that capture the notion of prudence) and allowed to account for ad-hoc pairwise comparisons

of lotteries. Moreover, they proposed tractable approaches to dealing with the resulting optimization

problems when the underlying random variable follows a finite discrete distribution. Following up on

this methodology, Haskell et al. (2016) extended this preference robust expected utility framework to

cases where there is also ambiguity about the choice of a probability function. More recently, PRO

was also applied to the case that a convex risk measure is ambiguous, that is,

%R(Z) := sup
ρ∈R

ρ(Z), (3)
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where R is an ambiguity set of convex risk measures. While the concept of worst-case risk appears

for the first time in Föllmer and Schied (2002), Delage and Li (2018) recommends using R as a set

of all convex/coherent/law invariant risk measures that satisfies the partial ordering expressed in an

elicited list of pairwise comparisons. Once again, tractable reformulations were proposed for problems

described on a finite outcome space. Unfortunately, the reformulations provided in Delage and Li (2018)

do not apply when the convex risk measure is also known to be a utility-based shortfall risk measure.

Another important limitation of all methods above consist in the fact that tractable reformulations

are only established under the hypothesis of discrete random variables. It remains to be explored as to

whether there is a tractable numerical scheme for preference robust risk minimization problems where

the underlying random variables are continuously distributed.

In this paper, we consider the following preference robust risk minimization problem:

(PRSR-Opt) min
x∈X

%R(−c(x, ξ))

where c(x, ξ) : IRn × IRm → IR is a continuous function representing costs, ξ : Ω→ IRm and R is a set

of utility-based shortfall risk measures defined using information about the certainty equivalent of a

list of random variables, about whether the risk measure is coherent, and possibly also about a bound

on the sensitivity of the risk measure to losses of large size. Given such information about ρ, we will

derive an ambiguity set L for which

(PRSR-Opt) min
x∈X

%R(−c(x, ξ)) ≡ min
x∈X

SRP
L (−c(x, ξ)) (4)

This will allow us to demonstrate for the first time that when c(x, ξ) is a piecewise linear function and P

is discrete, (PRSR-Opt) can be reformulated either as a linear programming problem of finite dimension

or as a semi-infinite LP for which we design an efficient column-generation method, depending on the

type of sensitivity bound. Alternatively, when P is a continuous probability measure, we propose a

sample average approximation scheme

(PRSR-Opt-N) min
x∈X

SRPN
L (−c(x, ξ)) (5)

and establish conditions under which (PRSR-Opt-N) converges to (PRSR-Opt) in terms of the op-

timal value and optimal solutions as the sample size N increases. Note that the new bound on the

sensitivity to tail losses that is imposed on R will play a crucial role in satisfying these conditions, i.e.,

equicontinuity of the ambiguity set of loss functions over a compact set.

The rest of the paper is organized as follows. Section 2 introduces different sets of preference

robust risk measures that will be studied in this paper and derives their representation in terms

of SRP
L for some ambiguity set of loss functions L. Section 3 presents tractable reformulations for

(PRSR-Opt) with the characterizations of L derived in Section 2 when the underlying random variable

is finitely distributed. Section 4 proposes a discretization scheme for (PRSR-Opt) when the underlying

random variables are continuously distributed. This is followed with Section 5, which reports numerical

experiments on the (PRSR-Opt) model. We finally conclude in Section 6. All proofs are relegated to

the appendices of the paper.

Remark 1 The shortfall risk measure is closely linked to the well-known optimized certainty equivalent

risk measure due to Ben-Tal and Teboulle (2007). In Ben Tal & Teboulle (2007), three types of

certainty equivalents are introduced: Certainty Equivalent Cu(Z) = u−1(E[u(Z)]), u-mean Mu(Z)

which satisfies E[u(Z − Mu(Z))] = 0 and Optimized Certainty Equivalent Su(Z) = supη∈IR{η +

E[u(Z − η)]}. It shows that

SRl(Z) = −Mu(Z) = − inf
λ>0

Sλu(Z).

These relationships show that shortfall risk measures are closely related to certainty equivalent risk

measure and indeed they coincide under some circumstances. We note that additional relationships

between shortfall risk measures, regret measures, statistics, and utility theory could be further identified

based on the risk quadrangle defined in Rockafellar and Uryasev (2013).
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It should also be mentioned that Föllmer and Schied (2002) introduced a robust version of utility-

based shortfall risk measure, which is defined as

SRQl (Z) := inf

{
t : sup

P∈Q
EP [l(−Z − t)]− l(0) ≤ 0

}
= sup
P∈Q

SRP
l (Z).

The above version focuses on the ambiguity of probability measure, which means the robustness is in

the sense of exogenous uncertainty which is not associated with decision maker’s risk attitude. We

refer readers to Guo and Xu (2019) for a specific discussion on distributionally robust formulation of

SR and its application in risk management.

2 Preference robust normalized utility-based shortfall risk measures

In this section, we exploit elicited risk preference information1, inspired by the preference robust risk

minimization paradigm introduced in Delage and Li (2018), to characterize what set of loss functions

L should be employed in SRP
L (Z) in order to produce a robust measurement of risk based on par-

tial information about the decision maker’s risk preferences. In particular, we will investigate how to

account for information about whether the risk measure is positive homogeneous, about some “confi-

dence” intervals for the risk of a list of random variables, and finally about how sensitive the decision

maker is regarding events that occur in the tail of Z. To be more specific we introduce the following

classes of risk measures.

Definition 1 (Normalized utility-based shortfall risk measures) Let Rubsr be the set of all normalized

utility-based shortfall risk measures, i.e., all utility-based shortfall risk measures (see Föllmer and

Schied (2002)) such that ρ(0) = 0.

Definition 2 (Coherent risk measures) Let Rcoh be the set of coherent risk measures (Artzner et al.

1999).

As mentioned in Delage and Li (2018), verifying whether the risk measure that captures the decision

maker’s risk attitude is a member ofRcoh or not reduces to establishing whether the ordinal comparison

of riskiness of two random variables should be affected by a uniform positive scaling of both random

variables. Yet, this information generally is not very restrictive when identifying the right R ∈ Rubsr.

In order to refine the characterization of Rubsr or Rubsr ∩ Rcoh, and implicitly L as we will soon

demonstrate, one should try to exploit information about the absolute riskiness level of a set of random
variables. This gives rise to the following subclass of risk measures.

Definition 3 Let {Wk}Kk=1 be a sequence of random variables with an associated set of “confidence”

intervals [w−k , w
+
k ] ⊆ [essinf Wk, esssup Wk] for the “certainty equivalent” of each Wk. The set Rce(W)

denotes the set of all risk measures which evaluate the risk of each Wk to be larger than the risk of w+
k

and lower than the risk of w−k , i.e.,

Rce(W) := {ρ : Lp → IR | ρ(w+
k ) ≤ ρ(Wk) ≤ ρ(w−k ) , ∀ k ∈ {1, 2, . . . ,K} }

with W := {(Wk, w
−
k , w

+
k )}Kk=1.

Note that a natural method that can be used to identify two bounds for the riskiness of a random

variable Wk would take the form of questions such as:

• Lower bound w−k : “What is the largest amount of money that you would decline in order to be

exposed to the risk of Wk?”

• Upper bound w+
k : “What is the lowest amount of money that you would be willing to receive

instead of being exposed to the risk of Wk?”
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When the answers to both questions are such that w−k = w+
k = w̄k, this implies that we have

identified the certainty equivalent of Wk, i.e. ρ(Wk) = w̄k, yet in practice it is more often the

case that only an interval [w−k , w
+
k ] will be obtained for this value. Moreover, the assumption

that [w−k , w
+
k ] ⊆ [essinf Wk, esssup Wk] is not restrictive since otherwise one can simply replace

w−k := max(w−k , essinf Wk) and w+
k := min(w+

k , esssup Wk) following the monotonicity property of

normalized convex utility-based shortfall risk measures (see Section A1.1 of the appendices for more

details).

We will finally find it useful in our later analysis to have in hand a bound on how sensitive the

utility-based shortfall risk measure is to losses of large size. To do so, we consider the following class

of risk measures.

Definition 4 Let ε : IR+ → (0, 1] be a non-increasing function and {ZεM}M≥1 be a set of discrete

random variables supported at −M and 0 with respective probabilities ε(M) and 1− ε(M), i.e.,

ZεM =

{
−M w.p. ε(M),
0 w.p. 1− ε(M).

(6)

Denote by Rbnd(ε) the set of risk measures that assigns to each random variable in the set {ZεM}M≥1

a risk that is lower than the risk of a certain loss of one, namely

Rbnd(ε) := {ρ : Lp → IR | ρ(ZεM ) ≤ ρ(−1),∀M ≥ 1}. (7)

Theoretically speaking, if a decision maker agrees to be using a normalized convex utility-based shortfall

risk measure, then he should agree that such a function ε(·) necessarily exist. This is due to the

fact for any increasing convex loss function l, the risk measure SRP
l ∈ Rbnd(ε∗) with ε∗(M) :=

(l(0)− l(−1))/(l(M − 1)− l(−1)) based on the argument that:

ε∗(M)l(M − 1)+(1− ε∗(M))l(−1) = l(0)

⇒ SRP
l (Zε

∗

M ) = inf{t : ε∗(M)l(M − t) + (1− ε∗(M))l(−t) ≤ l(0)} ≤ 1 = SRP
l (−1).

Practically speaking, identifying ε∗(M) can be as difficult as identifying l(·) itself. However, one

could for instance establish that for a random loss Zλ which follows an exponential distribution with

mean λ, the risk of ρ(−Zλ) is considered lower than a guaranteed loss of one for some λ̄. This

information can be exploited to conclude that ρ ∈ Rbnd(ε̄) with ε̄(M) := exp(−λ̄M) since the fact

that Z ε̄M stochastically dominates−Zλ̄ in the first order, for allM ≥ 1, implies that ρ(Z ε̄M ) ≤ ρ(−Zλ̄) ≤
ρ(−1).

We hence are equipped to present the key results of this section which consists in demonstrating

how to transform information about risk preferences, which takes the form of some R ∈ {Rubsr ∩
Rce(W),Rubsr ∩Rcoh ∩Rce(W),Rubsr ∩Rce(W)∩Rbnd(ε)}, into a set of ambiguous loss functions L

that make %R(Z) = SRP
L (Z) for any random variable Z.

Proposition 1 (Characterization of L for %Rubsr∩Rce(W)(Z)) Let Rubsr and Rce(W) be defined as in

Definitions 1 and 3. Then the preference robust risk measure %Rubsr∩Rce(W)(Z) = SRP
Lubsr∩Lce(W)(Z)

for all Z ∈ Lp, where Lubsr is the set of all convex non-decreasing functions l : IR → IR that are

strictly increasing over [z0,∞) for some z0 < 0, and where

Lce(W) :=

{
l

∣∣∣∣ EP [l(−Wk + w−k )] ≤ l(0)
EP [l(−Wk + w+

k )] ≥ l(0)
, ∀ k ∈ {1, 2, . . . ,K}

}
. (8)

Representing %Rubsr∩Rce(W)(Z) as SRP
Lubsr∩Lce(W)(Z) is useful for solving (PRSR-Opt) since it

reduces the evaluation of the risk measure to finding the optimal value of a stochastic programming

problem with semi-infinite stochastic constraints:

min
x∈X

%Rubsr∩Rce(W)(−c(x, ξ)) ≡ min
x∈X,t

t

s.t. EP [l(c(x, ξ)− t)]−l(0) ≤ 0, ∀ l ∈ Lubsr ∩ Lce(W) .

(9)
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In Section 3, we will address the computational challenges arising from this reformulation by using

an analysis that is similar in spirit to the one used in Armbruster and Delage (2015) for the case

where ξ has a finite discrete distribution. Later, in Section 4, we will derive the theory that can be

used to justify a discrete approximation of this optimization model when ξ is continuously distributed.

It is worth noting that the preference robust optimization model employed in Armbruster and Delage

(2015) can handle comparison of arbitrary pairs of random variables which appears to be more difficult

to integrate in this preference robust risk measure framework.

We now turn to imbedding the property of positive homogeneity in the characterization.

Proposition 2 (Characterization of L for %Rubsr∩Rcoh∩Rce(W)(Z)) Given that Rubsr∩Rcoh∩Rce(W)

6= ∅, the preference robust risk measure %Rubsr∩Rcoh∩Rce(W)(Z) is equivalent to SRP
lτ (Z) for all Z ∈ Lp,

where

lτ (s) = max(τs, (1− τ)s) for τ = min
k

E[(Wk − w−k )+]

E[|Wk − w−k |]
, (10)

with (s)+ := max(0, s). Moreover, Rubsr ∩Rcoh ∩Rce(W) is non-empty if and only if

min
k

E[(Wk − w−k )+]

E[|Wk − w−k |]
≥ max

(
1

2
, max

k

E[(Wk − w+
k )+]

E[|Wk − w+
k |]

)
.

This result leads straightforwardly to a convenient finite dimensional reformulation for the (PRSR-

Opt) problem and the problem of minimizing the worst-case risk achieved by any x ∈ X. In particular,

min
x∈X

%Rubsr∩Rcoh∩Rce(W)(−c(x, ξ)) ≡ min
x∈X,t

t

s.t. EP [lτ (c(x, ξ)− t)] ≤ 0 ,
(11)

with τ defined according to Proposition 2. In comparison with the case where the risk measure

is not known to be positive homogeneous, formulation (11) is more attractive from computational

perspective because the latter is a convex minimization problem with a single stochastic inequality

constraint. Indeed, it is an ordinary nonlinear programming problem for which existing NLP codes

can be readily applied to solve. We conclude this section with a characterization of L when one does

not impose positive homogeneity but instead constrains on the sensitivity of the utility-based shortfall

risk measure to losses of large size.

Proposition 3 (Characterization of L for %Rubsr∩Rce(W)∩Rbnd(ε) ) Let Rubsr, Rce(W), and Rbnd(ε)
be defined as in Definitions 1, 3, and 4. Then the preference robust risk measure %Rubsr∩Rce(W)∩Rbnd(ε)(Z)

is equivalent to SRP
Lubsr∩Lce(W)∩Lbnd(Z) for all Z ∈ Lp, where

Lbnd := {l | ε(z)l(z − 1) + (1− ε(z))l(−1) ≤ l(0) , ∀ z ≥ 1} . (12)

Moreover, each loss function l ∈ Lubsr ∩ Lce(W) ∩ Lbnd satisfies

l(z1)− l(0) ≤ 1− ε(z1 + 1)

ε(z1 + 1)
(l(0)− l(−1)) , ∀ z1 ≥ 0 (13)

and

l′+(z1) ≤ φ(z1)(l(0)− l(−1)) for 0 ≤ z1 < z2, (14)

where l′+(z1) denotes the right derivative of l(·) at z1, and

φ(z1) = inf

{(
1− ε(z + 1)

ε(z + 1)
− z1

)
1

z − z1
: z > z1

}
. (15)
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Similarly, to the case of Proposition 1, this result leads to a semi-infinite reformulation for the

(PRSR-Opt) problem. Namely,

min
x∈X

%Rubsr∩Rce(W)∩Rbnd(ε)(−c(x, ξ)) ≡

minx∈X,t t
s.t. EP [l(c(x, ξ)− t)]−l(0) ≤ 0 , ∀ l ∈ Lubsr ∩ Lce(W) ∩ Lbnd .

(16)

Remark 2 We may draw a couple of useful conclusions from the proposition.

(i) φ(z) is non-decreasing over [−M,M ]. To see this, we note that the convexity of l(·) ensures

l(z) − l(0) ≥ z(l(0) − l(−1)),∀z > 0 and through (13), we have 1−ε(z+1)
ε(z+1) − z ≥ 0,∀z > z1. This

implies the objective function of the minimization problem in (15) is strictly increasing in z1 for

fixed z > z1. Together with the fact that the feasible set is getting smaller as z1 increases, this

implies φ(z1) is non-decreasing for z1 ∈ [−M,M ].

(ii) The monotonicity of φ(·) implies that φ(z) ≤ φ(M),∀z ∈ [−M,M ]. On the other hand, since l(·)
is convex and non-decreasing, then the inequality above and inequality (14) imply that l′−(z) ≤
l′+(z) ≤ φ(M)(l(0)−l(−1)),∀z ∈ [−M,M ], where l′−(z) denotes the left derivative of l(·) at z. The

latter ensures that every loss function in Lubsr∩Lce(W)∩Lbnd is equicontinuous over any interval

[−M, M ], i.e. l(z2)−l(z1)
z2−z1 ≤ φ(M)(l(0)− l(−1)) , ∀ z1, z2 ∈ [−M,M ] ,∀ l ∈ Lubsr ∩Lce(W)∩Lbnd,

which means the class of loss functions in Lubsr∩Lce(W)∩Lbnd are equicontinuous over [−M, M ]

for any M > 0.

3 Tractable formulation of (PRSR-Opt)

The representations that we have developed for %Rubsr∩Rce(W)(Z) and %Rubsr∩Rce(W)∩Rbnd(ε)(Z) in (9)

and (16) are not numerically tractable as they are semi-infinite programming problems. In this section,

we demonstrate that when P follows a finite discrete distribution, both of them can be reformulated

as finite dimensional convex programming problems. We do so by replacing Z with −c(x, ξ) so that

the results can be directly plugged into (PRSR-Opt).

To this end, let us write Ξ as Ξ := {ξ1, . . . , ξN} with associated probabilities pi := P (ξ = ξi).

Proposition 4 The (PRSR-Opt) problem with Lubsr ∩ Lce(W) can be reformulated as the following

problem:

min
x∈X,t,u,γ,η(1),η(2)

t (17a)

s.t. pi(c(x, ξi)− t)−
M∑
j=1

uijyj ≤ 0, ∀ i = 1, . . . , N, (17b)

pi −
M∑
j=1

uij = 0, ∀ i = 1, . . . , N, (17c)

N∑
i=1

uij +

M∑
m=1

γjm −
M∑
m=1

γmj −
K∑
k=1

η
(1)
k P (−Wk + w−k = yj)

+

K∑
k=1

η
(2)
k P (−Wk + w+

k = yj) = 0, j = {1, . . . ,M} \ {j0, j−}, (17d)

N∑
i=1

uij− +

M∑
m=1

γj−m −
M∑
m=1

γmj− −
K∑
k=1

η
(1)
k P (−Wk + w−k = yj−)

+

K∑
k=1

η
(2)
k P (−Wk + w+

k = yj−) ≥ 0, (17e)
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M∑
m=1

γmj(ym − yj) ≥ 0 , ∀ j = 1, . . . ,M, (17f)

uij ≥ 0, γmj ≥ 0, η(1) ≥ 0, η(2) ≥ 0, i = 1, . . . , N,m, j = 1, . . . ,M , (17g)

where {yj}Mj=1 is an indexed list of the elements of Y :=
⋃K
k=1 supp(−Wk +w−k )∪ supp(−Wk +w+

k )∪
{0}∪{−1}, while j0 and j− are the indexes such that yj0 = 0 and yj− = −1. In particular, if c(x, ξ) is

a convex piecewise linear function of x, then problem (17) can be reformulated as a finite dimensional

linear programming problem.

We now move on to discuss a finite dimensional reformulation of (PRSR-Opt) with Lubsr∩Lce(W)∩
Lbnd in the case where ε(y)−1 := 1/ε(y) is a piecewise-linear function on IR and X is a bounded set.

Proposition 5 Let X be bounded and ε(·)−1 be a piecewise-linear function with Yε as an unbounded set

containing all of its non-differentiable points. Then the (PRSR-Opt) problem with Lubsr∩Lce(W)∩Lbnd
is equivalent to

min
x∈X,t,u,σ,γ,ρ,θ,η(1),η(2)

t (18a)

s.t. t− ≤ t ≤ t+ (18b)

−

(
N∑
i=1

uij− +

M∑
m=1

γj−m −
M∑
m=1

γmj− −
K∑
k=1

η
(1)
k P (−Wk + w−k = yj−)

+

K∑
k=1

η
(2)
k P (−Wk + w+

k = yj−)

)
+
∑
j∈I

θj−M (zj − 1) +

M∑
j=j0+1

ρj−j0(zj − 1) ≤ 0, (18c)

pi(c(x, ξi)− t)−
M∑
j=1

uijyj − σi ≤ 0, ∀ i = 1, . . . , N, (18d)

pi −
M∑
j=1

uij = 0, ∀ i = 1, . . . , N, (18e)

N∑
i=1

uij +

M∑
m=1

γjm −
M∑
m=1

γmj −
K∑
k=1

η
(1)
k P (−Wk + w−k = yj) (18f)

+

K∑
k=1

η
(2)
k P (−Wk + w+

k = yj) = 0, j = {1, . . . , j0 − 1} \ {j−},

N∑
i=1

uij +

M∑
m=1

γjm −
M∑
m=1

γmj −
K∑
k=1

η
(1)
k P (−Wk + w−k = yj) (18g)

+

K∑
k=1

η
(2)
k P (−Wk + w+

k = yj) = −ρj−j0 ,∀ j = j0 + 1, . . . ,M − 1,

N∑
i=1

uiM +

M∑
m=1

γMm −
M∑
m=1

γmM −
K∑
k=1

η
(1)
k P (−Wk + w−k = yM ) (18h)

+

K∑
k=1

η
(2)
k P (−Wk + w+

k = yM ) = −ρM−j0 −
∑
j∈I

θj−M ,

M∑
m=1

γmj(ym − yj) ≥ 0 , ∀ j = 1, . . . ,M − 1, (18i)

M∑
m=1

γmM (ym − yM ) ≥
N∑
i=1

σi −
∑
j∈I

θj−M (yj − yM ), (18j)

uij ≥ 0, γmj ≥ 0,∀ i = 1, . . . , N,m, j = 1, . . . ,M, (18k)

σ ≥ 0, ρ ≥ 0, θ ≥ 0, η(1) ≥ 0, η(2) ≥ 0, (18l)
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where u ∈ IRN×M , σ ∈ IRN , γ ∈ IRM×M , ρ ∈ IRM−j0 , θ ∈ IR|I|, η(1) ∈ IRK and η(2) ∈ IRK . One also

has t− := minx∈X mini c(x, ξi) and t+ := maxx∈X maxi c(x, ξi), while Y ′ := {yj}Mj=1 is an ordered list

of the elements of Y ∪ {y∗, y∗} ∪ (Y ′ε ∩ [y∗, y
∗]), where Y ′ε := {y ∈ < | y + 1 ∈ Yε}

y∗ := min{min
y∈Y

y , t− − t+}, y∗ := max{max
y∈Y

y , t+ − t−} ,

and the indexes j− and j0 refer to yj− = −1 and yj0 = 0. Finally, {yj}j∈I is an ordered list of the

elements of Y ′ε∩]y∗,∞[ with I := {M+1,M+2, . . . , } while zj := ε(yj +1)−1 for j = j0 +1, j0 +2, . . ..

Note that in Proposition 5 we impose that the set of kinks of ε(·)−1 extends arbitrarily far in the

positives. This is somehow without loss of generality since if Yε is bounded then one can always create

an infinite series of artificial kinks (with linear functions of same slope on both sides) at increasingly far

locations on the real line. Alternatively, if Yε happens to be finite, a finite dimensional reformulation

can be obtained using a similar analysis as below. We omit this reformulation for the sake of brevity but

simply mention that it requires imposing that f(y∗) be smaller than the Lipschitz constant of ε(·)−1.

Given that Proposition 5 assumes Yε to be unbounded, it must be that I is an infinite set thus

the linear program (18) has an infinite number of decision variables which makes it impossible to solve

using conventional solvers. For this reason, we propose to employ Algorithm 1 which implements a

decomposition scheme that is based on the column generation approach (see Desrosiers and Lübbecke

(2005) and reference therein).

Algorithm 1 Column generation for solving (PRSR-Opt) problem (18)

1: I′ ← ∅
2: repeat
3: Solve problem (18) with I restricted to I′
4: α∗M ← dual variables for constraint (18h) at optimum of restricted problem
5: β∗M ← dual variables for constraint (18j) at optimum of restricted problem
6: j′ ← arg minj∈I zj − 1− α∗M − β

∗
M (yj − yM )

7: I′ ← I′ ∪ {j′}
8: until zj′ − 1− α∗M − β

∗
M (yj′ − yM ) ≥ 0

While Algorithm 1 is not guaranteed to terminate in a finite number of iterations, it can be

interrupted at any iteration to produce a conservative approximation for x. We also expect that

in practice the stopping criterion will quickly be met especially when a large amount of confidence

intervals (such that K is large in Definition 3) are used which should make constraint (45b) become

redundant. We are left with the task of identifying an efficient procedure for completing step 6 of the

algorithm. The proposition below addresses this.

Proposition 6 Let ε(·)−1 be a piecewise-linear approximation of a convex non-decreasing function

ε̄(·)−1 such that ε(y)−1 ≥ ε̄(y)−1 for all y ∈ IR while ε(y)−1 = ε̄(y)−1 for all y ∈ Yε. Then, an

optimal solution to

y∗α,β := arg min
y∈Y′ε∩]y∗,∞[

ε(y + 1)−1 − 1− α− β(y − y∗) (19)

can be found by solving

ȳ∗α,β := arg min
y∈[y∗,∞[

ε̄(y + 1)−1 − 1− α− β(y − y∗) (20)

and letting y∗α,β := dȳ∗α,βe if the set Y ′ε ∩ (y∗, ȳ∗α,β) = ∅, otherwise using

y∗α,β := arg min
y∈{bȳ∗α,βc,dȳ

∗
α,βe}

ε(y + 1)−1 − 1− α− β(y − y∗)

where

byc := sup{y′ ∈ Y ′ε ∩ (y∗, ∞) : y′ ≤ y}, dye := inf{y′ ∈ Y ′ε ∩ (y∗, ∞) : y′ ≥ y} .
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Based on Proposition 6, we can solve (19) by solving problem (20) and making a follow-up projection

of the optimal solution on Yε∩ [y∗,∞). This will effectively reduce complexity of implementing Step 6.

We conclude this section with an example involving ε̄(y) := exp(−λ̄y) as described in Section 2. In

this case, it is clear that ε̄(y)−1 = exp(λ̄y) does not satisfy the condition imposed in Proposition 5, but

for a given discretization of IR+ such as Yε := {∆k
y}∞k=0, one can conservatively approximate ε̄(·)−1

by letting ε(·)−1 be the piecewise linear inner approximation of ε̄(·)−1 with kinks at Yε where the

two functions return the same values. To better illustrate this, Figure 1 presents both ε̄(y) and ε(y)

and the associated bounds are imposed on the loss function with λ̄ = 0.6946, l(y) := max(3y, y) and

Yε := {2k}∞k=0. With this particular choice of characterization for ε(y), Algorithm 1 can be used to

solve the (PRSR-Opt) problem (18). Following the result of Proposition 6, the new candidate j′ can

be obtained by first solving

ȳ∗α,β := arg min
y∈[y∗,∞[

exp(λ̄(y + 1))− 1− α− β(y − y∗) =

{
y∗ if β ≤ λ̄ exp(λ̄(y∗ + 1)),

1
λ̄

ln
(
β
λ̄

)
− 1 otherwise

and, if ȳ∗α,β > y∗, then identifying the index j′ in I such that

j′ = arg min
k∈{bln(ȳ∗α,β)/ ln(2)c,dln(ȳ∗α,β)/ ln(2)e}

exp(λ̄(2k + 1))− 1− α− β(2k − y∗) ,

where d·e and b·c refer respectively to the standard ceil and floor operators.
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Figure 1: Illustration of the effect of manipulating ε̄ in order to satisfy the assumptions made in propositions 5 and 6 thus
making the resolution of problem (18) more tractable using Algorithm 1.

4 Discrete approximation of (PRSR-Opt) when P is continuous

A key condition for tractable reformulation of problem (4) in the previous section is that P must be

discrete. In this section we concentrate on the case that P is continuous and we propose a discretization

scheme for it.

4.1 Problem set-up

By the definition of the preference robust normalized risk measure, we can write problem (4) as

min
x∈X,t∈IR

t

s.t. sup
l∈L

EP [l(c(x, ξ)− t)]− l(0) ≤ 0.
(21)

Let PN be a discrete approximation of P . We consider

min
x∈X,t∈IR

t

s.t. sup
l∈L

EPN [l(c(x, ξ)− t)]− l(0) ≤ 0.
(22)
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In the literature of stochastic programming, there are various approaches to construct PN such as

Monte Carlo sampling and quasi-Monte Carlo sampling method. In this paper, we will use empirical

probability distribution constructed through independent and identically distributed (iid) samples.

To ease the exposition, let v(x, t) := supl∈L EP [l(c(x, ξ) − t)] − l(0) and vN (x, t) :=

supl∈L EPN [l(c(x, ξ)− t)]− l(0). Consequently, we can rewrite (21) and (22) as

(PRSR-Opt) min
x∈X,t∈IR

t subject to v(x, t) ≤ 0, (23)

and

(PRSR-Opt-N) min
x∈X,t∈IR

t subject to vN (x, t) ≤ 0. (24)

Let F , S and ϑ denote the feasible set, the set of optimal solutions and the optimal value of

problem (PRSR-Opt) respectively. Likewise, we define FN , SN and ϑN for problem (PRSR-Opt-N).

Throughout this section, we make the following assumption.

Assumption 1 We assume: (a) X is a compact set, (b) c(·, ·) is a continuous function on X × Ξ, (c)

(PRSR-Opt) satisfies Slater condition, i.e., there exist a positive constant number θ, and x0 ∈ X, t0 ∈
IR such that

sup
l∈L

EP [l(c(x0, ξ)− t0)]− l(0) ≤ −θ, (25)

(d) let Z := minx∈X c(x, ξ), EP [Z] < +∞.

Under Assumption 1, the optimal value ϑ of (PRSR-Opt) is finite. To see this, we note that

sup
l∈L

EP [l(Z − t0)]− l(0) ≤ sup
l∈L

EP [l(c(x0, ξ)− t0)]− l(0) ≤ −θ,

which implies ϑ ≤ t0. On the other hand, by Jensen’s inequality, EP [l(Z − t)] ≥ l(EP [Z]− t), thus

supl∈L EP [l(Z − t)] ≥ supl∈L l(EP [Z]− t)→ +∞ as t→ −∞, we deduce that the t component of the

feasible set F must have a lower bound and hence the optimal value ϑ > −∞.

4.2 Sample average approximation

Let ξ1, . . . , ξN be iid samples of ξ and PN (·) := 1
N

∑N
k=1 1ξk(·) the empirical probability measure,

where 1ξk(·) is an indicator function with 1ξk(ξ) = 0 for ξ = ξk and 0 otherwise. Instead of deriving

uniform approximation specifically for vN (x, t) defined in (24), we establish a general convergence

result which may be of interest beyond this paper.

Let g : IRn×Ξ→ IR be a continuous function andW be a set of continuous functions of φ : IR→ IR.

Let Φ(x) := supφ∈W EP [φ(g(x, ξ))] and ΦN (x) := supφ∈W EPN [φ(g(x, ξ))]. In what follows, we show

uniform convergence of ΦN (x) to Φ(x) under some appropriate conditions. Note that in the literature of

stochastic programming, there have been a number of recent results on uniform convergence of sample

average approximation of a random function, see Shapiro and Xu (2008) and references therein. Here

we consider a slightly different setting where it concerns uniform convergence of the maximum of

a class of sample average approximated random functions as opposed to a single sample averaged

approximated function in the literature.

In order to establish the desired convergence results, we need to impose some conditions on W
and g.

Assumption 2 Let Ξ be the support set of ξ.

(a) φ(0) = 0 and for any ε > 0, there exists a compact set Ξε ⊂ Ξ such that

sup
N,x∈X,φ∈W

EPN [|φ(g(x, ξ)1Ξ\Ξε(ξ))|] ≤ ε, w.p.1. (26)
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(b) For any M > 0, there exists a positive constant κM such that

sup
φ∈W

|φ(z1)− φ(z2)| ≤ κM |z1 − z2|,∀z1, z2 ∈ [−M,M ], (27)

where κM increases as M increases.

(c) There exist a measurable function r(ξ) : Ξ→ IR+ and a constant ν > 0 such that

|g(x, ξ)− g(x′, ξ)| ≤ r(ξ)‖x− x′‖ν ,∀x, x′ ∈ X, ξ ∈ Ξ. (28)

Assumption 2 (a) is a kind of uniform integrability condition for all φ ∈ W. The condition is well

known in probability theory, see Chapter 3 in Billingsley (1999). Condition (b) requires the class of

functions in W to be equi-Lipsthitz continuous over [−M,M ] for any M > 0. Condition (c) requires

g to be Hölder continuous in x. The condition is used in Theorem 5.2 of Shapiro and Xu (2008).

Let

WM := {φ|[−M,M ](·) : ∀φ(·) ∈ W}, (29)

where φ|[−M,M ](·) stands for the restriction of function φ(z) to being defined over interval [−M,M ].

Under Assumption 2 (a)-(c), the set WM is bounded by

sup
φ∈WM

‖φ‖∞ ≤ κMM. (30)

By Ascoli-Arzela Theorem (Brown (2004)), the equi-Lipschitz continuity condition (27) and the unform

boundedness (30) guarantee thatWM is relatively compact (albeit it is not necessarily compact). Note

that the relative compactness of WM ensures existence of an ε-net of WM , that is, for any ε > 0, there

exists a set of finite number of functions {φ1, . . . , φK} ⊂ WM such that

WM =

K⋃
k=1

(WM )εk (31)

where (WM )εk := {φ ∈ WM : ‖φ− φk‖∞ ≤ ε} for k = 1, . . . ,K.

Lemma 1 Let Assumption 2 hold. Then for any δ > 0, there exist positive constants ε < δ/4, C(ε, δ)

and β(ε, δ), independent of N such that

Prob

(
sup
x∈X

∣∣ΦN (x)− Φ(x)
∣∣ ≥ δ) ≤ C(ε, δ)e−Nβ(ε,δ). (32)

Note that in Lemma 1, the probability measure “Prob” should be understood as the product probability

measure of P over measurable space Ξ× Ξ× · · · with product Borel sigma algebra B ×B × · · · .

A crucial requirement in Lemma 1 is Assumption 2 (a) which is used to ensure the relative com-

pactness of WM . In the case when Ξ is compact, this condition holds automatically.

Corollary 1 Let Ξ be compact and Assumptions 2 (b)-(c) hold. Then for any δ > 0, there exist positive

constants ε < δ/2, C(ε, δ) and β(ε, δ) independent of N such that

Prob

(
sup
x∈X

∣∣ΦN (x)− Φ(x)
∣∣ ≥ δ) ≤ C(ε, δ)e−Nβ(ε,δ).

Note that Haskell et al. (2017) considered similar discretization approaches for approximating inte-

gral stochastic dominance constraints whereby they used piecewise linear increasing convex functions

to form an ε-net the associated utility functions. They established exponential rate of convergence

under the condition that the utility functions are Lipschitz continuous and defined on a compact set.

Here we relax the compactness condition by replacing it with uniform integrability condition, this will

effectively allow us to apply the convergence results to (PRSR-Opt) where the utility loss functions

are defined on IR rather than a compact set. Note also that the discretization scheme should be distin-

guished from those in Hu and Mehrotra (2015) whose focus is on piecewise linear approximation of the

utility function of a robust preference optimization problem rather than sample average approximation

of the expected utility.
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4.3 Convergence of the optimal values and optimal solutions

We now return to discuss convergence of (PRSR-Opt-N) to (PRSR-Opt) in terms of the optimal

values and optimal solutions. Let vN (x, t) and v(x, t) be defined as in (24) and (23). We start by

deriving uniform convergence of vN (x, t) to v(x, t) using Lemma 1. To this end, we need to make some

appropriate conditions on c(x, ξ) and the set of loss functions L which correspond to the conditions

that we set for g(x, ξ) and φ ∈ W in Section 5.2.

(C1) Let T be a compact set in IR. For any ε > 0, there exists a compact set Ξε ⊂ Ξ such that

sup
N,x∈X,t∈T,l∈L

EPN [|l((c(x, ξ)− t)1Ξ\Ξε(ξ))|] ≤ ε.

(C2) For any M > 0, there exist positive constants κM (depending on M), ∆M and λ ∈ [−M,M ]

such that supl∈L |l(z1)− l(z2)| ≤ κM |z1−z2|,∀z1, z2 ∈ [−M,M ], and supl∈LM ‖l(λ)‖ ≤ ∆M with

LM := {l|[−M,M ](·) : ∀l ∈ L}.
(C3) There exist a measurable function r : Ξ→ IR+ and a constant ν > 0 such that

|c(x, ξ)− c(x′, ξ)| ≤ r(ξ)‖x− x′‖ν ,∀x, x′ ∈ X, ξ ∈ Ξ.

Theorem 1 Let conditions (C1)–(C3) hold. Let T be a compact set in IR. Then for any δ > 0 there

exist positive constants ε, N(ε, δ), C(ε, δ) and β(ε, δ) independent of N such that for N ≥ N(ε, δ)

Prob

(
sup

x∈X,t∈T

∣∣vN (x, t)− v(x, t)
∣∣ ≥ δ) ≤ C(ε, δ)e−Nβ(ε,δ) (33)

We are now ready to state the main results of this section concerning convergence of (PRSR-Opt-N)

to (PRSR-Opt) as the sample size N increases.

Theorem 2 Let ϑ, ϑN , S and SN be defined as in Section 5.1 and PN be the associated empirical

probability measure. Let Assumption 1 and conditions (C1)–(C3) hold. Suppose that for almost every

ξ ∈ Ξ, c(·, ξ) is a convex function. Then

(i) For any δ ≤ θ,

Prob (|ϑN − ϑ| ≥ δ) ≤ C(ε, ε)e−Nβ(ε,ε), (34)

for N ≥ N(ε, ε) where N(ε, ε), C(ε, ε) and β(ε, ε) are defined as in Theorem 1 and ε is some

positive constant depending on δ, and θ is given in (25).

(ii) Let {xN , tN} be a sequence of optimal solutions obtained from solving (PRSR-Opt-N). Then with

probability 1, a cluster point of the sequence is an optimal solution of (PRSR-Opt).

Remark 3 Theorem 2 ensures ϑN converges to ϑ at exponential rate with increase of the sample size N .

A key condition for the established convergence results is equi-continuity of the ambiguity set of loss

functions L over any compact set. This raises a question as to whether the loss functions defined in the

ambiguity sets proposed in Section 2 satisfy this condition. Following Remark 2, we know that condition

(C2) is satisfied by the set of loss functions L := Lubsr ∩Lce(W)∩Lbnd defined in Proposition 3. This

means the bound Lbnd on the sensitivity of risk measures over large tail losses provides a sufficient

condition for the asymptotic consistency of the optimal value and the optimal solutions of problem

(PRSR-Opt-N).

5 Numerical experiments

In this section, we repeat the experiments performed in Delage and Li (2018) regarding the comparison

of different choices of performance measure one might employ in a portfolio selection problem where

only partial information is available about the decision maker’s preference regarding a risk measure. In
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particular, we consider a financial advisor that makes different hypothesis about the way an investor

he is consulting with perceives risks before formulating the following portfolio optimization problem:

min
x≥0

ρ(ξTx) subject to

n∑
i=1

xi = 1,

where each xi is a decision variable describing the percentage of the budget invested in asset i, while

ξ ∈ IRn is a random vector following a distribution P and describing the random weekly return of

each asset available for investment. Note that the units of the payoff in this context need to be seen

as percentage of total wealth hence the risk level and axiomatic assumptions should be interpreted

accordingly.2 A näıve approach for designing a portfolio when ρ(·) is unknown consists of simply

minimizing the expected loss (as a percentage of initial wealth) of the portfolio, i.e. ρ(ξTx) := E[−ξTx],

or some arbitrarily chosen expectile measure ρ(ξTx) := SRP
lτ (ξTx) with lτ (s) := max(τs, (1 − τ)s).

We compare such two approaches to an approach that is robust with respect to the limited amount of

preference information. Namely, we consider two preference robust risk measures %RLE (·) and %RCLE (·)
which account for the fact that the risk measure is law invariant and respectively convex or coherent as

proposed in Delage and Li (2018), and two preference robust risk measures that additionally account

for the fact that the true risk measure is a utility-based SR, namely %R∩Rce(·) = SRP
Lubsr∩Lce(W)(·)

and %Rcoh∩Rce(·) = SRP
lτ (·) with the worst-case τ defined in equation (10).

Our experiments are nearly identical to the experiments described in Delage and Li (2018). Specif-

ically, they are designed based on historical stock market data for 334 companies that were part of

the S&P 500 Index during the period from January 1994 until December 2013.3 Each experiment

consists in drawing 4 assets randomly from the pool of 334 assets and a set of 13 consecutive weeks

in the period from January 2004 to December 2013. We require each method to propose a portfolio

that considers the weekly return vector ξ be drawn from the joint empirical distribution of the 4 assets

in the selected 13 weeks. We also simulate elicitation by using a reference investor modeled using

ρ̄(Z) := SRP
l0.6(Z) to evaluate the certainty equivalent of up to 20 random payoffs Wk constructed

based on a random choice of one asset among the 334 assets and a random set of 13 consecutive weeks

in the period between January 1994 and December 2003.

Figure 2 presents the average perceived risk in lost percentage points (i.e. ρ̄(ξTx)×100) achieved, in

a set of 4000 experiments, by the portfolios obtained using either expected loss minimization, the wrong

expectile measure (i.e. SRlτ with τ = 0.75 instead of τ = 0.6), or either of the four preference robust

risk measures described above with certainty equivalent information about up to 20 random payoffs

(including the null payoff). We also report the best average perceived risk that could be obtained if

ρ̄ was exactly known. Once again, in this set of experiments, we observe that preference robust risk

minimization model eventually outperforms the methods that are based on the wrong risk measures

(namely using the expected loss or the wrong expectile measure) after a sufficient amount of elicitation

(about 10 certainty equivalent evaluations here). Interestingly, these experiments seem to indicate that

information about whether the risk measure is coherent or not is more valuable than the information

about whether it is a shortfall risk measure. Indeed, one can observe that the quality of portfolios only

improves marginally when using %R∩Rce instead of %RLE (i.e. introducing the hypothesis of having a

utility-based SR), whereas the improvement is much more significant when using %Rcoh∩Rce instead

of %RCLE (introducing the hypothesis of coherence). Additionally, one can observe that if the risk

measure is coherent and it is a member of the utility-based SR, then it is already uniquely identified

after a single certainty equivalent evaluation.

We also carried out the same experiments with the preference robust risk measure

%Rubsr∩Rce(W)∩Rbnd(ε) but quickly realized that the portfolios obtained using this method were al-

most undistinguishable from the ones obtained using %Rubsr∩Rce(W) in our test environment. In

particular, in order to obtain a piecewise linear function for ε(·)−1 that satisfies the conditions of

Proposition 6, we started by identifying a value λ̄ such that ε̄(y) := exp(−λ̄y) satisfies Definition 4

for our reference investor modeled with ρ̄. As seen in Proposition 3, this can be done using any λ

such that max(τy, (1 − τ)y) ≤ (exp(λy) − 1)(1 − τ) for all y ≥ 0. In our experiments, we used
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Figure 2: Comparison of the average perceived risk (in lost percentage points) for the portfolios obtained using either
expected loss minimization, the wrong expectile (SRlτ with τ = 0.75), or the minimization of a preference robust risk
measure with certainty equivalent evaluations for up to 20 random payoffs (including the null payoff) in a set of 4000
experiments. We also report the best average perceived risk that could be obtained if the representation of this perception
was exactly known. (b) presents in more detail the portion of figure (a) which achieves an average perceived risk between
-0.48 and -0.58 percentage points.

λ̄ = maxy≥0 ln((τ/(τ − 1))y+ 1)/(y+ 1) ≈ 0.4716. Once ε̄(y) was selected, we considered ε(y)−1 to be

the piecewise linear inner approximation which matches ε̄(y)−1 exactly at the points in the discrete set

Yε := {1.2k}∞k=0. In a preliminary set of experiments, we observed that Algorithm 1 would converge

in less than 6 iterations (about 3 on average) and always returned a solution that was very close (if

not exactly the same) to the solution of problem (17). This motivated us to conclude that the perfor-

mance of %Rubsr∩Rce(W)∩Rbnd(ε) in the 4000 experiments reported in Figure 2 should be considered the

same as the performance of %R∩Rce . Moreover, this evidence seem to indicate that in a context where

the distribution of ξ would be continuous and be approximated using sample average approximation,

the computational cost of employing %Rubsr∩Rce(W)∩Rbnd(ε) instead of %R∩Rce in order to obtain a

guarantee on the convergence of (PRSR-Opt-N) to (PRSR-Opt) (see Theorem 2) is in fact reasonable.

6 Conclusion

In this paper, we considered a preference robust risk minimization problem for which the risk mea-

sure is assumed to be a normalized convex utility-based shortfall risk measure. We demonstrated

for the first time that %R(Z) could equivalently be represented using SRP
L where L is the set of all

plausible loss functions that could be used to characterize ρ(·) using SRP
l . We also showed how this

ambiguity set L can be constructed based on available information regarding positive homogeneity,

pairwise comparisons involving a lottery and a certain amount, and finally the existence of a set of

random variables with arbitrarily large extreme values which are considered less risky than a fixed

loss of one. We established how the risk minimization problem can be reformulated as a linear pro-

gram when such information is available and P is discrete. In particular, for the case of positive

homogeneity the preference robust risk minimization problem reduces to a problem in which the loss

function is unambiguous. We then considered the quality of solutions that can be recovered from these

models using sample average approximation (SAA) schemes when the distribution P is continuously

supported. While convergence analysis of the optimal values and the optimal solutions of sample

average approximated problems is well documented in the literature of stochastic programming (see

Rusczyński and Shapiro (2003)), the convergence result that we established in Section 5 extends the

existing results by Haskell et al. (2017) on sample average approximation of robust expected utility

optimization problems to a broader class of utility functions and paves the way for application of

the tractable numerical schemes developed in Section 4 to continuously distributed preference robust

shortfall risk optimization problems. The discretization scheme can also be incorporated into Hu and



Les Cahiers du GERAD G–2017–104 – Revised 15

Mehorotra’s piecewise linear utility approximation approach for solving preference robust optimization

problems (Hu and Mehrotra (2015)). Finally, we presented some numerical experiments in which it is

possible to quantify the value of exploiting the information that a risk measure is a utility-based SR

in combination with certainty equivalent information for a small set of random payoffs.

Endnotes

1. Note that elicited preference information needs to be distinguished from the property of elicitability
of risk measures. Specifically, the latter requires the existence of statistically robust procedures for
estimating the measure and of a proper backtesting mechanism for prediction schemes (see Cont et al.
(2010) for a discussion).

2. Alternatively, one could also redefine each xi as the amount of actual money invested in each asset
if this is needed for a more accurate interpretation of ρ(ξTx).

3. This is the same period and same companies as in Delage and Li (2018) except for BMC software
which was removed from our data set given that it was privatized in September 2013.

Proofs of statements

Appendix A1 Proofs of Section 2

A1.1 Bounds on utility-based shortfall risk

Lemma A.1 Let ρ be a normalized utility-based shortfall risk measure ρ. Given any random variable

Z ∈ Lp, one has that −esssup(Z) ≤ ρ(Z) ≤ −essinf(Z).

Proof. This follows from the monotonicity of convex risk measure, namely for all Z1 ≥ Z2 it must

be that ρ(Z1) ≤ ρ(Z2). Specifically, if essinf(Z) ∈ IR, since Z ≥ essinf(Z) with probability 1, we can

conclude that ρ(Z) ≤ ρ(essinf(Z)) = −essinf(Z), while otherwise essinf(Z) = −∞ hence ρ(Z) ≤ ∞
follows trivially. One can establish a similar result with respect to esssup(Z).

A1.2 Proof of Proposition 1

We start by describing a set of useful properties satisfied by the functions in Lubsr, by normalized

utility-based shortfall risk measures, and their robust versions. Readers who are familiar with the

properties of utility-based risk measures may skip to our main proof in subsection A1.2.2.

A1.2.1 Useful properties of normalized utility-based shortfall risk measure and their loss functions

First, let us formally state the definition of Lubsr for ease of future reference.

Definition A.1 Let Lubsr be the set of all convex non-decreasing functions l : IR→ IR that are strictly

increasing over [z0,∞) for some z0 < 0.

It is well-known that loss functions in Lubsr satisfy the following properties.

Lemma A.2 (Properties of l ∈ Lubsr) The following assertions hold for all l ∈ Lubsr:

(i) If there are two points a < b in the domain of l such that l(a) = l(b), then l(t) = l(a) = l(b) for

t ∈ (−∞, b].
(ii) l(t)→ +∞ as t→ +∞.

(iii) l(t) < l(0) for all t < 0 and l(t) > l(0) for all t > 0.

(iv) l(0) lies in the interior of l(IR).
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Proof. Part (i). First, since l(·) is non-decreasing, it is clear that l(t) = l(a) for all t ∈ [a, b] and that

l(t) ≤ l(a) for all t < a. Next, let’s assume that there is a point t < a such that l(t) < l(a), then we

necessarily have that for θ := (a− t)/(b− t) ∈ [0, 1]:

θl(b) + (1− θ)l(t) < θl(b) + (1− θ)l(a) = l(a) = l(θb+ (1− θ)t),

which contradicts the fact that l(·) is convex.

Part (ii). Since l(·) is non-decreasing and non-constant, we can find two points t1 < t2 such that

l(t1) < l(t2). By the convexity of l(·), l(t) − l(t2) ≥ [(l(t2) − l(t1))/(t2 − t1)](t − t2) for t > t2. By

driving t to infinity, we immediately get the conclusion.

Part (iii). This follows directly from the fact that l(·) is strictly increasing over some interval

[z0, ∞) with z0 < 0 and non-decreasing over (−∞, z0].

Part (iv). This follows directly from (iii).

Equipped with Lemma A.2, one can easily derive a representation theorem for normalized convex

utility-based shortfall risk measure. Note that the result is usually used without the need of a proof by

the community (see for example Section 4.9 of Föllmer and Schied (2016)), yet we include a detailed

argument below for completeness.

Lemma A.3 Let ρ(·) be a utility-based shortfall risk measure. Then ρ(·) is convex and normalized (i.e.

ρ(0) = 0) if and only if there is some l ∈ Lubsr such that

ρ(Z) := inf{t : E[l(−Z − t)]− l(0) ≤ 0}. (35)

Proof. By the definition of SR, there is a non-decreasing function l : IR → IR which is not constant

such that ρ(Z) can be represented as in (1). By (Weber 2006, Corollary 3.1), ρ(·) is convex if and only

if l(·) is convex. So we are left with the task to show that ρ(0) = 0 if and only if l is strictly increasing

over [z0,∞) for some z0 < 0 and λ = l(0).

The “only if” part. Recall that in the definition of the utility-based shortfall risk measure, λ lies in

the interior of the range of l(·). Thus, given that real convex functions are continuous, there must exist

a t0 ∈ IR such that l(t0) = λ. By using a similar argument as in the proof of Lemma A.2 (i), we can

show that there exists t̄ < t0 such that l(t) < l(t0) for all t ∈ [t̄, t0) and l(·) is strictly increasing over

the interval because otherwise l(t0) = λ would lie at the lower boundary of the range of l(·). Likewise,

by the non-decreasing and convex nature of l(·), we can show that l(t) > l(t0) for any t > t0 and l(·)
is strictly increasing over [t0,∞]. Thus, we are left with the task to demonstrate that t0 = 0 but this

follows from the fact that SRP
l (0) = 0 and that

SRP
l (0) = inf{t : E[l(−t)] ≤ l(t0)} = inf{t : l(−t) ≤ l(t0)} = −t0.

The “ if” part is relatively easier to prove since by definition l ∈ Lubsr satisfies the conditions needed

for equation to be the representation of a utility-based shortfall risk measure and since the convexity

of l implies that the risk measure ρ is a convex risk measure following (Weber 2006, Corollary 3.1).

Moreover, we also have that λ := l(0) lies in the interior of l(IR) based on Lemma A.2(iv). One can

finally verify that ρ(0) = inf{t : E[l(−t)]− l(0) ≤ 0} = 0 following Lemma A.2(iii).

We now turn to a useful property of normalized convex utility-based shortfall risk which will be of

use later. We encourage the reader to the proof of Proposition 4.113 in Föllmer and Schied (2016) for

the supporting arguments.

Lemma A.4 Let ρ(Z) be a normalized convex utility-based shortfall risk measure associated to some

loss function l ∈ Lubsr. Then for all Z ∈ Lp(Ω,B, P ), the risk ρ(Z) is equal to the unique solution t∗

of the equation EP [l(−Z − t)] = l(0).
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Finally, we conclude this subsection with a useful property of robust normalized convex risk mea-

sures.

Lemma A.5 Let ρi with i ∈ I be a family of normalized convex risk measures on Lp(Ω,B, P ) with

associated acceptance sets Ai and let ρ̄(X) := supi∈I ρi(X). Then,

ρ̄(X) = inf{m ∈ IR|X +m ∈ ∩i∈IAi}

Proof. Let ρ(X) := inf{t ∈ IR : X + t ∈ ∩i∈IAi}. We want to show that ρ(X) = ρ̄(X).

First, since {t : X + t ∈ ∩i∈IAi} ⊆ {t : X + t ∈ Ai} for all i ∈ I, we get that ρ(X) ≥ ρi(X) for all

i ∈ I. Hence, ρ(X) ≥ ρ̄(X) for all X ∈ Lp(Ω,B, P ).

To prove the converse inequality, we can first assume that there exists a tX ∈ IR for which ρ̄(X) <

tX . We have by translation invariance that ρi(X + tX) ≤ ρ̄(X + tX) < 0 for all i ∈ I, hence

X + tX ∈ ∩i∈IAi so that 0 ≥ ρ(X + tX) = ρ(X) − tX . That is, ρ(X) ≤ tX . Taking the infimum

over all tX > ρ̄(X), we get that ρ(X) ≤ ρ̄(X). The other case is one where ρ̄(X) = ∞. For this, it

must be that for all tX ∈ IR we have that ρ̄(X) > tX , which implies that there exists some i∗ ∈ I
that satisfies ρi∗(X) > tX . In turns, this indicates that X + tX /∈ Ai∗ and thus X + tX /∈ ∩i∈IAi.
We can therefore say that ρ(X) > tX which allows us to conclude, since this was true for any tX , that

ρ(X) = ρ̄(X) =∞.

A1.2.2 Proof of Proposition 1

Based on Lemma A.5, we have that for all R ⊆ Rubsr,

%R(Z) = sup
l∈LR

SRP
l (Z) = inf {t : EP [l(−Z − t)]− l(0) ≤ 0 , ∀ l ∈ LR} = SRP

LR(Z) ,

where LR := {l ∈ Lubsr |SRP
l ∈ R}. Hence, to prove our result, we only need to demonstrate that

Lubsr ∩ Lce(W) = LRubsr∩Rce(W) with LRubsr∩Rce(W) := {l ∈ Lubsr |SRP
l ∈ Rubsr ∩Rce(W)}.

We start by showing that Lubsr ∩Lce(W) ⊆ LRubsr∩Rce(W). Namely, given any l̄ ∈ Lubsr ∩Lce(W),

we show that ρl̄ := SRP
l̄ ∈ Rubsr ∩ Rce(W). It is easy to confirm that since l̄ ∈ Lubsr, ρl̄ is a

legitimate normalized convex utility-based shortfall risk measure. We hence are left with verifying

that ρl̄ ∈ Rce(W). To do so, we exploit the fact that ρl̄(w
+
k ) = −w+

k and ρl̄(w
−
k ) = −w−k , which

follows from the fact that ρ is normalized and translation invariant. Namely, by construction, we have

that for k = 1, . . . ,K

ρl̄(Wk) = SRP
l̄ (Wk) = inf{t : EP [l̄(−Wk − t)] ≤ l̄(0)}

= −w−k + inf{t′ : EP [l̄(−Wk + w−k − t
′)] ≤ l̄(0)}

≤ −w−k = ρl̄(w
−
k ) ,

where the last inequality holds because l̄ ∈ Lce so that EP [l̄(−Wk + w−k )] ≤ l̄(0). The latter implies

that t′ = 0 is a feasible solution to the minimization problem at the right hand side of the second

equality.

On the other hand, since l̄(·) ∈ L, it is strictly increasing over the positives, and essinf Wk ≤ w−k ≤
w+
k , then

EP [l̄(−Wk + w+
k )] ≥ l̄(0) =⇒ EP [l̄(−Wk + w+

k + ε)] > l̄(0) , ∀ ε > 0. (36)

To see this, we note that

Prob(−Wk +w+
k + ε/2 > 0) ≥ Prob(−Wk + essinf Wk + ε/2 > 0) = Prob(Wk < essinf Wk + ε/2) > 0 .
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Hence, there is a strictly positive probability that the random variable Yk := −Wk +w+
k + ε/2 gives a

strictly positive value. Moreover, since the loss function is strictly increasing in that region, we must

have

EP [l̄(−Wk + w+
k + ε)] > EP [l̄(−Wk + w+

k + ε/2)] ≥ EP [l̄(−Wk + w+
k )] ≥ l̄(0) .

Therefore we have

ρl̄(Wk) = inf{t ∈ IR : EP [l̄(−Wk − t)] ≤ l̄(0)}
= −w+

k + inf{t′ ∈ IR : EP [l̄(−Wk + w+
k − t

′)] ≤ l̄(0)}
≥ −w+

k = ρl̄(w
+
k ).

This shows that ρl̄ ∈ Rubsr ∩Rce(W).

Next, we show that Lubsr∩Lce(W) ⊇ LRubsr∩Rce(W). In other words, given any ρ̄ ∈ Rubsr∩Rce(W),

there exists a l̄ ∈ Lubsr ∩Lce(W) such that ρ̄ = SRP
l̄ . First, based on Lemma A.3, there is necessarily

a l̄ ∈ Lubsr such that such an equality holds. We are left with verifying that such an l̄ satisfies

E[l̄(−Wk + w−k )] ≤ l̄(0) and E[l̄(−Wk + w+
k )] ≥ l̄(0), for k = 1, · · · ,K .

Based again on the fact that ρ̄ is normalized and translation invariant,

ρ̄(Wk) ≤ ρ̄(w−k ) ⇒ ρ̄(Wk) ≤ −w−k .

Furthermore, we can exploit Lemma A.4 to show that

E[l̄(−Wk − ρ̄(Wk))] = l̄(0) ⇒ E[l̄(−Wk + w−k )] ≤ l̄(0) ,

since l̄(·) is non-decreasing. Likewise, since ρ̄(Wk) ≥ −w+
k , we must have again

E[l̄(−Wk − ρ̄(Wk))] = l̄(0) ⇒ E[l̄(−Wk + w+
k )] ≥ l̄(0) .

This completes our proof that l̄ ∈ Lubsr ∩Lce(W) and therefore that Lubsr ∩Lce(W) ⊇ LRubsr∩Rce(W).

2

A1.3 Proof of Proposition 2

Based on Bellini and Bignozzi (2015), it is well known that the class of utility-based shortfall risk

measures that are both convex and positive homogeneous, namely Rubsr ∩ Rcoh, coincides with
{SRP

l | l ∈ Lcoh}, where Lcoh := {l | ∃ τ ∈ [1/2, 1) , l(s) = max(τs, (1 − τ)s) , ∀ s ∈ IR}. Hence,

we have that LRubsr∩Rcoh = Lcoh and by a similar argument as in the proof of Proposition 1 we can

also show that LRubsr∩Rcoh∩Rce(W) = Lcoh,ce := Lubsr ∩ Lcoh ∩ Lce(W).

Given that the loss functions in Lcoh are parametrized by τ , it is possible to simplify the represen-

tation of Lcoh,ce using the following argument. For any l ∈ Lcoh,ce we have that

EP [l(−Wk + w−k )] ≤ l(0) ⇔ EP [max(τ(−Wk + w−k ), (1− τ)(−Wk + w−k ))] ≤ 0

⇔ EP [τ(−Wk + w−k )+ − (1− τ)(Wk − w−k )+] ≤ 0

⇔ τ(EP [(−Wk + w−k )+ + (Wk − w−k )+] ≤ EP [(Wk − w−k )+]

⇔ τ ≤ bk := EP [(Wk − w−k )+]/EP [|Wk − w−k |].

Likewise

EP [l(−Wk + w+
k )] ≥ l(0) ⇔ EP [max(τ(−Wk + w+

k ), (1− τ)(−Wk + w+
k ))] ≥ 0

⇔ EP [τ(−Wk + w+
k )+ − (1− τ)(Wk − w+

k )+] ≥ 0

⇔ τ ≥ ak := EP [(Wk − w+
k )+]/EP [|Wk − w+

k |] .
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Letting a := max ak and b := min bk, two cases can occur. If a > b, then one can directly conclude

that Lcoh,ce is empty. Otherwise, Lcoh,ce can be characterized as

Lcoh,ce := {l | ∃ τ ∈ [1/2, 1) ∩ [a, b] , l(s) = max(τs, (1− τ)s) , ∀ s ∈ IR}.

It is finally easy to verify that for any Z ∈ Lp and any t ∈ IR, we have that

sup
l∈Lcoh,ce

E[l(−Z−t)]−l(0)= sup
τ∈[1/2,1)∩[a, b]

E[τ(−Z−t)+−(1−τ)(Z+t)+]=EP [b(−Z−t)+−(1−b)(Z+t)+],

because the function f(τ) := E[τ(−Z − t)+ − (1 − τ)(Z + t)+] is increasing in τ , while b ≤ 1 since

(Wk − w−k )+ ≤ |Wk − w−k |. 2

A1.4 Proof of Proposition 3

The treatment of Rbnd(ε) is analogous to the treatment of Rce(W) considering that for each M ≥ 1,

we are imposing that ρ(esssup(ZM )) = ρ(0) ≤ ρ(ZεM ) ≤ ρ(−1). Hence, following similar arguments as

in the proof of Proposition 1, we get that:

LRubsr∩Rce(W)∩Rbnd(ε) = Lubsr ∩ Lce(W) ∩
{
l

∣∣∣∣ ε(z)l(z − 1) + (1− ε(z))l(−1) ≤ l(0)
ε(z)l(z) + (1− ε(z))l(0) ≥ l(0)

, ∀ z ≥ 1

}
.

Yet, one quickly realizes that the second set of constraints in the set defined on the right is redundant

since l(·) is non-decreasing. We can therefore conclude that LRubsr∩Rce(W)∩Rbnd(ε) = Lubsr∩Lce(W)∩
Lbnd.

Furthermore, after replacing z1 := z − 1 in the definition of Lbnd, we get that all l ∈ Lubsr ∩
Lce(W) ∩ Lbnd should satisfy ε(z1 + 1)l(z1) + (1− ε(z1 + 1))l(−1) ≤ l(0),∀z1 ≥ 0, which is equivalent

to (13). In what follows, we prove (14) also holds for such l. By exploiting the convexity of l and (13),

we obtain

l(0) + (l(0)− l(−1))z ≤ l(z) ≤ l(0) +
1− ε(z + 1)

ε(z + 1)
(l(0)− l(−1)),∀z ≥ 0. (37)

Thus for any z2 > z1 ≥ 0,

l(z2)− l(z1)

z2 − z1
≤ 1

z2 − z1

[
l(0) +

1− ε(z2 + 1)

ε(z2 + 1)
(l(0)− l(−1))− l(z1)

]
≤ 1

z2 − z1

[
1− ε(z2 + 1)

ε(z2 + 1)
(l(0)− l(−1))− (l(0)− l(−1))z1

]
=

1

z2 − z1

(
1− ε(z2 + 1)

ε(z2 + 1)
− z1

)
(l(0)− l(−1)),

which gives rise to

l′+(z1) ≤ inf
z>z1

1

z − z1

(
1− ε(z + 1)

ε(z + 1)
− z1

)
(l(0)− l(−1)) = φ(z1)(l(0)− l(−1)).

This completes our proof. 2

Appendix A2 Proofs of Section 3

A2.1 Proof of Proposition 4

We proceed the proof in two steps. First, we identify a linear program which represents the constraint

supl∈Lubsr∩Lce(W) EP [l(c(x, ξ) − t) − l(0)] ≤ 0. Second, we derive the dual formulation for this linear

program and introduce it in the representation of (PRSR-Opt) problem that takes the form:

min
x∈X,t

t

s.t. sup
l∈Lubsr∩Lce(W)

EP [l(c(x, ξ)− t)− l(0)] ≤ 0. (38)
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Observe first that Lubsr∩Lce(W) is a cone, thus supl∈Lubsr∩Lce(W) EP [l(c(x, ξ)−t)−l(0)] =∞ whenever

there exists a l ∈ Lce(W) such that EP [l(c(x, ξ) − t) − l(0)] > 0. This motivates us to consider an

equivalent representation of the inequality constraint. To this end, we consider the set of loss functions:

Lce(W)
′

=

{
l :

l(y′) ≥ l(y) + (y′ − y)f(y), ∀ (y, y′) ∈ IR× IR, l(0) = 0, l(−1) = −1, f(y) ≥ 0 , ∀ y ∈ IR
EP [l(−Wk + w−k )] ≤ l(0),EP [l(−Wk + w+

k )] ≥ l(0) , ∀ k ∈ {1, 2, . . . ,K}

}
and show that{
t : sup

l∈Lubsr∩Lce(W)

EP [l(c(x, ξ)− t)− l(0)] ≤ 0

}
=

{
t : sup

l∈Lce(W)′
EP [l(c(x, ξ)− t)− l(0)] ≤ 0

}
. (39)

To see this, notice that since Lce(W)
′ ⊂ Lubsr ∩Lce(W), then the set at the left-hand side is contained

in that of the right-hand side. On the other hand, for any l ∈ Lubsr ∩Lce(W), if we subtract it by l(0)

and scale it by (l(0)− l(−1))−1, then we obtain a function l̃ ∈ Lce(W)
′

with the following properties:

EP [l̃(c(x, ξ)− t)− l̃(0)] ≤ 0 ⇔ EP [
l(c(x, ξ)− t)− l(0)

l(0)− l(−1)
− l(0)− l(0)

l(0)− l(−1)
] ≤ 0

⇔ EP [l(c(x, ξ)− t)− l(0)] ≤ 0,

which means that the right-hand side of equation (39) is a subset of the left-hand side. The relation-

ship (39) allows us to replace Lubsr ∩ Lce(W) with Lce(W)
′

in the constraint of problem (38).

Step 1. We start by giving an infinite dimensional linear programming representation for the

right-hand side of (39). First, letting Ψ(x, t) := supl∈Lce(W)′ EP [l(c(x, ξ) − t) − l(0)], we can expand

the Ψ operator to

Ψ(x, t) = sup
l:IR→IR,f :IR→IR

N∑
i=1

pil(c(x, ξi)− t)− l(0) (40a)

s.t. l(y′) ≥ l(y) + (y′ − y)f(y) , ∀ (y, y′) ∈ IR× IR, (40b)

l(0) = 0, (40c)

l(−1) = −1, (40d)

f(y) ≥ 0 , ∀ y ∈ IR, (40e)∑
{y:P (−Wk+w−k =y)>0}

P (−Wk + w−k = y)l(y) ≤ l(0), (40f)

∑
{y:P (−Wk+w+

k =y)>0}

P (−Wk + w+
k = y)l(y) ≥ l(0). (40g)

By exploiting the first and fourth constraints, we may conclude that

l(y) = sup
v≥0,w:vy′+w≤l(y′) , ∀ y′∈IR

vy + w.

Moreover, since only its value at ξi with positive probability affects the objective in the problem above,

we may rewrite the optimization problem equivalently as

Ψ(x, t) = sup
v≥0,w,l:IR→IR,f :IR→IR

N∑
i=1

pi[vi(c(x, ξi)− t) + wi]− l(0) (41a)

s.t. viy + wi ≤ l(y) , ∀ y ∈ IR,∀i, (41b)

(40b)− (40g),

where v ∈ IRN and w ∈ IRN . Furthermore, we can demonstrate that

Ψ(x, t) ≤ 0 ⇔ Ψ̃(x, t) ≤ 0 ,
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where

Ψ̃(x, t) := sup
v≥0,w,l:IR→IR,f :IR→IR

∑
i

pi[vi(c(x, ξi)− t) + wi]− l(0) (42a)

s.t. viy + wi ≤ l(y) , ∀ y ∈ Y,∀i = 1, · · · , N, (42b)

l(y′) ≥ l(y) + (y′ − y)f(y) , ∀ (y, y′) ∈ Y × Y, (42c)

f(y) ≥ 0 , ∀ y ∈ Y, (42d)

(40c)− (40d), (40f)− (40g)

with Y :=
⋃K
k=1 supp(−Wk + w−k ) ∪ supp(−Wk + w+

k ) ∪ {0} ∪ {−1}. A clear benefit of the latter

formulation is that it contains a finite number of constraints. We will further show that the decision

space can be reduced to finite dimensional so that l(y) and f(y) are only defined on a finite number

of points y ∈ Y.

We start by showing that Ψ̃(x, t) ≤ 0 ⇒ Ψ(x, t) ≤ 0. This follows straightforwardly from the

fact that the feasible set of problem (41) is smaller than that of problem (42) and consequently

Ψ(x, t) ≤ Ψ̃(x, t).

To see the reverse implication Ψ(x, t) ≤ 0 ⇒ Ψ̃(x, t) ≤ 0, it suffices to show that Ψ̃(x, t) > 0 ⇒
Ψ(x, t) > 0. In other words, if Ψ̃(x, t) > 0, there is a loss function, denoted by l̂, such that l̂ is

feasible in problem (41) and it achieves a strictly positive objective value. Let (v̄, w̄, l̄, f̄) be any tuplet

that defines a feasible solution of problem (42) which achieves a strictly positive objective value. We

construct l̂ as

l̂(y) :=

{
supv,w:v≥0, vy′+w≤l̄(y′) ∀ y′∈Y vy + w if y ≤ y∗,

max{maxi v̄iy + w̄i , v̂y + ŵ} otherwise,
(43)

where y∗ := maxy∈Y y, v̂ := (l̄(y∗)− l̄(y∗∗))/(y∗−y∗∗) and ŵ := l̄(y∗), with y∗∗ := max{y∈Y:y<y∗} y. In

words, l̂(y) is the convex envelope of the points {(y, l̄(y)}y∈Y in the region where y ≤ y∗, while outside

the region, it is the maximum between the linear extrapolation of this envelope based on the segment

between y∗∗ and y∗, which ensures continuity at y∗, and the piecewise linear function defined by the

supporting planes parameterized by (v̄i, w̄i).

Note that the function l̂ is convex, non-decreasing, and achieves the same value as l̄(y) when y ∈ Y.

This implies that constraints (40b)–(40g) hold, for some non-negative sub-derivative function f̂ . We

are left with the task to check that the objective value of (40) gives a strictly positive value. In

particular,

N∑
i=1

pi l̂(c(x, ξi)− t)− l̂(0) =
∑

i:c(x,ξi)−t≤y∗
pi l̂(c(x, ξi)− t) +

∑
i:c(x,ξi)−t>y∗

pi l̂(c(x, ξi)− t)− l̄(0)

≥
∑
i

pi max
i′
{v̄i′(c(x, ξi)− t) + w̄i′} − l̄(0)

≥
∑
i

pi{v̄i(c(x, ξi)− t) + w̄i} − l̄(0) ,

where we exploit the fact that when c(x, ξi)− t ≤ y∗, by construction

l̂(c(x, ξi)− t) = sup
v,w:v≥0, vy′+w≤l̄(y′) ∀ y′∈Y

v(c(x, ξi)− t) + w ≥ max
i′
{v̄i′(c(x, ξi)− t) + w̄i′}

while when c(x, ξi)− t > y∗, again by construction l̂(c(x, ξi)− t) ≥ maxi′{v̄i′(c(x, ξi)− t) + w̄i′}. This

allows us to conclude that if Ψ̃(x, t) > 0 then Ψ(x, t) > 0 meaning that Ψ(x, t) ≤ 0⇒ Ψ̃(x, t) ≤ 0. We

complete this first step by arguing that since in problem (42), the decision functions l : IR → IR and

f : IR→ IR are only evaluated at y ∈ Y, we can reduce the representation of Ψ̃(x, t) to

Ψ̃(x, t) = sup
v≥0,w,l:Y→IR,f :Y→IR

∑
i

pi[vi(c(x, ξi)− t) + wi]− l(0)

s.t. (42b)− (42d), (40c)− (40d), (40f)− (40g).
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Step 2. Recall that Y includes the union of the support set of all random variables −Wk + w−k
and −Wk +w+

k for k = 1, . . . ,K as well as 0 and −1. For the simplicity of notation, let M denote the

size of Y, and yj the j-th smallest element in Y. Moreover, let j0 and j− be the indexes in this list

such that yj0 = 0 and yj− = −1. Let αj := l(yj) and βj := f(yj) for j = 1, . . . ,M . Then Φ̃(x, t) can

be rewritten as

Ψ̃(x, t) = sup
v≥0,w,α,β

N∑
i=1

pi[vi(c(x, ξi)− t) + wi]

s.t. viyj + wi ≤ αj , ∀ j = 1, . . . ,M, i = 1, . . . , N,

αm ≥ αj + (ym − yj)βj , ∀m, j = 1, . . . ,M,

αj0 = 0,

αj− = −1,

βj ≥ 0 , ∀ j = 1, . . . ,M,

M∑
j=1

P (−Wk + w−k = yj)αj ≤ 0, k = 1, . . . ,K,

M∑
j=1

P (−Wk + w+
k = yj)αj ≥ 0, k = 1, . . . ,K.

By introducing the dual variables u ∈ IRN×M , γ ∈ IRM×M , ν0, ν− ∈ IR, λ ∈ IRM , and η(1), η(2) ∈ IRK ,

we obtain that the dual formulation of the problem above takes the form

min
u,γ,ν0,ν−,λ,η(1),η(2)

ν−

s.t. pi(c(x, ξi)− t)−
M∑
j=1

uijyj ≤ 0, ∀ i = 1, . . . , N,

pi −
M∑
j=1

uij = 0, ∀ i = 1, . . . , N,

N∑
i=1

uij +

M∑
m=1

γjm −
M∑
m=1

γmj −
K∑
k=1

η
(1)
k P (−Wk + w−k = yj)

+

K∑
k=1

η
(2)
k P (−Wk + w+

k = yj) = 0, j = {1, . . . ,M} \ {j0, j−},

N∑
i=1

uij− +

M∑
m=1

γj−m −
M∑
m=1

γmj− −
K∑
k=1

η
(1)
k P (−Wk + w−k = yj−)

+

K∑
k=1

η
(2)
k P (−Wk + w+

k = yj−) = −ν−

N∑
i=1

uij0 +

M∑
m=1

γj0m −
M∑
m=1

γmj0 −
K∑
k=1

η
(1)
k P (−Wk + w−k = yj0)

+

K∑
k=1

η
(2)
k P (−Wk + w+

k = yj0) = ν0,

λj −
M∑
m=1

γmj(ym − yj) = 0 , ∀ j = 1, . . . ,M,

uij ≥ 0, γmj ≥ 0, λ ≥ 0, η(1) ≥ 0, η(2) ≥ 0, i = 1, . . . , N,m, j = 1, . . . ,M.

Realizing that ν0 and ν− both only appear in one of the constraints allows us to simplify the model

and reintegrate it in the (PRSR-Opt). The proof is complete. 2
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A2.2 Proof of Proposition 5

We can apply similar analysis as in the proof of Proposition 4 for Φ(x, t) := supl∈Lce(W)′∩Lbnd
EP [l(c(x, ξ)− t)− l(0)] which appears in the (PRSR-Opt) problem presented as :

min
x∈X,t

t s.t. Φ(x, t) ≤ 0 ,

which can be reduced to

min
x∈X,t∈[t−, t+]

t s.t. Φ(x, t) ≤ 0 , (44)

since for any x ∈ X SRP
L (−c(x, ξ)) ≤ SRP

L (−maxx∈X maxi c(x, ξi)) = t+ and SRP
L (−c(x, ξ)) ≥

SRP
L (−minx∈X mini c(x, ξi)) = t−. Note that we can exploit once more the fact that for all x ∈ X and

t ∈ [t−, t+]:{
t : sup
l∈Lubsr∩Lce(W)∩Lbnd

EP [l(c(x, ξ)− t)− l(0)]≤0

}
=

{
t : sup
l∈Lce(W)′∩Lbnd

EP [l(c(x, ξ)− t)− l(0)]≤0

}
.

When expanding the operator Φ(x, t), we now obtain

Φ(x, t) = sup
l:IR→IR,f :IR→IR

N∑
i=1

pil(c(x, ξi)− t)− l(0) (45a)

s.t. l(y) ≤ ε(y + 1)−1 − 1 , ∀ y ≥ 0, (45b)

(40b)− (40g),

where we were able to simply replace l(0) = 0 and l(−1) = −1 in constraint (12). Using the fact that

l is a convex function, we once again replace the objective function to obtain

Φ(x, t) = sup
v≥0,w,l:IR→IR,f :IR→IR

∑
i

pi[vi(c(x, ξi)− t) + wi]− l(0) (46a)

s.t. viy + wi ≤ l(y) , ∀ y ∈ IR,∀i, (46b)

l(y) ≤ ε(y + 1)−1 − 1 , ∀ y ≥ 0, (46c)

(40b)− (40g),

Moreover, one can establish that the following two constraints can be added to problem (46) without

affecting the supremum value:

vi ≤ f(y∗) , ∀ i, (47a)

l(y∗) + f(y∗)(y − y∗) ≤ ε(y + 1)−1 − 1 , ∀ y ∈ Y ′ε∩]y∗,∞[ . (47b)

Namely, constraint (47b) is simply redundant given that for all y ≥ 0

l(y∗) + f(y∗)(y − y∗) ≤ l(y) ≤ ε(y + 1)−1 − 1 ,

based on constraints (40c) and (46c). On the other hand, while constraint (47a) is not redundant,

one can show that if there is an i for which vi ≥ f(y∗) then the objective value can be improved by

replacing v′i := f(y∗) and w′i := l(y∗)− y∗f(y∗). In particular,

v′i(c(x, ξi)− t) + w′i = l(y∗) + f(y∗)(c(x, ξi)− t− y∗) ≥ viy
∗ + wi + f(y∗)(c(x, ξi)− t− y∗)

≥ viy
∗ + wi + vi(c(x, ξi)− t− y∗) = vi(c(x, ξi)− t) + wi ,

where we first used the fact that l(y∗) ≥ viy∗+wi, then the fact that both vi ≥ f(y∗) and c(x, ξi)− t ≤
y∗. Similarly as in the previous proof, we will show that Φ(x, t) ≤ 0 if and only if Φ̃(x, t) ≤ 0 with

Φ̃(x, t) := sup
v≥0,w,l:Y′→IR,f :Y′→IR

∑
i

pi[vi(c(x, ξi)− t) + wi]− l(0) (48a)
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s.t. viy + wi ≤ l(y) , ∀ y ∈ Y ′,∀i, (48b)

vi ≤ f(y∗) , ∀ i, (48c)

l(y′) ≥ l(y) + (y′ − y)f(y) , ∀ (y, y′) ∈ Y ′ × Y ′, (48d)

l(y) ≤ ε(y + 1)−1 − 1 , ∀ y ∈ Y ′ ∩ IR+, (48e)

l(y∗) + f(y∗)(y − y∗) ≤ ε(y + 1)−1 − 1 , ∀ y ∈ Y ′ε ∩ (y∗,∞), (48f)

f(y) ≥ 0 , ∀ y ∈ Y ′, (48g)

(40c)− (40d), (40f)− (40g)

where by definition y∗ = maxy∈Y′ y. While Φ̃(x, t) ≤ 0 ⇒ Φ(x, t) ≤ 0 is again straightforward, the

converse requires a slightly modified argument. Indeed, we argue again that if Φ̃(x, t) > 0 then there

must exist an (v̄, w̄, l̄, f̄) that satisfy the constraints described in problem (48) and one can therefore

construct a loss function l̂ according to

l̂(y) :=

{
supv,w:v≥0, vy′+w≤l̄(y′) ∀ y′∈Y′ vy + w if y ≤ y∗,

l̄(y∗) + f̄(y∗)(y − y∗) otherwise .
(49)

Given that once again l̂(y) is convex, non-decreasing and achieves the same value as l̄(y) when y ∈ Y ′,
it necessarily satisfies constraints (40b)-(40g) for some non-negative sub-derivative function f̂(y). We

can also verify as in the proof of Proposition 4 that it returns a strictly positive objective value.

Namely,

N∑
i=1

pi l̂(c(x, ξi)− t)− l̂(0) =
∑

i:c(x,ξi)−t≤y∗
pi l̂(c(x, ξi)− t) +

∑
i:c(x,ξi)−t>y∗

pi l̂(c(x, ξi)− t)− l̄(0)

≥
∑
i

pi max
i′
{v̄i′(c(x, ξi)− t) + w̄i′} − l̄(0)

≥
∑
i

piv̄i(c(x, ξi)− t) + w̄i − l̄(0) ,

where for all i such that c(x, ξi)− t ≤ y∗ once again by construction we have that

l̂(c(x, ξi)− t) = sup
v,w:v≥0, vy′+w≤l̄(y′) ∀ y′∈Y′

v(c(x, ξi)− t) + w ≥ max
i′
{v̄i′(c(x, ξi)− t) + w̄i′}

while for all i such that c(x, ξi)− t > y∗ we exploit the following:

l̂(c(x, ξi)− t) = l̄(y∗)+ f̄(y∗)(c(x, ξi)− t−y∗) ≥ v̄iy
∗+ w̄i+ v̄i(c(x, ξi)− t−y∗) = v̄i(c(x, ξi)− t)+ w̄i .

Before concluding that Φ̃(x, t) > 0 ⇒ Φ(x, t) > 0, we must confirm that l̂(y) also satisfies con-

straint (45b). First, in the case that 0 ≤ y ≤ y∗, then either y ∈ Y ′ and (45b) is satisfied since

l̂(y) = l̄(y) ≤ ε(y + 1)−1 − 1, or by construction

l̂(y) = (1− θ)l̄(y−) + θl̄(y+) ≤ (1− θ)(ε(y− + 1)−1 − 1) + θ(ε(y+ + 1)−1 − 1) = ε(y + 1)−1 − 1

with y− := sup{y′ ∈ Y ′ : y′ < y}, y+ := inf{y′ ∈ Y ′ : y′ > y}, and θ := (y − y−)/(y+ − y−) ∈]0, 1[,

and where the last equality comes from the fact that ε(y + 1)−1 − 1 is linear on the interval [y−, y+].

Secondly, we should confirm the same fact for y > y∗. Indeed, a similar argument can be used

here. By construction, we have that

l̂(y) = l̄(y∗) + f̄(y∗)(y − y∗)
= (1− θ)(l̄(y∗) + f̄(y∗)(y− − y∗)) + θ(l̄(y∗) + f̄(y∗)(y+ − y∗))
≤ (1− θ)(ε(y− + 1)−1 − 1) + θ(ε(y+ + 1)−1 − 1) = ε(y + 1)−1 − 1 ,

with y− := sup{y′ ∈ Y ′ε ∩ [y∗, ∞) : y′ < y}, y+ := inf{y′ ∈ Y ′ε ∩ [y∗, ∞) : y′ > y}, and θ as before.

Hence, we can conclude that constraint (45b) is satisfied by l̂(y).
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To complete this proof, one simply needs to confirm (18) by strong duality for problem (48). Recall

that Y ′ includes the union of the set Y defined in Proposition 4, {y∗, y∗} and {Y ′ε ∩ [y∗, y
∗]}. For the

simplicity of notations, let M denote the size of Y ′, and yj the j−th smallest element in Y ′. Moreover,

let j0 and j− be the indexes in this list such that yj0 = 0, yj− = −1. Then y∗ = y1, y∗ = yM ,

y1 < y2 < · · · < yj− = −1 < · · · < yj0 = 0 < · · · < yM , and Y ′ ∩ IR+ = {yj0+1, . . . , yM}. Let

Y ′ε ∩ (y∗,∞) := {yj}j∈I with I := {M + 1,M + 2, . . .} the index set of the ordered version of this

list. Finally, we let αj := l(yj) and βj := f(yj) for j = 1, . . . ,M , and consider zj := ε(yj + 1)−1 for

j = j0 + 1, j0 + 2, . . .. Using this new notation, we obtain that

Φ̃(x, t) = sup
v≥0,w,α,β

∑
i

pi[vi(c(x, ξi)− t) + wi]

s.t. viyj + wi ≤ αj , ∀ i = 1, . . . , N, j = 1, . . . ,M,

vi ≤ βM , ∀ i = 1, . . . , N,

αm ≥ αj + (ym − yj)βj , ∀m, j = 1, . . . ,M

αj ≤ zj − 1 , ∀ j = j0 + 1, . . . ,M,

αM + βM (yj − yM ) ≤ zj − 1,∀ j ∈ I,
αj0 = 0

αj− = −1

βj ≥ 0 , ∀ j = 1, . . . ,M

M∑
j=1

P (−Wk + w−k = yj)αj ≤ 0, k = 1, . . . ,K,

M∑
j=1

P (−Wk + w+
k = yj)αj ≥ 0, k = 1, . . . ,K.

By introducing the dual variables u ∈ IRN×M , σ ∈ IRN , γ ∈ IRM×M , ρ ∈ IRM−j0 , θ ∈ IR(I), v0 ∈ IR,

v− ∈ IR, λ ∈ IRM , η(1) ∈ IRK and η(2) ∈ IRK , we can derive the dual formulation of the above linear

program:

min
u,σ,γ,ρ,θ,ν0,ν−,λ,η(1),η(2)

ν− +
∑
j∈I

θj−M (zj − 1) +

M∑
j=j0+1

ρj−j0(zj − 1)

s.t. pi(c(x, ξi)− t)−
M∑
j=1

uijyj − σi ≤ 0, ∀ i = 1, . . . , N,

pi −
M∑
j=1

uij = 0, ∀ i = 1, . . . , N,

N∑
i=1

uij +

M∑
m=1

γjm −
M∑
m=1

γmj −
K∑
k=1

η
(1)
k P (−Wk + w−k = yj)

+

K∑
k=1

η
(2)
k P (−Wk + w+

k = yj) = 0, j = {1, . . . , j0 − 1} \ {j−},

N∑
i=1

uij− +

M∑
m=1

γj−m −
M∑
m=1

γmj− −
K∑
k=1

η
(1)
k P (−Wk + w−k = yj−)

+

K∑
k=1

η
(2)
k P (−Wk + w+

k = yj−) = −ν−

N∑
i=1

uis +

M∑
m=1

γsm −
M∑
m=1

γms −
K∑
k=1

η
(1)
k P (−Wk + w−k = yj0)
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+

K∑
k=1

η
(2)
k P (−Wk + w+

k = yj0) = ν0,

N∑
i=1

uij +

M∑
m=1

γjm −
M∑
m=1

γmj −
K∑
k=1

η
(1)
k P (−Wk + w−k = yj)

+

K∑
k=1

η
(2)
k P (−Wk + w+

k = yj) = −ρj−j0 ,∀ j = j0 + 1, . . . ,M − 1,

N∑
i=1

uiM +

M∑
m=1

γMm −
M∑
m=1

γmM −
K∑
k=1

η
(1)
k P (−Wk + w−k = yM )

+

K∑
k=1

η
(2)
k P (−Wk + w+

k = yM ) = −ρM−j0 −
∑
j∈I

θj−M ,

λj −
M∑
m=1

γmj(ym − yj) = 0 , ∀ j = 1, . . . ,M − 1,

λM −
M∑
m=1

γmM (ym − yM ) =
∑
j∈I

θj−M (yj − yM )−
N∑
i=1

σi,

uij ≥ 0, γmj ≥ 0,∀ i = 1, . . . , N,m, j = 1, . . . ,M,

σ ≥ 0, ρ ≥ 0, θ ≥ 0, λ ≥ 0, η(1) ≥ 0, η(2) ≥ 0.

Realizing that ν0, ν−, and λ all only appear in only one of the constraints (besides λ ≥ 0) allows us to

simplify the model and reintegrate it in the (PRSR-Opt) problem (44). 2

A2.3 Proof of Proposition 6

Letting ψ(y) := ε(y + 1)−1 − 1− α− β(y − y∗) and ψ̄ := ε̄(y + 1)−1 − 1− α− β(y − y∗), we first look

at the case where ȳ∗α,β ∈ Y ′ε, then bȳ∗α,βc = dȳ∗α,βe = ȳ∗α,β . Necessarily, this implies that

ψ(ȳ∗α,β) = ψ̄(ȳ∗α,β) ≤ min
y∈Y′ε∩]y∗,∞[

ψ̄(y) ≤ min
y∈Y′ε∩]y∗,∞[

ψ(y) .

Second, if ȳ∗α,β /∈ Y ′ε, Y ′ε ∩ (y∗, ȳ∗α,β) 6= ∅, and ψ(bȳ∗α,βc) ≤ ψ(dȳ∗α,βe), then since ψ(y) is linear between

bȳ∗α,βc and dȳ∗α,βe, we must have that for all y ≥ bȳ∗α,βc:

ψ(y) ≥ ψ(bȳ∗α,βc) +
ψ(dȳ∗α,βe)− ψ(bȳ∗α,βc)
dȳ∗α,βe − bȳ∗α,βc

(y − bȳ∗α,βc) ≥ ψ(bȳ∗α,βc) .

On the other hand, for all y ≤ bȳ∗α,βc:

ψ(y) ≥ ψ̄(y) ≥ ψ̄(bȳ∗α,βc) +
ψ̄(ȳ∗α,β)− ψ̄(bȳ∗α,βc)

ȳ∗α,β − bȳ∗α,βc
(y − bȳ∗α,βc) ≥ ψ̄(bȳ∗α,βc) = ψ(bȳ∗α,βc) .

The third case describes a situation where ȳ∗α,β /∈ Y ′ε, Y ′ε ∩ (y∗, ȳ∗α,β) 6= ∅, and ψ(bȳ∗α,βc) ≥ ψ(dȳ∗α,βe)
yet the conclusion is entirely analogous to the second case that was just analysed.

Finally, if Y ′ε ∩ (y∗, ȳ∗α,β) = ∅, i.e., ȳ∗α,β ∈ (y∗, dȳ∗α,βe), we have for all y ≥ dȳ∗α,βe:

ψ(y) ≥ ψ̄(y) ≥ ψ̄(dȳ∗α,βe) +
ψ̄(ȳ∗α,β)− ψ̄(dȳ∗α,βe)

ȳ∗α,β − dȳ∗α,βe
(y − dȳ∗α,βe) ≥ ψ̄(dȳ∗α,βe) = ψ(dȳ∗α,βe) .

This completes our proof. 2
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Appendix A3 Proofs of Section 4

A3.1 Proof of Lemma 1

Under Assumption 2 (a), for any ε > 0, there exists a compact set Ξε ⊂ Ξ such that (26) holds. Let

Mε := supx∈X,ξ∈Ξε |g(x, ξ)| and WMε be defined as in (29). Then WMε is relatively compact. Let

r ≥ 2 supφ∈WMε
supz∈[−Mε,Mε] |φ(z)|. Then Ξε ⊂ {ξ ∈ Ξ : |φ(g(x, ξ))| < r}, ∀x ∈ X,φ ∈ W and hence

{ξ ∈ Ξ : |φ(g(x, ξ))| ≥ r} ⊂ Ξ\Ξε, ∀x ∈ X,φ ∈ W. Under condition (26),

sup
N,x∈X,φ∈W

∫
{ξ∈Ξ:|φ(g(x,ξ))|≥r}

|φ(g(x, ξ))|PN (dξ) ≤ sup
N,x∈X,φ∈W

∫
Ξ\Ξε

|φ(g(x, ξ))|PN (dξ) ≤ ε.

Since P is assumed to be nonatomic, the Lebesgue measure of the set of points where the indica-

tor function 1Ξ\Ξε(ξ) is discontinuous is zero. Together with the above uniform integrability condi-

tion, this enables us to claim through (Guo et al. 2017, Lemma 2.1) that for any x ∈ X,φ ∈ W,

EP [φ(g(x, ξ)1Ξ\Ξε(ξ))] = limN→∞ EPN [φ(g(x, ξ)1Ξ\Ξε(ξ))], together with Assumption 2 (a), this im-

plies supx∈X,φ∈W EP [|φ(g(x, ξ)1Ξ\Ξε(ξ))|] ≤ ε. By the definition of ΦN (x) and Φ(x),

|ΦN (x)− Φ(x)| = | sup
φ∈W

EPN [φ(g(x, ξ))]− sup
φ∈W

EP [φ(g(x, ξ))]|

≤ | sup
φ∈W

EPN [φ(g(x, ξ)1Ξε(ξ))]− sup
φ∈W

EP [φ(g(x, ξ)1Ξε(ξ))]|+ 2ε

= | sup
φ∈WMε

EPN [φ(g(x, ξ)1Ξε(ξ))]− sup
φ∈WMε

EP [φ(g(x, ξ)1Ξε(ξ))]|+ 2ε

= | sup
k∈K

sup
φ∈(WMε )εk

EPN [φ(g(x, ξ)1Ξε(ξ))]− sup
k∈K

sup
φ∈(WMε )εk

EP [φ(g(x, ξ)1Ξε(ξ))]|+ 2ε

≤ sup
k∈K

sup
φ∈(WMε )εk

|EPN [φ(g(x, ξ)1Ξε(ξ))− φk(g(x, ξ)1Ξε(ξ)) + φk(g(x, ξ)1Ξε(ξ))]

−EP [φ(g(x, ξ)1Ξε(ξ))− φk(g(x, ξ)1Ξε(ξ)) + φk(g(x, ξ)1Ξε(ξ))]|+ 2ε

≤ 4ε+ sup
k∈K
|EPN [φk(g(x, ξ)1Ξε(ξ))]− EP [φk(g(x, ξ)1Ξε(ξ))]|.

For any δ > 0, we may set ε sufficiently small such that ε < δ/4. Under Assumption 2 (b) and (c), for

any φ ∈ WMε
,

|φ(g(x, ξ)1Ξε(ξ))− φ(g(x′, ξ)1Ξε(ξ))| ≤ κM |g(x, ξ)1Ξε(ξ)− g(x′, ξ)1Ξε(ξ)|
≤ κMr(ξ)1Ξε(ξ)|x− x′|ν , ∀ξ ∈ Ξ.

It follows from (Shapiro and Xu 2008, Theorem 5.1) that for each k there exist positive constants

C(ε, δ, φk) and β(ε, δ, φk) such that

Prob

(
sup
x∈X
|EPN [φk(g(x, ξ)1Ξε(ξ))]− EP [φk(g(x, ξ)1Ξε(ξ))]| ≥ δ − 4ε

)
≤ C(ε, δ, φk)e−Nβ(ε,δ,φk).

Hence, we have

Prob

(
sup
x∈X
|ΦN (x)− Φ(x)| ≥ δ

)
≤ Prob

(
sup
x∈X

sup
k∈K
|EPN [φk(g(x, ξ)1Ξε(ξ))]− EP [φk(g(x, ξ)1Ξε(ξ))]| ≥ δ − 4ε

)
= Prob

(
sup
k∈K

sup
x∈X
|EPN [φk(g(x, ξ)1Ξε(ξ))]− EP [φk(g(x, ξ)1Ξε(ξ))]| ≥ δ − 4ε

)
≤

∑
k∈K

Prob

(
sup
x∈X
|EPN [φk(g(x, ξ)1Ξε(ξ))]− EP [φk(g(x, ξ)1Ξε(ξ))]| ≥ δ − 4ε

)
≤

∑
k∈K

C(ε, δ, φk)e−Nβ(ε,δ,φk),

which implies (32). 2
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A3.2 Proof of Corollary 1

The result follows from Lemma 1 by setting M := supx∈X,ξ∈Ξ |g(x, ξ)| and Ξε = Ξ. 2

A3.3 Proof of Theorem 1

Observe that |vN (x, t) − v(x, t)| ≤ supl∈L |EPN [l(c(x, ξ) − t)] − EP [l(c(x, ξ) − t)]|. Following similar

analysis as in Lemma 1, for any δ > 0, there exist positive constants ε, C(ε, δ) and β(ε, δ), independent

of N such that

Prob

(
sup

x∈X,t∈T
sup
l∈L
|EPN [l(c(x, ξ)− t)]− EP [l(c(x, ξ)− t)]| ≥ δ

)
≤ C(ε, δ)e−Nβ(ε,δ)

when N is sufficiently large. 2

A3.4 Proof of Theorem 2

Part (i). Let t∗ = ϑ. Following the discussions immediately after Assumption 1, we know that t∗ is

finite and t∗ ≤ t0. Let θ be defined as in Assumption 1 and δ be given as in Theorem 1 with δ ≤ θ

and η be any fixed positive constant such that η ≥ δ. Then there exists a constant cη > 0 such that

inf
x∈X

v(x, t∗ − cη) ≥ η. (50)

To see the existence, notice that

inf
x∈X

v(x, t∗ − cη) = inf
x∈X

sup
l∈L

EP [l(c(x, ξ)− (t∗ − cη))]− l(0)

≥ inf
x∈X

EP [l0(c(x, ξ)− (t∗ − cη))]− l0(0) (for any fixed l0 ∈ L)

≥ inf
x∈X

l0(EP [c(x, ξ)]− (t∗ − cη))− l0(0) (by convexity of l0)

= l0

(
inf
x∈X

EP [c(x, ξ)]− (t∗ − cη)

)
− l0(0) (by monotonicity of l0).

Since X is compact and EP [c(x, ξ)] is continuous, then infx∈X EP [c(x, ξ)] is bounded. Moreover, since

limt→+∞ l(t) = +∞, the last term goes beyond η for a sufficiently large cη and hence (50) holds. Let

T in Theorem 1 be chosen such that [t∗ − cη, t0] ⊂ T. Then by Theorem 1

inf
x∈X

vN (x, t∗ − cη) = inf
x∈X

v(x, t∗ − cη) + inf
x∈X

vN (x, t∗ − cη)− inf
x∈X

v(x, t∗ − cη)

≥ η − sup
x∈X
|vN (x, t∗ − cη)− v(x, t∗ − cη)| > η − δ/2

with probability at least 1−C(ε, δ/2)e−Nβ(ε,δ/2) for N ≥ N(ε, δ/2). Let (xN , tN ) ∈ SN be the optimal

solution of (PRSR-Opt-N). The inequality above shows

vN (xN , t
∗ − cη) ≥ inf

x∈X
vN (x, t∗ − cη) > η − δ/2, (51)

which implies tN > t∗ − cη because vN (xN , tN ) ≤ 0 and vN (xN , ·) is non-increasing.

On the other hand, it follows by (25) and Theorem 1,

sup
l∈L

EPN [l(c(x0, ξ)− t0)− l(0)] < −θ + δ/2 ≤ −δ/2. (52)

with probability at least 1−C(ε, δ/2)e−Nβ(ε,δ/2) for N ≥ N(ε, δ/2). The inequality (52) implies (x0, t0)

is a feasible solution to (PRSR-Opt-N) and hence tN ≤ t0. Summarizing the discussions above, we

have tN ∈ [t∗ − cη, t0] with probability at least 1− C(ε, δ/2)e−Nβ(ε,δ/2).
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Let us now consider the systems of inequalities v(x, t) ≤ 0, (x, t) ∈ X × T and vN (x, t) ≤ 0, (x, t) ∈
X × T. Let F and FN be defined as in Section 5.1. Then the set of solutions to the systems of

inequalities are equal to F ∩ (X × T ) and FN ∩ (X × T ) respectively. Since l(c(x, ξ) − t) is convex

in (x, t), both v(x, t) and vN (x, t) are convex functions. By the Slater condition (25), we may use

Robinson’s error bound theorem for convex systems (Robinson (1975)) to establish that,

d((x, t),F ∩ (X × T )) ≤ ∆

δ
max(v(x, t), 0),∀(x, t) ∈ X × IR,

where ∆ denotes the diameter of F ∩X × T and we write d(a,A) for the distance from a point a to a

set A. Likewise, we can utilize the Slater condition (52) to obtain

d((x, t),FN ∩ (X × T )) ≤ 2∆

δ
max(vN (x, t), 0),∀(x, t) ∈ X × IR

with probability at least 1−C(ε, δ/2)e−Nβ(ε,δ/2) for N ≥ N(ε, δ/2). Combining the two error bounds,

we effectively obtain

H(FN ∩ (X × T ),F ∩ (X × T )) ≤ 2∆

δ
sup

x∈X,t∈T
|vN (x, t)− v(x, t)|,

where H denotes the Hausdorff distance. Thus

|ϑN − ϑ| = |tN − t∗| ≤ H(FN ∩ (X × T ),F ∩ (X × T )) ≤ 2∆

δ
sup

x∈X,t∈T
|vN (x, t)− v(x, t)|. (53)

Let ε := min( δ
2

2∆ ,
δ
2 ). We deduce from (33) and (53) that for N ≥ N(ε, ε)

Prob(|ϑN − ϑ| ≥ δ) ≤ Prob

(
sup

x∈X,t∈T
|vN (x, t)− v(x, t)| ≥ ε

)
≤ C(ε, ε)e−Nβ(ε,ε).

Part (ii). The exponential rate of convergence (34) implies tN → t∗ almost surely. Moreover, since

vN (xN , tN ) ≤ 0 and vN converges uniformly to v over X × T , then v(x̂, t∗) ≤ 0 for every cluster point

x̂ of {xN}. 2
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