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Abstract: In this paper, we consider non-stationary response variables and covariates, where the marginal
distributions and the associated copula may be time-dependent. We propose estimators for the unknown pa-
rameters and we establish the limiting distribution of the estimators of the copula and the conditional copula,
together with a parametric bootstrap method for constructing confidence bands around the estimator and
for testing the adequacy of the model. We also consider three examples of functionals of the copula-based
model under non-stationarity: conditional quantiles, conditional mean, and conditional expected shortfall.
The asymptotic distribution of the estimation errors is shown to be Gaussian, and bootstrapping methods
are proposed to estimate their asymptotic variances. The finite sample performance of our estimators is in-
vestigated through Monte Carlo experiments, and we show three examples of implementation of the proposed
methodology.

Keywords: copula, covariates, non-stationarity, conditional distribution
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1 Introduction

In many applications, the relationship between a response variable and covariates is often assumed to be
linear or a known function of a linear combination of the covariates. Recently, copula-based models have
been introduced to model the general dependance between the response and covariates in a stationary setting.
For example, Noh et al. (2013) proposed an estimator of the conditonal mean, while Noh et al. (2015), Kraus
and Czado (2017), and Rémillard et al. (2017) were interested in conditional quantiles.

However, in practice, data are typically non-stationary. For example, in hydrology, because of climate
change, the distribution of an hydrological time series is likely to change over time and/or according to some
time-dependent covariates. In the literature, some attempts have been made to deal with non-stationarity
for copula-based models. Recently, Jiang et al. (2015) modeled the dependence between bivariate response
variables by letting the copula parameters depend on covariates. Ahn and Palmer (2016) did something
similar. They proposed to use pseudo-mle for the estimation of parameters but they did not study the
convergence of the proposed estimators. Note that in the stationary case, their model is a particular case
of the so-called single-index copula (Fermanian and Lopez, 2015) where the copula between the multivariate
responses is indexed by a parameter depending on covariates.

However, in this paper, we propose to model the joint distribution of the response and covariates, which
is more general than the single-index copula setting. Furthermore, in view of applications, we consider only
a univariate response but our results can be extended to multivariate responses, which could be used for
considering spatial dependence. This problem will be investigated in a forthcoming paper. More precisely,
the main objective of the present paper is to propose a flexible model by allowing three extensions of the
copula-based method. First, we assume a parametric model for the distribution of the response variable
over time; it makes more sense in the non-stationary setting and it can be useful in some applications
such as computing conditional quantiles for extreme cases. Second, we consider a combination of time-
dependent and i.i.d. covariates. The distribution of the i.i.d. covariates is estimated nonparametrically by
using the empirical distribution functions, while parametric estimators are used to fit the distribution of the
time-dependent covariates. To distinguish between these two types of covariates, one can use for example
change-point tests (Rémillard, 2012, 2013; Holmes et al., 2013). Third, we model the dependence between
the variable of interest and the covariates by fitting a (time-dependent) parametric family of copulas.

The paper is organized as follows: in the next section, we establish the limiting distribution of the estima-
tors of the copula and the conditional copula, together with a parametric bootstrap method for constructing
confidence bands around the estimator and for testing the adequacy of the model. The proofs of these results
are given in Appendix A. Next, in Section 3, we consider three examples of functionals of the copula-based
model under non-stationarity : conditional quantiles, conditional mean, and conditional expected shortfall.
The asymptotic distribution of the estimation errors is shown to be Gaussian, and bootstrapping methods
are proposed to estimate their asymptotic variances.

The finite sample performance of our estimators is investigated in Section 4 through Monte Carlo exper-
iments, while in Section 5, the usefulness of our method is illustrated with one simulated dataset and two
case studies, one from hydro-climatology and the other one from finance. Section 6 provides a conclusion.

2 Estimation of joint and conditional distributions

For t € {1,...,n}, X; = (X¢1,...,X1q) 18 a covariate vector of dimension d > 1, and Y; is the response
variable of interest. In what follows, we assume that (Y7,Xy),...,(Y,,X,) are independent observations,

where (Y;, X1, ..., Xtq) has continuous margins (gt, Ft(l)7 e ,Ft(d)) and copula C; with density ¢, for any
t € {1,...,n}. Recall that according to Sklar (1959), and since the margins are continuous, for any ¢ €
{1,...,n} there exists a unique copula C; such that for all y € R and for all x = (x1,...,74) € R%, one has

Hy(y,x) = P(Y; <y, Xy <x) = C{Gi(y), Fi(x)}, (1)
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where F;(x) = (Ft(l)(xl), . .7Ft(d) (xd)>T, and Cy is the joint distribution function of (U, Vi), with Uy =
G:(Y;) and V; = F¢(X;). Further denote by K;(y, x) the conditional distribution function of Y; given X; = x.
Then

Ki(y,x) = P(Y; < ylX; = x) = De{G:(y), Fe(x)}, yeRx€R, (2)

where Dy (u, v) is the conditional distribution function of Uy given V; = v (Rémillard, 2013), defined by

vy -+ - OvgCy (U, v1, . .., 0g)
(9111 .. .8’Ud0t (1,'[)1, oo ’Ud)

Dy(u,v) = . uwe(0,1),v=(v1,...,09) € (0,1).
We also assume that G; = Gg¢p), for a given parametric family of distribution {G g ); b € B} where B is a
parametric space of b and B(t, b) is a function of time. This modelling hypothesis is needed in order to take
care of the non-stationarity and to estimate quantiles associated to extremal values, i.e., when « is close to 0
or 1. We also assume that for any ¢ € {1,...,n}, the copula C; belongs to a parametric family of copula
{Cs(t,0) : @ € O} having a continuous density cg,,) on (0, 1)+ for any ¢, where O is a parameter space
of 8 and ¢(t,0) is a function of time.

Suppose for the moment that b,, F,; = (Ft(ln), .. .,Ft(i))—r, and 6,, are consistent estimator of b, Fy,
and @ respectively; particular cases of consistent estimators are proposed in Subsections 2.1-2.3. Then it
follows from (1) that a consistent estimator H, .(y,x) of H:(y,x) is given by

Hyp 4 (y,%) = Cyt.0,){Gpt.b,) () Frs(x)},  (y,x) € R x R% (3)
Next, for a given ¢ and x, it follows from (2) that a consistent estimator K, ;(y,x) of K;(y,x) is given by
’Cn,t(y7 X) = Dqﬁ(t,en){GB(t,bn)(y)a Fmt(x)}a ye R. (4)

We now proposed specific consistent estimators b,,, 8,, and F,,.

2.1 Estimation of b

There is no loss of generality in assuming that for any t € {1,...,n}, B(¢,b) = B;b, where b € B is an
unknown parameter, B is the parameter space for b, and B; is a given matrix. For example, 8 can be a
polynomial function (linear, quadratic, etc.) or a piecewise parametric function, e.g., a B-spline function
(Stone and Koo, 1986; Hastie and Tibshirani, 1990), as long as there is no smoothing parameter, in order
to have n'/? consistency. In particular, a linear function B(t,b) can be written as B(t,b) = by + bit = B;b
with b = (bg,b1) " and B; = (1,¢). To estimate the parameter b of the function 3(¢, b), we suggest to use a
maximum likelihood estimator, i.e.,

n

by, = argmax ; log {ga(e.b) (Y1)} - (5)

From now on, we assume that the density gg satisfies the smoothness conditions R1-R3 of Serfling (1980,
p.144-145), meaning that it is thrice continuously differentiable and locally bounded by integrable functions
with respect to B, with (column) gradient and Hessian matrix denoted by ¢; and g; at B(t,bg). Further

assume that the sequence BT gtgtg satisfies Lindeberg’s condition (Billingsley, 1995, p.359),

-l tgty;&gt Yt) B,
= 6
Z gt Yt) ()

B, §:(Y1)B.
9:(Y)
b,, = n'/2(b,, — by), where by is the true value of the parameter.

converges in probability to S, and n=* 37| converges in probability to 0, as n — oco. Finally, set

As a result of these hypotheses, a Taylor expansion as in Serfling (1980, p.145) yields

=B/ (Y
.0, =012y LAY o) (7
t=1
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In particular, Lindeberg’s CLT can be applied to deduce that b,, converges in law to b ~ N (0, S_l), where S~1
is the Moore-Penrose inverse of S. As a by-product, the last result together with the Delta method (van der
Vaart and Wellner, 1996) yields that for any given ¢ € {1,...,n}, and uniformly in y € R,

Gn.t(y) = n"*{Gpup,) () = Gi(y)} ~ Gi(y) = Gi(y) 'Bib, (8)
with Gi(y) = [Y__ g:(2)dz.
2.2 Estimation of F,

Here, the marginal distributions are estimated according to whether they depend on time or not. First, let
L be the set of indices j € {1,...,d} such that Ft(j) is independent of ¢t € {1,...,n}. For any j € £, FU)
n

1
is estimated by F FY )<:17j) = or I(X:; < x;), which is, up to a factor, the empirical cumulative distri-
n
t=1
bution function of Xi;,...,X,;. Here, I stands for the indicator function. It is well-known that ]Fffi (x) =

nl/? {Fy(Lj)(xj) - F(j)(xj)} converges in law to B;{F")(z;)}, where B, is a Brownian bridge, i.e., a contin-

uous centered Gaussian process with covariance function Cov{B;(s),B;(u)} = min(s,u) — su, s,u € [0,1].

Next, for any j ¢ L, the distribution is time-dependent, and we assume that F(j ) = F(‘ZJ)) ()’ where

~)(t) =4O (t,q¥)) = Q(j) , for some given matrix function Qt7) We set ’y(J)( t) = Q(J)q(“ where q’
is a consistent estimate of q(J 6 9, where 9 is a space parameter. To simplify notations, we still use F,, ;
to denote the estimation of F,. For the estimation of q\¥) we propose to use the MLE defined by

q) = argmaleog{ S0 () (th)} ; (9)

where ft( f is the density of Ft(j ),

~ @ (t,qd))

We assume that the density f,(yjéj).)( £,a0) with respect to 4) satisfy the smoothness conditions R1-R3 of
Serfling (1980, p.144-145) defined in Section 2.1, with (column) gradient and Hessian matrix denoted by f @)

and f ) at v0) (¢, q(J )). Further assume that the sequence { Y )} fwaX”; satisfies Lindeberg’s condition,

(10)

1T L v .
N Q] 9 (x) P (x) Tl
n,g =N -
’ t=1 {ft(J)(th)}2

[ ;3)] ff(J)(X )Q(J)
1 (X45)

converges in probability to Vj;, and n~t Sy converges in probability to 0, as n — co.

As a result of these hypotheses, one obtains that

T oL
n () f'(J)(X )
) t t tj
Vo) =072 { }

t=1 (])(th)

+0P(1)7 (11)

where qg) =nl/? (q%j) — q ) In particular, Lindeberg’s CLT can be applied to deduce that q(j) converges

in law to ) ~ N (0, 2 ), where Vj_ is the Moore-Penrose inverse of V. As a by-product, the last result
together with the Delta method yields that for any given ¢t € {1,...,n}, and uniformly in z; € R,

F)(w5) = 02 { B0 @) = B (@)}~ B ()T Qa0 forj ¢ £, (12)

with B9 (y) = [V 9 (2)dz.
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To write the results in a uniform way, define
(1) @\ (1) @, v\
Fou(¥) = (Fi @), Fil(@a)) o Fx) = (FP (@), FO (@)

where FY) = AP (2,)A) (x), with

) 1, lf] eL,

) = Do . 1
s { )T, gL, (13)
; B;o FU)(z;), ifjeL
€] . — J. 7/ J 9

Then, under the smoothness assumptions, F,, ; = A;A, ~» A A =T, for any t € {1,...,n}, where A, is the
diagonal matrix with elements A,E] ) and
4 TS
A= (AD,.. AD) with AQ(z))={ nel®) Hick
ar’, if j & L.

Tt follows from their representations as sums of functions of the independent variables (Y, X;) that (b,,A,)
converges jointly in law to (b, A)

2.3 Estimation of @

As for the parameters 5 and Ft(j ) with j & L, we consider similar assumptions on the parameter of the
copula family, namely that ¢(¢,8) = h;0, for a given matrix function h; and 6 belongs to a parameter space
denoted O.

Next, recall that Uy = Ggt,py)(Y:) and V;, = Fy(X,), with joint law Cgp,) on [0,1]4T!, are not ob-
servable. For the estimation of the copula parameter 8, we will use an hybrid technique, using possibly
parametric and nonparametric estimates for the marginal distributions, depending if the components of F;
are time-dependent or not. Since the distribution of Y; is time-dependent, we estimate U; by the parametric
estimator Uy, ; = Ggp,)(Y:), as in the so-called IFM method (Xu, 1996; Joe and Xu, 1996), while the
estimate of V; is V,,;, = F,, +(Xy), for any ¢t € {1,...,n}. Based on the pseudo-observations (U, +, Vy 1),
te{l,...,n}, we then use the pseudo MLE

0, = arg Igleaéc;bg {cd)(t,g)(Umt, Vn,t)} . (15)

It follows from an easy adaptation of Genest et al. (1995) and Shih and Louis (1995) that @,, is a n'/2-
consistent estimator of 8, if ¢y is smooth enough. The exact convergence result is given in Theorem 1
below. Assume that cg is twice continuously differentiable with respect to u, v, and that with respect to ¢,
ce satisfies the smoothness conditions R1-R3 of Serfling (1980), defined in Section 2.1. For simplicity, set
Ct = Cg(t,0,), and denote by ¢; (resp. &) the gradient (Hessian matrix) of ¢; with respect to ¢.

_ _1/2 t Ct Utavt 16

Wn Z Ct Ut,Vt ’ ( )
h Ct Uf,Vf Ct (Uf7Vt)h

I, = . 17

n Z Ct Ut,Vt) ( )

Further set

! - c{u, Fe(x ver{u, Fo(x)} T
)= | l"_lzhj {V”ét{“’Ft(X)}‘ { F(Ct){fm(i)}m . }At(x)ft(x)] "
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where f;(x) = H?:1 ft(j)(xj), and

= n*l Z h;r l/(o e {8uct(u7 V) _ Ct(uaz;)((zuit)(u7 V) } gt o g;l(u)TdudV] Bt.
t=1 > )

Theorem 1 Suppose that Lindeberg’s condition is satisfied for the sequence %, tef{l,...,n}. Also

assume that uniformly on x, (Jn(x),Kn,Z,) converges in probability to (J(x),K,Z), with I invertible,

T.
and n=t Y0, % converges in probability to 0. Set ©, = n'/%(0,, — 0y). Then, as n — oo,
t 3

(b, A, Wi, ©,,) converges in law to (b, A, W, ©), where W ~ N(0,Z) and

e=1"1 {W +/ J(x)A(x)dx + Kb} .
Rd
Moreover, b, A and W are independent Gaussian processes.

2.4 Convergence of the joint distribution and conditional distribution estimators

For ¢t € {1,...,77,}, Yy € R and x € Rd set Hnt(ya ) _ n1/2 {Hnt(ya ) Ht(?/, )} and Knt(ya ) =
n'/2 {Ky+(y,x) — K¢(y,x)}. To simplify notations, set Cy(u,v) = VuCopr)(u, v ’qﬁ o) and Dy(u,v) =
V¢Dgt)(u, v | (1) . Throughout this section, we assume that these derivatives are Contmuous. From now

on, the convergence in law means convergence in law in the space of continuous functions, equipped with the
supremum norm. The next theorem states the weak convergence of the processes H,, ; and K, ;.

Theorem 2 Suppose that the smoothness conditions hold, together with the assumptions of Theorem 1. Then,
asn — oo, H,, ; converges in law to a continuous centered Gaussian process Hy, where for anyy € R, x € R4,

Hi(y,x) = © "h{ Ci{G(y), Fe(x)} + Ge(y)0uCopr,00) 1G: (1), Fe(x)} + Fe(x) " Vo o100 {Ge (1), Fe(x)}. (18)

Furthermore, given X; = x, as n — oo, K,, ; converges in law to a continuous centered Gaussian process Ky,
where for any y € R,

Ki(y,x) = © "h/ D {G:(y), Fi(x)} + Gi(1)0uDg(t,00){Gt (1), F1(x)} + Fr(%) T VyDy(1,00){G¢ (1), Fr(x)}. (19)

2.5 Parametric bootstrap

Let by, 0,,, F,, ; be the estimators of (bg, 89, F;), t € {1,...,n}.

Algorithm 1 For each k € {1,..., N}, repeat the following steps:

e generate (U, Vi) ~ Cy.0,), and compute Y = Gp_a(lt,bn)(Ut*)7 Xy = F,_L;(Vt*), tef{l,...,n};
e estimate by and F; by b}, and F, ,, usmg (Y, X7),..., (Y5, X5).
e calculate the pseudo-observations Uy, = Gg o) (Y"), and V3, =F; (X}), t € {1,...,n};
o estimate Oy by using (Un V2 ) , (U;WV* )
e compute H}; (y,%x) = Cy(10z) {Gﬁ(t b*)(y) (X )}}
o compute K7, ,(y,x) = D165 {Gﬁ(t by) (), Frr (%)}
nt(

(k
o set H) (y,x) = n'/? {H} ,(y, %) — y,x} Ky, %) = n'/2 {Kh (4, %) — Kot (y,%) }, and W) =
Do0m) (Uh, Viy), te{l, .., },

The next result shows the validity of the proposed bootstrap procedure.

Theorem 3 Under the smoothness conditions and the assumptions of Theorem 1, as n — oo, HS%, . ,HEL{?

converge to independent copies of H; and KS%, . ,KS’VR converge to independent copies of K;.

As a by-product of this algorithm, we obtain a formal goodness-of-fit test of the model.
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2.6 Goodness-of-fit test

A visual assessment of the adequacy of the model is provided by the graph of the pseudo-observations
Wait = Knt(Ys, Xt) = Dgt,0,,)(Un,t, Vi) over time, since Wy, ..., W, , are approximately independent
and uniformly distributed over (0, 1) if the model is correct. This is due to the fact that the values W; =
Ki(Y:, Xt) = Dgt)(Us, Vi) are independent and uniformly distributed over (0,1). In addition, it follows
from Rosenblatt (1952) that W; is independent of X; for all ¢ € {1,...,n}. As a result, a formal test of
goodness-of-fit can be based on functionals of the empirical process

D, (u) = nl/2 {711 Xn:H(Wmt <u)-— u} , u€lo,1].

t=1

The derivation of the limiting process D, which is a continuous centered Gaussian process, is quite complicated
but it can be done using the tools developed in Ghoudi and Rémillard (1998). The exact form of the limit
D is given in Corollary 1 below. Note that we can use a bootstrapping technique to generate independent
asymptotic copies of the limiting process D. In fact, we can use the bootstrapped values W,E L,te{l,...,n},
ke {l,...,N}, generated in Algorithm 1. This way, one can define, for any k € {1, ... 7N}

1 n
By — 172 L ) ) —
Dy (u) =n {n E ]I(ant u) u}, u € [0,1].

t=1
More precisely, if IV is large enough, say N = 1000, and 7T is a continuous functional over the set of continuous
functions on [0, 1], then an approximate P-value for the statistic S,, = T (ID,,) is given by
N
— 51 (sﬁjﬂ > Sn) ,

N
k=1

provided we reject the null hypothesis when S,, is large enough. Here, for any k € {1,...,N}, Sy(Lk) =

T ]D)Slk) . For example, if w; ,, < --- < wy,,;, are the ordered values of the pseudo-observations Wi ,,,..., Wy, p,

Wt — “”‘} (20)

one could take the Kolmogorov-Smirnov test statistic given by

t

n

max

Wn,t —
te{l .n}

KS, =7T(D,) = sup |D,(u)| = n'/? max{ max
uelo,1] t€{L,....n}

or the Cramér-von Mises test statistic

CVM, = T(D /{]D) }2du—+Z{ W — 2t_1)} . (21)

Let cg ) fo ¢t(z,v)dz be the density of the copula associated with X;. To find the asymptotic
behavior of ID)n, one needs to define the following functions for any u € (0,1):

Zp(u) = n_lzB:/

0,1)d

Gay {Gaty () b erdTulu,v), viav,

Xp(u) = _12At {F7E(V)}VD{Ty(t,v), v)e{T (u, v), v}dv,

Cp(u) = nt Z h/ /(0 b DT (u, V), v}o,(v)dv

Further define the process W, (u) = n=%/2 3" {I(W; < u) —u}, u € [0,1].

Corollary 1 Assume that the smoothness conditions and the assumptions of Theorem 1 hold. Further assume
that for any u € (0,1), the functions Z,,,C,,X,, converge to continuous functions Z, C and X respectively.
Then, as n — oo, D, converges in law to a continuous centered Gaussian process D = W — p(K), where W
is a Brownian bridge and p(K) =@ TC +b'Z + ATX.
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It then follows from Theorem 3, Corollary 1 and Genest and Rémillard (2008) that Algorithm 1 can also
be used to bootstrap D.

3 Applications to functionals of the conditional distribution

In what follows, we consider three examples of functionals of the conditional distribution: conditional quan-
tiles, conditional mean, and conditional expected shortfalls. The proposed estimators are described next,
together with their asymptotic behavior and bootstrapping methods.

3.1 Estimation of conditional quantiles

The associated quantile function at level a, denoted by Q:(«,x), is given by the left-continuous inverse of
K, viz.
Qi(a,x) =inf{y € R: Ki(y,x) > o}, a€(0,1). (22)

Recently, the connection between marginal distribution functions and copulas have been used to find an
explicit expression for the conditional quantile function (Kraus and Czado, 2017; Rémillard et al., 2017). As
a result, the conditional quantile function Q; depends only on the margins G;, F; and the copula C; viz.

Qi(ar,x) = G; ' [Me{ar, Fe(x)}], (23)

where I';(a, v) is the quantile of order « of the distribution function D;(u,v), u € [0, 1], with v € (0,1)%.

Recently, Formula (23) was used by Nasri (2017) and Kraus and Czado (2017) for estimating the con-
ditional quantile copula. They suggested to estimate the marginal distributions by nonparametric methods
and assumed a parametric model for the copula. Expressions of conditional quantile functions for some
well-known copula families were also provided. However, these approaches were proposed for the i.i.d. case
and did not allow for the time-dependence of the distribution of the response, the distributions of covariates,
or the copula function.

Next, let GL;(lt,bn)(), Cot,0,)(v) and Q, (-, x) be the (left-continuous) inverse functions of Gg.p,)(*),
Dy1,0,)(,v) and Ky, ¢(-,x) respectively. It then follows from (4) and (23) that a consistent estimator of
Q:(a, x) is given by

Qn7t(a7x) = G,g(lt,bn) [Fq’)(t,en){aa Fn,t(x)}’] y € (07 1) (24)

Set Q.t(u,x) = n/2{Q, +(u,x) — Qs(u,x)}, u € [0,1], and x € R%. The next corollary states the weak
convergence of the process Q,, ;.

Corollary 2 Suppose that the smoothness conditions hold, together with the assumptions of Theorem 1. Then,
given Xy = x, and v = Fi(x), as n — oo, Q¢ converges in law to Q;, where Qi(u,x) = 7%,
u € (0,1), and hi(y,x) is the density of Ki(y,x). '

In particular, we can show that for any [a,b] C (0,1), n'/? sup Q. (u,x) — Qs(u,x)| converges in law to

u€[a,b)
Kt{Qt (U, X)7 X}
ht{Qt (U, X)a X}

sup
u€la,b]

Remark 1 Using Algorithm 1 and Corollary 2, one can construct a 95% confidence interval about Q(c,x).

Set Ynt = Qn.i(,x), choose N large enough (say N = 10000), and let sy be the standard deviation of the
bootstrapped values ngz(y, x), k€ {1,...,N}. Then a 95% interval for Qi(a, x) is Qn (e, x) £1.96 75—,
where 1

Pt = 98, (1) Un.t 0o(t.0,) LGty Unit)s Vi } = 98,.(t) Wn.t)s 06(,6,) {Lb(,6,) (% Vi) s Vin }

and where gg is the density of Gg. Note that K, ¢(ynt,x) = o, t € {1,...,n}. Furthermore, a uniform
confidence bands about Qi(cv,x) for a € [ap, 1], with 0 < ag < a1 < 1 can also be constructed.
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3.2 Conditional expectation estimator

We cannot use the estimator proposed by Noh et al. (2013) in our non-stationary setting because they used
a weighted mean that cannot estimates E(Y;|X; = x) for a fixed t. However, there is another estimator that
can be used. It is based on a functional of the conditional distribution. To this end, suppose that Z ~ K,
where K is a distribution function. Assume that E{|Z|} < oo. Then, one can write

o 0
Z):/0 {1—K(z)}dz—/_ K(z)dz. (25)

0

rmw—mn&—m—[fu&wmm// Koy, x)dy, (26)

— 00

Based on (25), one has

while the proposed estimator is

oo 0
mn,t(x) = / {1 - ’Cn,t(y, X)}dy - / Icn,t(ya X)dy (27)

0 —o00
Corollary 3 Suppose that the smoothness conditions hold, together with the assumptions of Theorem 1. As-
sume also that Y has a finite moment of order 2. Then, for given t and X; = X, as n — 00,

“+oo
Mn,t<x) = n1/2 {mn,t(x) - mt(x)} = - Kn,t(yax)dy

—0o0
converges in law to a continuous centered Gaussian variable My (x), where

+oo
M (x) = — K¢ (y, x)dy. (28)

— 00

Proof. The proof is based on the fact that for any M > 0, f:\]\j K, +(y,x)dy converges in law to
f:\]\f K¢(y, x)dy, being a continuous functional of K, ; and that f:ojg Ky, +(y,x)dy and f;;oo Ky, ¢ (y,x)dy,
f__::[ K:(y,x)dy and f K:(y,x)dy can all be made arbitrarily small in probability by choosing M large

enough. The rest of the proof is similar to the one of Proposition 3.1 in Genest and Rémillard (2004) and
uses Lemma F.1 in Genest et al. (2017). O

Remark 2 Using Algorithm 1 and Corollary 3, one can construct a 95% confidence interval about my(x).
Choose N large enough (say N = 10000), and let sy be the standard deviation of the bootstrapped values
M(k) f+oo K(k) ,x)dy, ke {l,...,N}. Then a 95% interval for m;(x) is my (x) & 1.965—\/1%,
3.3 Conditional expected shortfall

Suppose Z ~ K, where K is a continuous distribution function with quantile function g. Assume that
E{|Z|} < co. Then the expected shortfall of level a € (0, 1) can be defined by E(Z|Z < q,). It is then easy
to show that 1 e

E(Z|Z < qa) = qa — o K(z)dz. (29)

Based on (29), for any a € (0, 1), the conditional expected shortfall is given by

1 Q¢ (a,x)
Est(avx) = Qt(O{,X) - a/ K:t(yax)dya (30)

— 00

while the proposed estimator is

1 Qo (,x)
BSusfax) = Quilanx) = = [ Koala )} (31)

— 00
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Corollary 4 Suppose that the smoothness conditions hold, together with the assumptions of Theorem 1. As-
sume also that Y has a finite moment of order 2. Then, for given t and X, = x, as n — 00, E,, ;(o,x) =
n'/2{ES, +(a,x) — ES;(a,x)} converges in law to a continuous centered Gaussian variable E¢(a,x), where

1 Q¢ (a,x)
Er(or,x) = —— / K, (y, x)dy. (32)

@)

Remark 3 Using Algorithm 1 and Corollary 4, one can construct a 95% confidence interval about ES;(a, x),
a € (0,1). Set ynt = Oni(a,x), choose N large enough (say N = 10000), and let sy be the standard

deviation of the bootstrapped values Eﬁf@ (a,x) =—1 [Inr Kﬁfz (y,x)dy, k € {1,...,N}. Then a 95% interval
for ESy(a,x) is ES,, (v, x) £ 1.968\/—’%.

Remark 4 One might also be interested in E(Z|Z > qo). In this case, the associated formula is

Qt(av X) +

/ Y Kx))dy, (33)

1 - Qt(a,x)

the estimation is Qy 4(cr, X) + 2= fg e x){l — Kn(y,x)}dy, and the estimation error converges to

1 o0
/ K¢ (y, x)dy.

l-a Qi (a,x)

The details are left to the reader.

4 Simulation study

In this section we consider six Monte Carlo experiments for assessing the level and power of the pro-
posed goodness-of-fit tests based on Kolmogorov-Smirnov and Cramér-von Mises type statistics defined
in Section 2.6. We generated random samples of size n € {100,250} from four bivariate copula fami-
lies: Clayton, Gumbel, Gaussian and Student (with v = 5). In the first four experiments, we consid-

ered a “linear” case, i.e, 7 = 1/ (l—i—e_Ht(l)e(l)), where Ht(l)e(l) = .4055¢/n, so that 77 = .5004 and
Tn = 0.6. In the last two experiments, we considered a “quadratic” case, i.e., 7z = 1/ (1 + e_Ht(z)a(Q)) where

HP0® = —0.4055 + 2.0637¢/n — 2.5055t2 /n. Both graphs of 7, are displayed in Figure 1.

0.6
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Quadratic _—
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05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1: Kendall’s tau for the linear and quadratic models with n = 250.

The same four families were used under the null hypothesis. For example, we generated data from
Clayton copula and tested four null hypothesis: Clayton, Gumbel, Gaussian and Student copula. We repeat
this by generating data from Gumbel, Gaussian and Student copulas. Furthermore, for each experiment 1000
replications and in each replication, 100 bootstrap samples (N = 100) were used to compute the p-value of
the test statistics.
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For the first two experiments (linear model with n € {100,250}), the marginal distributions were assumed
to be unknown but constant, in order to focus only on the copula family under the null hypothesis. Next, for
the last four experiments, we considered Gaussian time-dependent margins for Y ( u; = —0.5t/n, 0 = 0.2)
and X (u: = 0.5+ 2t/n, o = 0.1), and both the linear and quadratic cases for the copula families.

The results of the six experiments are displayed in Table 1. As seen for these results, the levels are not
significantly different from the target level of 5% . Also the power of the goodness-of-fit test is satisfactory,
even with n = 100. As expected, the power increases with the sample size. Furthermore, it follows from
Experiments 1-4 that for the linear case, the proposed goodness-of-fit test perform quite well whether the
margins are constant or linear time-dependent. However, in the quadratic case, the power of the test decreases
in general since there are more parameters to estimate.

Finally, it seems that most of the time, the goodness-of-fit test based on the Cramér-von Mises statistic
is more powerful that the one based on the Kolmogorov-Smirnov statistic.

Table 1: Percentage of rejection for the Kolmogorov-Smirnov test statistic (KS) and Cramér-von Mises statistic (CVM) for a
target level of 5% for the six Monte Carlo experiments. The levels of the tests are displayed in bold.

Copula family under Hy
Clayton Gumbel Gaussian Student
Hy KS CVM KS CVM KS CVM KS CVM

Exp. 1: Linear case with unknown constant margins (n = 100)

Clayton 4.5 4.1 30.2 37.9 17.7 20.8 16.3 21.4
Gumbel 47.9 62.7 4.2 4.0 9.2 12.0 8.9 12.3
Gaussian 35.7 45.9 12.8 17.3 5.3 4.5 9.2 11.6
Student 19.8 24.3 7.3 7.7 4.0 4.1 3.3 3.0

Exp. 2: Linear case with unknown constant margins (n = 250)

Clayton 4.4 3.6 72.7 84.6 47.3 58.1 42.2 53.6
Gumbel 92.4 98.2 4.9 5.5 21.1 29.4 18.8 24.6
Gaussian 81.5 92.1 30.2 40.4 6.0 5.7 15.9 24.0
Student 60.5 73.5 19.2 23.6 5.0 4.3 4.2 3.8

Exp. 3: Linear case with estimated Gaussian margins (n = 100)

Clayton 4.3 4.7 29.8 38.6 22.4 28.0 20.4 26.8
Gumbel 54.0 66.9 4.5 5.0 10.3 11.4 12.3 14.8
Gaussian 43.3 52.3 16.9 19.3 4.8 4.3 10.7 13.1
Student 26.8 33.7 9.2 11.1 4.1 4.2 5.0 3.4

Exp. 4: Linear case with estimated Gaussian margins (n = 250)

Clayton 5.8 5.2 67.1 78.0 44.6 55.1 37.8 46.7
Gumbel 91.6 96.5 5.6 5.8 21.7 30.2 21.6 29.6
Gaussian 84.1 91.7 35.5 43.7 5.2 5.6 15.0 21.0
Student 65.2 76.5 21.9 25.9 5.4 6.2 3.9 3.7

Exp. 5: Quadratic case with estimated Gaussian margins (n = 100)

Clayton 5.3 5.4 18.7 23.5 17.7 19.3 12.2 14.3
Gumbel 36.2 44.6 4.7 4.3 10.7 13.2 9.0 114
Gaussian 25.5 33.2 9.8 13.8 4.6 5.1 5.4 7.1
Student 18.0 21.8 8.5 8.2 4.2 4.2 3.6 2.7

Exp. 6: Quadratic case with estimated Gaussian margins (n = 250)

Clayton 3.7 3.7 43.4 54.4 30.4 37.6 23.8 30.7
Gumbel 78.4 89.3 4.9 4.7 17.2 23.8 16.1 20.7
Gaussian 60.3 72.4 20.4 27.2 4.1 4.4 8.8 11.1

Student 32.1 40.6 7.4 10.8 3.9 3.8 3.2 2.2

Remark 5 When estimating the parameter v of the Student copula, we restricted its value to be lower than 25,
since the Student copula converges to the Gaussian copula when v tends to infinity.

We did not consider the Frank copula family in these simulations because there is no explicit formula
expressing its parameter in terms of Kendall’s tau. Since the latter varies with time, it means that one has
to perform n numerical inversions to obtain the associated parameter for a given 7, t € {1,...,n}. To have
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an idea of the computing time required to estimate the parameters when n = 250, we refer the reader to
the last line of Table 3. Performing the goodness-of-fit test for the Frank copula family in the linear case
described previously requires about 20 minutes, while it takes 13 seconds for the Gaussian copula family.
Note also that performing 1000 goodness-of-fit tests with NV = 100 bootstrap samples when n = 250 requires
about 116000 seconds on a laptop with 6 cores, even if we were using parallel computing. The construction
of Table 1 below required 3 weeks.

5 Applications

In this section, we illustrate the proposed methodology with one simulated data set suggested in Dette et al.
(2014), and two real data sets. The first application is basically a discussion on the choice of a copula when
the relation between the variable of interest and a covariate is quadratic, so it is assumed that the copula and
the margins are constant. However, in the last two examples, either the margins or the copula vary with time.

5.1 Dette et al. (2014)’s example

In this paper, the authors tried to model the dependance between X; and Y;, where V; = (X; — 0.5)2 + ¢,
with ¢, ~ N(0,0%) and ¢ = 0.1, using a copula-based mean regression model as describe in Section 3.2.
They assumed that the copula and the margins were constant over time. Then, they looked for a copula
family which could capture this kind of dependance. However, they limited their search to the basic families
(Elliptical and Archimedean), and their rotations. This is indeed true that these families fail to reproduce
non monotonic dependance.

In the literature, there are many copula families for which E(Y|X = z) is not monotonic in z. Here is
an example: consider the chi-square copula introduced by Quessy et al. (2016). A chi-square copula with
parameters aj,az € R, and p € [—1,1] is the copula associated with the random variables (Z; — a;)? and
(Zy — a2)2, where Z; and Zs are joint standard Gaussian variables with correlation p. As an experiment, we
simulated 1000 pairs of variables (X¢, Y;) from the above regression model and we estimated the parameters
for the chi-square copula. Rounding the parameters, we got a; = 2.6, az = 0, and p = 0.99.

0 o
) 0 01 02 03 04 05 06 07 08 09 1 b) 0 01 02 03 04 05 06 07 08 09 1 ) 0 01 02 03 04 05 06 07 08 09 1

Figure 2: Panel a: Simulated data for the regression model; panel b: pseudo-observations for the regression model; panel c:
simulated data from a chi-square copula with parameters a; = 2.6, az = 0, and p = 0.99.

Next, we applied this copula to the simulated dataset defined previously. By using the conditional
expectation estimator defined in Section 3.2, one can check from Figure 3 that the quadratic dependance can
be indeed reproduced quite well with a copula-based model.

5.2 Estimation of conditional quantile of maximum annual streamflow

For Southeastern Canada extreme streamflow characterization, daily amounts in (m?/s) of streamflow have
been extracted from all of the 312 stations located in Ontario (ON), Québec (QC), Newfoundland and
Labrador (NFL), Nova Scotia (NS), New Brunswick (NB), and Prince Edward Island (PEI) provinces.
Data comes from Environment Canada’s HYDAT interface (ftp://arccf10.tor.ec.gc.ca/wsc/software/
HYDAT/) and the center of Québec water expertise (https://www.cehq.gouv.qc.ca/). We kept only stations


ftp://arccf10.tor.ec.gc.ca/wsc/software/HYDAT/
ftp://arccf10.tor.ec.gc.ca/wsc/software/HYDAT/
https://www.cehq.gouv.qc.ca/
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Figure 3: Quadratic regression curve (squares) and conditional expectation estimator (circles) for the simulated dataset.

with: (i) record length of at least 30 full years to ensure good quality fitting; (ii) non serial dependencies;
(iii) some form of nonstationarity. Finally, 33 stations were chosen, of which 17 are located in ON, 8 in
QC, 4 in NS, 3 in NL, and 1 in NB. Figures 4 and 5 illustrate respectively the geographic location of all
selected stations and the variations of daily annual maximum streaflows (AMS) at some chosen station from
each province for case illustration. For this study, we tested the dependence between the AMS and several
climatic indices covariables: Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), El
Nino—Southern Oscillation (ENSO), etc. (see, e.g. Nasri et al. (2017) for definitions). Climate indices data
come from NOAA website (http://www.esrl.noaa.gov). These covariates are considered at the same day
for which the maximum of streamflow is observed for each station. Ultimately, only the covariate that have
the most significant dependence with the variables of interest was kept, which is AMO. AMO is found to have
the most significant dependence with AMS time series and it indicates the fluctuation in the sea temperature
in the North Atlantic ocean. Figure 6 illustrates the variations of the AMO index at the chosen stations.
The change-point in the AMO time series is studied in all of the 33 stations using the same tests cited above
for the change-point in AMS series. The results show that generally, in all selected stations, there is indeed
a change-point, which is coherent with the existing literature (Knudsen et al., 2011). The change-point in
dependence (copula) between AMO and AMS is also investigated by using the test proposed in Holmes et al.
(2013) and the results show that, in most of the stations, the dependence is constant over time.

45'N,

BW oW mw Tow sw OW

Figure 4: Study region in Southeastern Canada and locations of 33 stations in this study region. Red highlighted stations are
targeted ones for case illustration.

Before estimating the conditional quantile functions for each selected station, we have to choose first the
marginal distributions for the covariate (AMO) and the dependent variable (AMS), and then we can select
the best copula function fitting the data. For the marginal distributions, several cumulative functions are
compared, including Normal, 2-parameter Weibull, GEV, lognormal and Gamma. This comparison is done
by using the Akaike information criterion (AIC)(Akaike, 1974). The variation in time of the parameters
of the selected marginal distributions is described by using the B-spline function structure (De Boor, 2001;


http://www.esrl.noaa.gov
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Nasri et al., 2017). Note that a B-spline is a polynomial piecewise function which depends on a number of
knots and a degree of function. When the number of knots is equal to one, B-spline is a polynomial function.
As for copulas, several dependence models were compared, including Frank, Clayton, Gumbel, Gaussian and
Student, in order to find the best model. The choice is done by calculating the p-value of the goodness-of fit

test statistics S, (B) and S, (C) developed in Genest et al. (2009).
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Figure 5: Variation of maximum daily annual streamflows (m?3/s) for the stations selected for case illustration. Here, we have

three stations from Ontario, two from Quebec and one from NS, NL and NB.
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Figure 6: Variation of AMO index for the stations selected for case illustration. Here, we have three stations from Ontario, two
from Quebec and one from NS, NL and NB.

As described in the methodology section, we have to choose the margins for the studied variables, the
best B-spline function linking their parameters and time, and also the best copula model. For all stations,
the Gaussian distribution is selected for the AMO, while the GEV is chosen for the response variable. The
results show that only the location parameter for the Gaussian and GEV varies over time. This variation is
modeled generally by two piecewise linear functions. For the copula models, the Gaussian copula was selected
most of the time but for some stations in the Southern region, where the Student copula was chosen. Recall
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that the conditional quantile of a Student copula, with parameters v > 0 and p € (0,1), is given by

v+ {ty! (w)?

D(u,v) =ty |pty " (u) + £y (a) 1

(1_p2) , € (071)7

where t,, is the c.d.f. of a Student distribution with v degrees of freedom. Figure 7 illustrates these results for
all stations. Using the best selected copula models together with the margins, a nonstationary conditional
quantile is estimated for each station, for levels o € {0.5,0.9}, corresponding to return periods of T' = 2
years and T = 10 years. Quantiles for high returns periods (e.g. T = 50, T = 100) could also be estimated.
The 95% confidence band is constructed for those quantiles. Figure 8 displays the relevant results for the
chosen stations. It can be seen that generally, for higher levels, the nonstationary conditional quantiles take
much larger values that the stationary unconditional quantiles. For example, the results for station ”02KD”
in ON shows that the stationary unconditional median is equal to 65 (m?3/s). However, the nonstationary
conditional quantile can reach 83 (m?3/s). The same behaviour can be observed for other stations, confirming
the importance of considering nonstationary conditional quantiles for better water resource management
practices.

BW oW mw wow 6w

Figure 7: All stations depicted by blue circles have a Gaussian dependence structure with negative Kendall's tau and one or two
piecewise linear dependence functions between time and location parameter. Red stars highlighted stations have two piecewise
quadratic dependence between time and location parameter, while the purple triangles display a positive Kendall’s tau, and the
green squares have a Student copula dependence structure with two piecewise linear dependance functions.

01BJ(NB) 02YG(NL) 01EN(NS) 04FC(ON)
120 500 300 3500
100 : 400 : 250 3000
_ L 2500
80 __==| 300 : 200{ .
i = . 2000{. -
Y R - 150
. 2 1500
wf===70 ] 00 100 1000f
200 0 50" 500 o
7980 1990 2000 2010 1960 1980 2000 2010 1960 1980 2000 1970 1980 1990
02KD(ON) 02GD(ON) 03LF(QC) 02MC(QC)
120 50 . 14000 . 14000 )
12000 12000

100 Lo aop \
: 10000 10000

80 30fy i

8000|/* .{ 8000

60

201 \. °

6000~/ . 6000{-/ .

o e a000{ - ec | 4000

20 0 2000 2000
1960 1980 2000 1960 1980 2010 1960 1980 2000 1960 1980 2000

Figure 8: 0.5 and 0.9 nonstationary conditional quantile results with their corresponding uniform confidence bands for the selected
stations.
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5.3 Bivariate HMM models

There have been a huge literature on the dependence between individual stocks and the market, the most
popular being of the form Y; = o + X, + €;, where Y; is the return of an individual stock at period ¢, and
X, is the return of the market where the stock is traded. The coefficient 3 is interpreted as the relative risk
of the stock compared to the market, leading to a linear dependence between the stock returns and market
returns. However this is quite limitative if the dependence is nonlinear. This is why it might be much better
to look at copula-based methods.

Here we consider the monthly log-returns of Apple and the Nasdaq index from December 1996 to October
2017 and we fit a dynamic model to each time series separately. They are displayed in Figure 9. We first
tried to fit GARCH models with Gaussian and unknown innovations but these models were rejected, using
the tests proposed in Ghoudi and Rémillard (2013, 2018). In order to fit this dataset better, we propose to
use regime switching models for the dynamics of each time series. Recall that in a regime-switching model
(X4, 71t), the regimes 7 € {1,...,¢} are not observed and they are modeled by a finite Markov chain with
transition matrix (). Then, given the regimes 7 = i1, ..., 7, = i,, the variables X1,..., X,, are independent
with distribution functions F1) ... F(n) where FUU) and f) are respectively the cdf and the density under
regime j € {1,...,¢}.

According to Rémillard et al. (2017), if n;—1(j) is the probability of being in regime j € {1,...,¢} at
time t — 1 given the past observations X7i,..., X;_1, then the conditional distribution of X; given the past
has distribution function Fy(z) = Y2'_, FO(2)W;_1(i), with density fi(z) = r_, fO(x)W;_1 (i), where
Wi_1(i) = Z?:l n¢—1(j)@;: is the probability of being in regime j at time ¢ given the past observations. It
then follows that the sequence V; = F;(X;) are i.i.d. uniform random variables.

Here, to simplify the presentation, we choose Gaussian distributions with mean p and standard deviation
o depending on the regimes. Using the goodness-of-fit test proposed in Rémillard et al. (2017), we find
that the optimal number of regimes for both financial time series is two, with p-values of 13.4% and 9.7
% respectively, using 1000 bootstrap samples. The estimated parameters for both time series are given in
Table 2.

Monthly returns of Apple from Dec 1996 to Oct 2017
T T

I
2010 2015

Figure 9: Variation of Apple and Nasdaq index over time.

Table 2: Estimated parameters for Apple and the Nasdaq index using Gaussian hidden Markov models. Here, v is the stationary
distribution of the regimes.

Apple Nasdaq

Parameter Regime 1 Regime 2 Regime 1 Regime 2

p 0.0052 0.0304  -0.0098  0.0132
o 0.1917 0.0776 0.1067 0.0412
v 0.2940 0.7060 0.2820 0.7180
0.9635 0.0365 0.9607  0.0393
Q ( 0.0152  0.9848 ) ( 0.0154  0.9846 )
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From now on, let X denotes the monthly returns of the Nasdaq index and let Y denotes de monthly
returns of Apple. Let G; and F; be the conditional distributions of Y; and X; given the past observations, as
defined previously. Further set U; = G¢(Y;) and V; = F3(X;). As proposed in Nasri and Rémillard (2017), let
C} be the copula associated with (U, V). Since F; and Gy are not known exactly, (Uy, V;) is never observed
and one has to use the pseudo-observations u;, = G, (Y;) and vy, = Fi,(Y:), where F;,, and Gy, are
computed with the parameters of Table 2. As shown in Nasri and Rémillard (2017), the pseudo-observations
(wt,n,e,n) can be used as if (Uy, Vi) were observed, as long as one takes the ranks to estimate the copula and
its parameters.

Next, to check whether the copula is time-dependent, we performed a change-point test as in Rémillard
(2013). We got a p-value of 3.4%, so we do conclude that the copula is time-dependent. Since the simplest
model to implement is a linear case for 7, i.e., 7w = 1/ (1 + e’eo’elt/”), this is what we try first, applying this
to five copula families: Clayton, Gumbel, Frank, Gaussian and Student. We did not considered the Frank
family for the Monte Carlo experiments described in Section 4, but for a goodness-of-fit test, one can consider
it even if it takes a long time to compute. The results of the goodness-of-fit tests for the five copula families
are displayed in Table 3, together with the computation time. Clearly, the best model is the Gaussian copula
for which one gets 8p = —1.1601 and #; = 1.4751. The corresponding values of p; are displayed in Figure 10,
while the conditional 5% expected shortfall and the conditional expectation of the return of Apple given the
Nasdaq index for November 2017 are displayed in Figure 11.

Table 3: P-values in percentage calculated with N = 100 bootstrap samples.

Copula family

Statistic Clayton Gumbel Frank Gaussian Student
Kolmogorov-Smirnov 0 25 26 91 8
Cramér-von Mises 0 33 14 65 10
Computation time (sec) 14 20 1183 13 159
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Figure 10: Graph of p; for the Gaussian copula.
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Figure 11: Copula-based conditional expectation estimator (plain line) and 5% conditional expected shortfall (dashed line) for the
next month returns of Apple given Nasdaq returns.
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6 Conclusion

Statistical risk management is of great importance in finance, hydrology and many other fields of applications.
For example, in the last two decades, one has witnessed the development of a number of statistical modeling
approaches for extreme quantile functions in the presence of non-stationarity of the variable of interest and/or
the covariates.

In this paper, we proposed a copula-based approach to estimate non-stationary marginal, copula and con-
dition distribution functions. Doing aso we were able to propose estimators for conditional quantile functions,
conditiona expectations, and conditional expected shortfalls. More precisely, we assumed a parametric model
for the time-dependent copula function and the time-dependent marginal distribution of the response vari-
able, while we used a combination of nonparametric and time-dependent parametric models for the marginal
distributions of the covariates, depending whether they are stationary or not. Under some smoothness con-
ditions, the asymptotic normality of the proposed estimators is obtained. Also, we proposed a bootstrap
procedure in order to construct uniform confidence bands around functionals of the conditional distribution,
As a by-product, we obtained a formal goodness-of-fit test, and through Monte Carlo experiments, we were
able to show that the proposed tests are powerful enough. Finally, to illustrate the approach, we considered
three applications, one with simulated data, one using a hydro-climatic dataset, and one with a financial
dataset. Finally, note that the proposed methodology can easily be adapted to a large number of covariates,
by using vine copula structures as in Kraus and Czado (2017) and Rémillard et al. (2017).

A Proofs of the main results

In this section, we study the asymptotic behavior of the estimators, and we prove the validity of both the
bootstrap algorithm and the goodness-of-fit test.

A.1 Proof of Theorem 1

Recall that G; = Gg(). Under the smoothness assumptions of the copula density cg, and ¢(t,8), one gets
h c¢(t 0.,) Un t7Vn t)

0 = —1/2
tz; Colt, 9n)(Un t» Vn, t)
ol vCi(Ut, Vi) ét(Utth)vth(Ut,Vt)T
— . ]FT X
Z { ct(Ut, Vi) (U, Vy) 1t (X)

_ 8 ¢ U A\ ) ¢ (Ut,Vt)auCt(Ut Vt)
1 t ty t - t ) -
Z { Ct Ut, Vt) C?(Uu Vt) Gn’t(Y;) 1nOn tor(1)

W, +/ /Rd[ —1ZhT {V e fu, By (x )}_ét{u7Ft(x)}Vth{U»Ft(X)}T}At(x)ft(x)

P c{u, Fi(x)}
n_lih:/

(0,1)d+1

dul, (x)dx

{Buc't(u, v) — } Gy o Qtl(u)TBtdudvl b,
-710, + Op(l)

W, + / In(X)A, (x)dx + Kb, — IO, + op(1).
Rd

Then, as n — 00, (by, Ap, Wy, ©,,) converges in law to (b, A, W, @), the limit of ®,, can be deduced. Note in
passing that E(bWT) = E(qWbT) = E(@qWWT) =0, for any j ¢ £, while for any j € £ and any v; € [0,1],
E{bIB%;»r (v;)) = E{B;(v;)WT} = 0. This results will be useful in the proof of Theorem 3. O

A.2 Proof of Theorem 2

The asymptotic behavior of the parametric quantile process, follows readily from the Delta method (van der
Vaart and Wellner, 1996). It is also similar to the proofs in Rémillard et al. (2017). O
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A.3 Proof of Theorem 3

First, we need an auxiliary result, which is an easy extension of the work of Genest and Rémillard (2008) to
the non-stationary case. To this end, set

auct(Ut*7 ‘/t*)

Un=n"'1 3 B GY) "o (34)
t=1 o T

My =t SO B Gy 2oV Ve )Duca U V)G V) By

t * 1/* ’ (35)
=1 K cg(Ut 7‘/t )
s (U VE)
£ =n 3@ YT (X =2 s L (%)
=1 tor V't

) n By, Ct(U Vv )3 Ct(U Vo ) (J)(X* )TQ
EU = 51 (4) TF(J) (X7) =2 t> Yt tr vt . '
§ ;Q ") TR . jéc (37)

For the proof of the theorem, we need the following auxiliary lemma.

Lemma 1 Let (Y, XY}),..., (Y., X>) be an independent copy of (Y1,X1),...,(Yn,X,), and denote by P,
the joint distribution of the latter. Next, define

( ) F(j)(xj)v JE L,
Ti) = i .
A Fﬁ?)(t,qm)(l’j)’ J¢L.

Further let P}, be the distribution defined by the log-likelihood ratio

b = o | SR (07, XD (. X0)| 39

(J)

zn:lo {gﬁ(t o) (Y ]+Z§n:10 .,<J>(t,qn)(Xt*j)

=1 g,B(t bo jert=1 f’)‘(J)(t qo)(X*)

n C(t,0,) {Gmt,bn)(y ), F, (]&( <j>)(XZ})}
=1 Ce(1,00) (Ut VY) ’

where Uf = Ggp,)(Yy) and Vi = Fy(X3), t € {1,...,n}. Finally, let S}, by, Vi, a5, Wy, I, be defined
by (6), (7), (10), (11), (16), and (17), using (Y7, X7),..., (Y., X>). Under the smoothness assumptions
and conditions of Theorem 1, (b, ©,,A,, b5, ©% A* (.) converges in law to (b,0, A b+ OL AL (), where
(b, ©L, AL) is an independent copy of (b,®, A), and

¢ = b'Sbt - bTSb + Z{ g TY@ (qU))+ — ;(q(j))TV(j)q(j)} +OTwt - %G)I@ (39)
JEL
oyl %[,TM[, 'y {(q(j))T(g(j))l _ ;(qm)rqu(j)}
igt
BTE@W e - )Y E (g(j)WT> @Y E ( )
JjéL JEL

Furthermore, EUbT) = E(EWbT) =0 and EUAT) = E(EWAT)0, so E(e’) =

By construction, it is obvious that (b,,®,,A,,b%, ©* A*) converges in law to (b, ®, A, bt @1 AL),
where (b, ®1, A1) is an independent copy of (b, ®,A). Next, it follows from the results of Sections 2.1-2.4
and the proofs in Genest and Rémillard (2008) that
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* [ K 1 * j )1 * i)\ * 1 j )\ * j
la = 0S50, — b8k, + [{q&P}T{v,sﬁ} {a}y — S} T ) {qﬁﬁ}]
JEL

1 1
+OIW] — 50,10, + byl — b, M;b,

] )\ * 1 i DREPV] * *
+y° [{qSL”}T{s,@} — S{a}{ED) q,&”] — b E{U; W) T e,
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Hence, ¢, converges in law to ¢ given by (39). It is easy to check that E(Ub") = E(EWbT) = 0 and
E(UAT) = E(EWAT)0, so E(e) = 1. This completes the proof of the lemma.

We can now complete the proof of Theorem 3. As in Genest and Rémillard (2008), the idea of the proof
is to use LeCam’s third Lemma (van der Vaart and Wellner, 1996). Using Theorem 2 and Lemma 1, we get

(bna ®n7Wn7Anauna£n7 b:;,>®:17W27A:7,7U* g*) ~ (b>®7W7A7u757 bLa ®L7wl,AL7uL,5L) )

n»+~n

where (b, ©+, W A+ 1Y+, £L) is an independent copy of (b,®, W, A, U, E). Since £, converges in law to
¢ given by (39), and (U7, V7),..., (U}, Vy) have joint distribution P}, it follows from Lecam’s third lemma
that for any bounded continuous function E of the variables (b, ©,,, Wy, Ay, Uy, En, b2, OF WX AX UX EX),
E{E(by, @, Wy, Ap, Uy, &y, b5, O8 W AX UX EX)} converges as n — 00 to

E{Z(b,0,W, AU, E 0", 0" WA U E)} = E{e'E (6,0, W,A U, E,b, 07 WH AT UL E4) .

Now, using representation (39) and the fact that the joint distributions are Gaussian, one obtains eas-
ily that b* = b + b+, for any j ¢ £, (q¥))* = q) + (q¥))*. Next, take j € L£. Tt follows that if
B;j(vj) = %ﬂztzl I(Vi; < wvj), v; € [0,1], then By, ~ By = le. As a result, nl/g(vnj —v;) =

n!/? {Fy(ft)(xj) - Ft(xj)} = By;(vj), so

n'/? {(Fg,)t)*(xj) - Uj} =B}, (vnj) + Bnj(v;) ~ B;(v;) + By (v)).

Furthermore, ®* = © + ©". Combining these results, one gets that A* ~» A + At. To complete the
proof, set v = Fy(x). It follows from the Delta Method, Theorem 2, and the previous calculations that if
u = Ggu(y), then, using (19), one obtains
nt/? {Kr iy, x) = Ki(y,x)} = Dy (u,v) " h®F + VD (u, v)A (x)A% (x)
+0:{u, v}VsGa)(y) ' Bib}, + op(1)
~ Dy(u,v) Thy (OF + ©) + VyDy(u, v)Au(x) {AH(x) + Ax)}
+0¢(u, V) VG (y) " Be (b +b)
= K (y.%) + Ki(y,x),

where K is an independent copy of K;. As a result, KS}, e ,Kgp converge to independent copies of K;.
Similarly, using (18), one gets that ]HIS;, . ,Hg,\? converge to independent copies of H;. O

A.4 Proof of Corollary 1
It follows from Theorem 2 that

Ki(y,x) = © "/ D{Gp() (1), v} + Ge(¥)dg(1){Gpt)(¥), v} + Fe(x) TV Dy {Gpr) (). v}-

The rest of the proof is an adaptation of Ghoudi and Rémillard (1998, Theorem 2.1) with » = 1. The only

new assumptions are the ones guaranteeing the convergence of u,(K)(u) = 237" K. {Qy(u,X;), X;)} to

T n

u(K) (u). O
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