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Université du Québec à Montréal, ainsi que du Fonds de recherche du
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Abstract: In this paper, we consider non-stationary response variables and covariates, where the marginal
distributions and the associated copula may be time-dependent. We propose estimators for the unknown pa-
rameters and we establish the limiting distribution of the estimators of the copula and the conditional copula,
together with a parametric bootstrap method for constructing confidence bands around the estimator and
for testing the adequacy of the model. We also consider three examples of functionals of the copula-based
model under non-stationarity: conditional quantiles, conditional mean, and conditional expected shortfall.
The asymptotic distribution of the estimation errors is shown to be Gaussian, and bootstrapping methods
are proposed to estimate their asymptotic variances. The finite sample performance of our estimators is in-
vestigated through Monte Carlo experiments, and we show three examples of implementation of the proposed
methodology.

Keywords: copula, covariates, non-stationarity, conditional distribution
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1 Introduction

In many applications, the relationship between a response variable and covariates is often assumed to be

linear or a known function of a linear combination of the covariates. Recently, copula-based models have

been introduced to model the general dependance between the response and covariates in a stationary setting.

For example, Noh et al. (2013) proposed an estimator of the conditonal mean, while Noh et al. (2015), Kraus

and Czado (2017), and Rémillard et al. (2017) were interested in conditional quantiles.

However, in practice, data are typically non-stationary. For example, in hydrology, because of climate

change, the distribution of an hydrological time series is likely to change over time and/or according to some

time-dependent covariates. In the literature, some attempts have been made to deal with non-stationarity

for copula-based models. Recently, Jiang et al. (2015) modeled the dependence between bivariate response

variables by letting the copula parameters depend on covariates. Ahn and Palmer (2016) did something

similar. They proposed to use pseudo-mle for the estimation of parameters but they did not study the

convergence of the proposed estimators. Note that in the stationary case, their model is a particular case

of the so-called single-index copula (Fermanian and Lopez, 2015) where the copula between the multivariate

responses is indexed by a parameter depending on covariates.

However, in this paper, we propose to model the joint distribution of the response and covariates, which

is more general than the single-index copula setting. Furthermore, in view of applications, we consider only

a univariate response but our results can be extended to multivariate responses, which could be used for

considering spatial dependence. This problem will be investigated in a forthcoming paper. More precisely,

the main objective of the present paper is to propose a flexible model by allowing three extensions of the

copula-based method. First, we assume a parametric model for the distribution of the response variable

over time; it makes more sense in the non-stationary setting and it can be useful in some applications

such as computing conditional quantiles for extreme cases. Second, we consider a combination of time-

dependent and i.i.d. covariates. The distribution of the i.i.d. covariates is estimated nonparametrically by

using the empirical distribution functions, while parametric estimators are used to fit the distribution of the

time-dependent covariates. To distinguish between these two types of covariates, one can use for example

change-point tests (Rémillard, 2012, 2013; Holmes et al., 2013). Third, we model the dependence between

the variable of interest and the covariates by fitting a (time-dependent) parametric family of copulas.

The paper is organized as follows: in the next section, we establish the limiting distribution of the estima-

tors of the copula and the conditional copula, together with a parametric bootstrap method for constructing

confidence bands around the estimator and for testing the adequacy of the model. The proofs of these results

are given in Appendix A. Next, in Section 3, we consider three examples of functionals of the copula-based

model under non-stationarity : conditional quantiles, conditional mean, and conditional expected shortfall.

The asymptotic distribution of the estimation errors is shown to be Gaussian, and bootstrapping methods

are proposed to estimate their asymptotic variances.

The finite sample performance of our estimators is investigated in Section 4 through Monte Carlo exper-

iments, while in Section 5, the usefulness of our method is illustrated with one simulated dataset and two

case studies, one from hydro-climatology and the other one from finance. Section 6 provides a conclusion.

2 Estimation of joint and conditional distributions

For t ∈ {1, . . . , n}, Xt = (Xt1, . . . , Xtd) is a covariate vector of dimension d ≥ 1, and Yt is the response

variable of interest. In what follows, we assume that (Y1,X1), . . . , (Yn,Xn) are independent observations,

where (Yt, Xt1, . . . , Xtd) has continuous margins
(
Gt, F (1)

t , . . . , F
(d)
t

)
and copula Ct with density ct, for any

t ∈ {1, . . . , n}. Recall that according to Sklar (1959), and since the margins are continuous, for any t ∈
{1, . . . , n} there exists a unique copula Ct such that for all y ∈ R and for all x = (x1, . . . , xd) ∈ Rd, one has

Ht(y,x) = P (Yt ≤ y,Xt ≤ x) = Ct{Gt(y),Ft(x)}, (1)
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where Ft(x) =
(
F

(1)
t (x1), . . . , F

(d)
t (xd)

)>
, and Ct is the joint distribution function of (Ut,Vt), with Ut =

Gt(Yt) and Vt = Ft(Xt). Further denote by Kt(y,x) the conditional distribution function of Yt given Xt = x.

Then

Kt(y,x) = P(Yt ≤ y|Xt = x) = Dt{Gt(y),Ft(x)}, y ∈ R,x ∈ Rd, (2)

where Dt(u,v) is the conditional distribution function of Ut given Vt = v (Rémillard, 2013), defined by

Dt(u,v) =
∂v1 · · · ∂vdCt (u, v1, . . . , vd)

∂v1 · · · ∂vdCt (1, v1, . . . , vd)
, u ∈ (0, 1),v = (v1, . . . , vd) ∈ (0, 1)d.

We also assume that Gt = Gβ(t,b), for a given parametric family of distribution {Gβ(t,b); b ∈ B} where B is a

parametric space of b and β(t, b) is a function of time. This modelling hypothesis is needed in order to take

care of the non-stationarity and to estimate quantiles associated to extremal values, i.e., when α is close to 0

or 1. We also assume that for any t ∈ {1, . . . , n}, the copula Ct belongs to a parametric family of copula

{Cφ(t,θ) : θ ∈ O} having a continuous density cφ(t,θ0) on (0, 1)1+d for any φ, where O is a parameter space

of θ and φ(t,θ) is a function of time.

Suppose for the moment that bn, Fn,t =
(
F

(1)
t,n , . . . , F

(d)
t,n

)>
, and θn are consistent estimator of b, Ft,

and θ respectively; particular cases of consistent estimators are proposed in Subsections 2.1–2.3. Then it

follows from (1) that a consistent estimator Hn,t(y,x) of Ht(y,x) is given by

Hn,t(y,x) = Cφ(t,θn){Gβ(t,bn)(y),Fn,t(x)}, (y,x) ∈ R× Rd. (3)

Next, for a given t and x, it follows from (2) that a consistent estimator Kn,t(y,x) of Kt(y,x) is given by

Kn,t(y,x) = Dφ(t,θn){Gβ(t,bn)(y),Fn,t(x)}, y ∈ R. (4)

We now proposed specific consistent estimators bn, θn and Fn.

2.1 Estimation of b

There is no loss of generality in assuming that for any t ∈ {1, . . . , n}, β(t,b) = Btb, where b ∈ B is an

unknown parameter, B is the parameter space for b, and Bt is a given matrix. For example, β can be a

polynomial function (linear, quadratic, etc.) or a piecewise parametric function, e.g., a B-spline function

(Stone and Koo, 1986; Hastie and Tibshirani, 1990), as long as there is no smoothing parameter, in order

to have n1/2 consistency. In particular, a linear function β(t, b) can be written as β(t, b) = b0 + b1t = Btb

with b = (b0, b1)> and Bt = (1, t). To estimate the parameter b of the function β(t,b), we suggest to use a
maximum likelihood estimator, i.e.,

bn = arg max
b∈B

n∑
t=1

log
{
gβ(t,b)(Yt)

}
. (5)

From now on, we assume that the density gβ satisfies the smoothness conditions R1–R3 of Serfling (1980,

p.144–145), meaning that it is thrice continuously differentiable and locally bounded by integrable functions

with respect to β, with (column) gradient and Hessian matrix denoted by ġt and g̈t at β(t,b0). Further

assume that the sequence B>t
ġt(Yt)
gt(Yt)

satisfies Lindeberg’s condition (Billingsley, 1995, p.359),

Sn = n−1
n∑
t=1

B>t ġt(Yt)ġt(Yt)
>Bt

g2t (Yt)
(6)

converges in probability to S, and n−1
∑n
t=1

B>
t g̈t(Yt)Bt
gt(Yt)

converges in probability to 0, as n→∞. Finally, set

bn = n1/2(bn − b0), where b0 is the true value of the parameter.

As a result of these hypotheses, a Taylor expansion as in Serfling (1980, p.145) yields

Snbn = n−1/2
n∑
t=1

B>t ġt(Yt)

gt(Yt)
+ oP (1). (7)
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In particular, Lindeberg’s CLT can be applied to deduce that bn converges in law to b ∼ N
(
0,S−1

)
, where S−1

is the Moore-Penrose inverse of S. As a by-product, the last result together with the Delta method (van der

Vaart and Wellner, 1996) yields that for any given t ∈ {1, . . . , n}, and uniformly in y ∈ R,

Gn,t(y) = n1/2{Gβ(t,bn)(y)− Gt(y)} Gt(y) = Ġt(y)>Btb, (8)

with Ġt(y) =
∫ y
−∞ ġt(z)dz.

2.2 Estimation of Ft

Here, the marginal distributions are estimated according to whether they depend on time or not. First, let

L be the set of indices j ∈ {1, . . . , d} such that F
(j)
t is independent of t ∈ {1, . . . , n}. For any j ∈ L, F (j)

is estimated by F
(j)
n (xj) =

1

n+ 1

n∑
t=1

I(Xtj ≤ xj), which is, up to a factor, the empirical cumulative distri-

bution function of X1j , . . . , Xnj . Here, I stands for the indicator function. It is well-known that F(j)
n,t(xj) =

n1/2
{
F

(j)
n (xj)− F (j)(xj)

}
converges in law to Bj{F (j)(xj)}, where Bj is a Brownian bridge, i.e., a contin-

uous centered Gaussian process with covariance function Cov{Bj(s),Bj(u)} = min(s, u) − su, s, u ∈ [0, 1].

Next, for any j 6∈ L, the distribution is time-dependent, and we assume that F
(j)
t = F

(j)

γ(j)(t)
, where

γ(j)(t) = γ(j)(t,q(j)) = Q
(j)
t q(j), for some given matrix function Q

(j)
t . We set γ

(j)
n (t) = Q

(j)
t q

(j)
n , where q

(j)
n

is a consistent estimate of q(j) ∈ Q, where Q is a space parameter. To simplify notations, we still use Fn,t
to denote the estimation of Ft. For the estimation of q(j) we propose to use the MLE defined by

q(j)
n = arg max

q∈Q

n∑
t=1

log
{
f
(j)

γ(j)(t,q)
(Xtj)

}
, (9)

where f
(j)
t = f

(j)

γ(j)(t,q(j))
is the density of F

(j)
t .

We assume that the density f
(j)

γ(j)(t,q(j))
with respect to γ(j) satisfy the smoothness conditions R1–R3 of

Serfling (1980, p.144–145) defined in Section 2.1, with (column) gradient and Hessian matrix denoted by ḟ
(j)
t

and f̈
(j)
t at γ(j)(t,q

(j)
0 ). Further assume that the sequence

{
Q

(j)
t

}>
ḟ
(j)
t (Xtj)

f
(j)
t (Xtj)

satisfies Lindeberg’s condition,

Vn,j = n−1
n∑
t=1

[
Q

(j)
t

]>
ḟ
(j)
t (Xtj)ḟ

(j)
t (Xtj)

>Q
(j)
t{

f
(j)
t (Xtj)

}2 (10)

converges in probability to Vj , and n−1
∑n
t=1

[
Q

(j)
t

]>
f̈
(j)
t (Xtj)Q

(j)
t

f
(j)
t (Xtj)

converges in probability to 0, as n→∞.

As a result of these hypotheses, one obtains that

Vn,jq(j)n = n−1/2
n∑
t=1

[
Q

(j)
t

]>
ḟ
(j)
t (Xtj)

f
(j)
t (Xtj)

+ oP (1), (11)

where q
(j)
n = n1/2

(
q
(j)
n − q

(j)
0

)
. In particular, Lindeberg’s CLT can be applied to deduce that q

(j)
n converges

in law to q(j) ∼ N
(

0,V−1
j

)
, where V−1

j is the Moore-Penrose inverse of Vj . As a by-product, the last result

together with the Delta method yields that for any given t ∈ {1, . . . , n}, and uniformly in xj ∈ R,

F(j)
n,t(xj) = n1/2

{
F

(j)
n,t (xj)− F

(j)
t (xj)

}
 Ḟ

(j)
t (xj)

>Q
(j)
t q(j) for j 6∈ L, (12)

with Ḟ
(j)
t (y) =

∫ y
−∞ ḟ

(j)
t (z)dz.
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To write the results in a uniform way, define

Fn,t(x) =
(
F(1)
n,1(x1), . . . ,F(d)

n,t(xd)
)>

, Ft(x) =
(
F(1)
1 (x1), . . . ,F(d)

t (xd)
)>

,

where F(j)
t = A(j)

t (xj)A(j)(xj), with

A(j)
t (xj) =

{
1, if j ∈ L,
Ḟ

(j)
t (xj)

>Q
(j)
t , if j 6∈ L,

(13)

A(j)(xj) =

{
Bj ◦ F (j)(xj), if j ∈ L,
q(j), if j 6∈ L. (14)

Then, under the smoothness assumptions, Fn,t = AtAn  AtA = Ft for any t ∈ {1, . . . , n}, where At is the

diagonal matrix with elements A(j)
t and

An = (A(1)
n , . . . ,A(d)

n ) with A(j)
n (xj) =

{
F(j)
n,t(xj), if j ∈ L,

q
(j)
n , if j 6∈ L.

It follows from their representations as sums of functions of the independent variables (Yt,Xt) that (bn,An)

converges jointly in law to (b,A)

2.3 Estimation of θ

As for the parameters β and F
(j)
t with j 6∈ L, we consider similar assumptions on the parameter of the

copula family, namely that φ(t,θ) = htθ, for a given matrix function ht and θ belongs to a parameter space

denoted O.

Next, recall that Ut = Gβ(t,b0)(Yt) and Vt = Ft(Xt), with joint law Cφ(t,θ0) on [0, 1]d+1, are not ob-

servable. For the estimation of the copula parameter θ, we will use an hybrid technique, using possibly

parametric and nonparametric estimates for the marginal distributions, depending if the components of Ft
are time-dependent or not. Since the distribution of Yt is time-dependent, we estimate Ut by the parametric

estimator Un,t = Gβ(t,bn)(Yt), as in the so-called IFM method (Xu, 1996; Joe and Xu, 1996), while the

estimate of Vt is Vn,t = Fn,t(Xt), for any t ∈ {1, . . . , n}. Based on the pseudo-observations (Un,t,Vn,t),

t ∈ {1, . . . , n}, we then use the pseudo MLE

θn = arg max
θ∈O

n∑
t=1

log
{
cφ(t,θ)(Un,t,Vn,t)

}
. (15)

It follows from an easy adaptation of Genest et al. (1995) and Shih and Louis (1995) that θn is a n1/2-

consistent estimator of θ, if cφ is smooth enough. The exact convergence result is given in Theorem 1

below. Assume that cφ is twice continuously differentiable with respect to u,v, and that with respect to φ,

cφ satisfies the smoothness conditions R1–R3 of Serfling (1980), defined in Section 2.1. For simplicity, set

ct = cφ(t,θ0), and denote by ċt (resp. c̈t) the gradient (Hessian matrix) of ct with respect to φ.

Wn = n−1/2
n∑
t=1

h>t ċt(Ut,Vt)

ct(Ut,Vt)
, (16)

In = n−1
n∑
t=1

h>t ċt(Ut,Vt)ċ
>
t (Ut,Vt)ht

c2t (Ut,Vt)
. (17)

Further set

Jn(x) =

∫ 1

0

[
n−1

n∑
t=1

h>t

{
∇vċt{u,Ft(x)} − ċt{u,Ft(x)}∇vct{u,Ft(x)}>

ct{u,Ft(x)}

}
At(x)ft(x)

]
du,
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where ft(x) =
∏d
j=1 f

(j)
t (xj), and

Kn = n−1
n∑
t=1

h>t

[∫
(0,1)d+1

{
∂uċt(u,v)− ċt(u,v)∂uct(u,v)

ct(u,v)

}
Gt ◦ G−1t (u)>dudv

]
Bt.

Theorem 1 Suppose that Lindeberg’s condition is satisfied for the sequence
h>
t ċt(Ut,Vt)
ct(Ut,Vt)

, t ∈ {1, . . . , n}. Also

assume that uniformly on x, (Jn(x),Kn, In) converges in probability to (J(x),K, I), with I invertible,

and n−1
∑n
t=1

h>
t c̈t(Ut,Vt)ht
c2t (Ut,Vt)

converges in probability to 0. Set Θn = n1/2(θn − θ0). Then, as n → ∞,

(bn,An,Wn,Θn) converges in law to (b,A,W,Θ), where W ∼ N(0, I) and

Θ = I−1
{
W +

∫
Rd
J(x)A(x)dx + Kb

}
.

Moreover, b, A and W are independent Gaussian processes.

2.4 Convergence of the joint distribution and conditional distribution estimators

For t ∈ {1, . . . , n}, y ∈ R, and x ∈ Rd, set Hn,t(y,x) = n1/2 {Hn,t(y,x)−Ht(y,x)}, and Kn,t(y,x) =

n1/2 {Kn,t(y,x)−Kt(y,x)}. To simplify notations, set Ċt(u,v) = ∇φCφ(t)(u,v)
∣∣
φ=φ(t)

and Ḋt(u,v) =

∇φDφ(t)(u,v)
∣∣
φ=φ(t)

. Throughout this section, we assume that these derivatives are continuous. From now

on, the convergence in law means convergence in law in the space of continuous functions, equipped with the

supremum norm. The next theorem states the weak convergence of the processes Hn,t and Kn,t.

Theorem 2 Suppose that the smoothness conditions hold, together with the assumptions of Theorem 1. Then,

as n→∞, Hn,t converges in law to a continuous centered Gaussian process Ht, where for any y ∈ R, x ∈ Rd,

Ht(y,x) = Θ>h>t Ċt{Gt(y),Ft(x)}+ Gt(y)∂uCφ(t,θ0){Gt(y),Ft(x)}+ Ft(x)>∇vCφ(t,θ0){Gt(y),Ft(x)}. (18)

Furthermore, given Xt = x, as n→∞, Kn,t converges in law to a continuous centered Gaussian process Kt,
where for any y ∈ R,

Kt(y,x) = Θ>h>t Ḋt{Gt(y),Ft(x)}+Gt(y)∂uDφ(t,θ0){Gt(y),Ft(x)}+Ft(x)>∇vDφ(t,θ0){Gt(y),Ft(x)}. (19)

2.5 Parametric bootstrap

Let bn,θn,Fn,t be the estimators of (b0,θ0,Ft), t ∈ {1, . . . , n}.

Algorithm 1 For each k ∈ {1, . . . , N}, repeat the following steps:

• generate (U?t ,V
?
t ) ∼ Cφ(t,θn), and compute Y ?t = G−1β(t,bn)(U

∗
t ), X?

t = F−1n,t(V
?
t ), t ∈ {1, . . . , n};

• estimate b0 and Ft by b?n and F?n,t, using (Y ?1 , X
?
1 ), . . . , (Y ?n ,X

?
n).

• calculate the pseudo-observations U?n,t = Gβ(t,b?n)(Y
?
t ), and V?

n,t = F?n,t (X?
t ), t ∈ {1, . . . , n};

• estimate θ0 by using
(
U?n,1,V

?
n,1

)
, . . . ,

(
U?n,n,V

?
n,n

)
;

• compute H?
n,t(y,x) = Cφ(t,θ?n)

{
Gβ(t,b?n)(y),F?n,t(x)

}
;

• compute K?n,t(y,x) = Dφ(t,θ?n)
{
Gβ(t,b?n)(y),F?n,t(x)

}
;

• set H(k)
n,t(y,x) = n1/2

{
H?
n,t(y,x)−Hn,t(y,x)

}
, K(k)

n,t(y,x) = n1/2
{
K?n,t(y,x)−Kn,t(y,x)

}
, and W

(k)
n,t =

Dφ(t,θ?n)
(
U?n,t,V

?
n,t

)
, t ∈ {1, . . . , n}.

The next result shows the validity of the proposed bootstrap procedure.

Theorem 3 Under the smoothness conditions and the assumptions of Theorem 1, as n→∞, H(1)
n,t, . . . ,H

(N)
n,t

converge to independent copies of Ht and K(1)
n,t, . . . ,K

(N)
n,t converge to independent copies of Kt.

As a by-product of this algorithm, we obtain a formal goodness-of-fit test of the model.



6 G–2017–102 – Revised Les Cahiers du GERAD

2.6 Goodness-of-fit test

A visual assessment of the adequacy of the model is provided by the graph of the pseudo-observations

Wn,t = Kn,t(Yt,Xt) = Dφ(t,θn)(Un,t,Vn,t) over time, since W1,n, . . . ,Wn,n are approximately independent

and uniformly distributed over (0, 1) if the model is correct. This is due to the fact that the values Wt =

Kt(Yt,Xt) = Dφ(t)(Ut,Vt) are independent and uniformly distributed over (0, 1). In addition, it follows

from Rosenblatt (1952) that Wt is independent of Xt for all t ∈ {1, . . . , n}. As a result, a formal test of

goodness-of-fit can be based on functionals of the empirical process

Dn(u) = n1/2

{
1

n

n∑
t=1

I(Wn,t ≤ u)− u

}
, u ∈ [0, 1].

The derivation of the limiting process D, which is a continuous centered Gaussian process, is quite complicated

but it can be done using the tools developed in Ghoudi and Rémillard (1998). The exact form of the limit

D is given in Corollary 1 below. Note that we can use a bootstrapping technique to generate independent

asymptotic copies of the limiting process D. In fact, we can use the bootstrapped values W
(k)
n,t , t ∈ {1, . . . , n},

k ∈ {1, . . . , N}, generated in Algorithm 1. This way, one can define, for any k ∈ {1, . . . , N},

D(k)
n (u) = n1/2

{
1

n

n∑
t=1

I
(
W

(k)
n,t ≤ u

)
− u

}
, u ∈ [0, 1].

More precisely, if N is large enough, say N = 1000, and T is a continuous functional over the set of continuous

functions on [0, 1], then an approximate P -value for the statistic Sn = T (Dn) is given by

1

N

N∑
k=1

I
(
S(k)n > Sn

)
,

provided we reject the null hypothesis when Sn is large enough. Here, for any k ∈ {1, . . . , N}, S(k)n =

T
(
D(k)
n

)
. For example, if w1,n < · · · < wn,n are the ordered values of the pseudo-observationsW1,n, . . . ,Wn,n,

one could take the Kolmogorov-Smirnov test statistic given by

KSn = T (Dn) = sup
u∈[0,1]

|Dn(u)| = n1/2 max

{
max

t∈{1,...,n}

∣∣∣∣wn,t −
t

n

∣∣∣∣ , max
t∈{1,...,n}

∣∣∣∣wn,t −
(t− 1)

n

∣∣∣∣} , (20)

or the Cramér-von Mises test statistic

CVMn = T (Dn) =

∫ 1

0

{Dn(u)}2du =
1

12n
+

n∑
t=1

{
wn,t −

(2t− 1)

2n

}2

. (21)

Let c
(d)
t (v) =

∫ 1

0
ct(z,v)dz be the density of the copula associated with Xt. To find the asymptotic

behavior of Dn, one needs to define the following functions for any u ∈ (0, 1):

Zn(u) = n−1
∑
t=1

B>t

∫
(0,1)d

Ġβ(t)

{
G−1β(t)(u)

}
ct{Γt(u,v),v}dv,

Xn(u) = n−1
n∑
t=1

A>t {F−1t (v)}∇vDt{Γt(t,v),v)ct{Γt(u,v),v}dv,

Cn(u) = n−1
n∑
t=1

h>t

∫
(0,1)d

Ḋt{Γt(u,v),v}dt(v)dv.

Further define the process Wn(u) = n−1/2
∑n
t=1{I(Wt ≤ u)− u}, u ∈ [0, 1].

Corollary 1 Assume that the smoothness conditions and the assumptions of Theorem 1 hold. Further assume

that for any u ∈ (0, 1), the functions Zn,Cn,Xn converge to continuous functions Z, C and X respectively.

Then, as n → ∞, Dn converges in law to a continuous centered Gaussian process D = W − µ(K), where W
is a Brownian bridge and µ(K) = Θ>C + b>Z + A>X.
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It then follows from Theorem 3, Corollary 1 and Genest and Rémillard (2008) that Algorithm 1 can also

be used to bootstrap D.

3 Applications to functionals of the conditional distribution

In what follows, we consider three examples of functionals of the conditional distribution: conditional quan-

tiles, conditional mean, and conditional expected shortfalls. The proposed estimators are described next,

together with their asymptotic behavior and bootstrapping methods.

3.1 Estimation of conditional quantiles

The associated quantile function at level α, denoted by Qt(α,x), is given by the left-continuous inverse of

Kt viz.

Qt(α,x) = inf{y ∈ R : Kt(y,x) ≥ α}, α ∈ (0, 1). (22)

Recently, the connection between marginal distribution functions and copulas have been used to find an

explicit expression for the conditional quantile function (Kraus and Czado, 2017; Rémillard et al., 2017). As

a result, the conditional quantile function Qt depends only on the margins Gt, Ft and the copula Ct viz.

Qt(α,x) = G−1t [Γt{α,Ft(x)}] , (23)

where Γt(α,v) is the quantile of order α of the distribution function Dt(u,v), u ∈ [0, 1], with v ∈ (0, 1)d.

Recently, Formula (23) was used by Nasri (2017) and Kraus and Czado (2017) for estimating the con-

ditional quantile copula. They suggested to estimate the marginal distributions by nonparametric methods

and assumed a parametric model for the copula. Expressions of conditional quantile functions for some

well-known copula families were also provided. However, these approaches were proposed for the i.i.d. case

and did not allow for the time-dependence of the distribution of the response, the distributions of covariates,

or the copula function.

Next, let G−1β(t,bn)(·), Γφ(t,θn)(·,v) and Qn,t(·,x) be the (left-continuous) inverse functions of Gβ(t,bn)(·),
Dφ(t,θn)(·,v) and Kn,t(·,x) respectively. It then follows from (4) and (23) that a consistent estimator of

Qt(α,x) is given by

Qn,t(α,x) = G−1β(t,bn)
[
Γφ(t,θn){α,Fn,t(x)}

]
, α ∈ (0, 1). (24)

Set Qn,t(u,x) = n1/2 {Qn,t(u,x)−Qt(u,x)}, u ∈ [0, 1], and x ∈ Rd. The next corollary states the weak

convergence of the process Qn,t.

Corollary 2 Suppose that the smoothness conditions hold, together with the assumptions of Theorem 1. Then,

given Xt = x, and v = Ft(x), as n → ∞, Qn,t converges in law to Qt, where Qt(u,x) = −Kt{Qt(u,x),x}
ht{Qt(u,x),x} ,

u ∈ (0, 1), and ht(y,x) is the density of Kt(y,x).

In particular, we can show that for any [a, b] ⊂ (0, 1), n1/2 sup
u∈[a,b]

|Qn,t(u,x)−Qt(u,x)| converges in law to

sup
u∈[a,b]

∣∣∣∣Kt{Qt(u,x),x}
ht{Qt(u,x),x}

∣∣∣∣.
Remark 1 Using Algorithm 1 and Corollary 2, one can construct a 95% confidence interval about Qt(α,x).

Set yn,t = Qn,t(α,x), choose N large enough (say N = 10000), and let sN be the standard deviation of the

bootstrapped values K(k)
n,t(y,x), k ∈ {1, . . . , N}. Then a 95% interval for Qt(α,x) is Qn,t(α,x)± 1.96 sN

n1/2hn,t
,

where

hn,t = gβn(t)(yn,t)dφ(t,θn)
{
Gβn(t)(yn,t),vn

}
= gβn(t)(yn,t), dφ(t,θn)

{
Γφ(t,θn)(α,vn),vn

}
,

and where gβ is the density of Gβ. Note that Kn,t(yn,t,x) = α, t ∈ {1, . . . , n}. Furthermore, a uniform

confidence bands about Qt(α,x) for α ∈ [α0, α1], with 0 < α0 ≤ α1 < 1 can also be constructed.
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3.2 Conditional expectation estimator

We cannot use the estimator proposed by Noh et al. (2013) in our non-stationary setting because they used

a weighted mean that cannot estimates E(Yt|Xt = x) for a fixed t. However, there is another estimator that

can be used. It is based on a functional of the conditional distribution. To this end, suppose that Z ∼ K,

where K is a distribution function. Assume that E{|Z|} <∞. Then, one can write

E(Z) =

∫ ∞
0

{1−K(z)}dz −
∫ 0

−∞
K(z)dz. (25)

Based on (25), one has

mt(x) = E(Yt|Xt = x) =

∫ ∞
0

{1−Kt(y,x)}dy −
∫ 0

−∞
Kt(y,x)dy, (26)

while the proposed estimator is

mn,t(x) =

∫ ∞
0

{1−Kn,t(y,x)}dy −
∫ 0

−∞
Kn,t(y,x)dy. (27)

Corollary 3 Suppose that the smoothness conditions hold, together with the assumptions of Theorem 1. As-

sume also that Y has a finite moment of order 2. Then, for given t and Xt = x, as n→∞,

Mn,t(x) = n1/2 {mn,t(x)−mt(x)} = −
∫ +∞

−∞
Kn,t(y,x)dy

converges in law to a continuous centered Gaussian variable Mt(x), where

Mt(x) = −
∫ +∞

−∞
Kt(y,x)dy. (28)

Proof. The proof is based on the fact that for any M > 0,
∫ +M

−M Kn,t(y,x)dy converges in law to∫ +M

−M Kt(y,x)dy, being a continuous functional of Kn,t and that
∫ −M
−∞ Kn,t(y,x)dy and

∫ +∞
M

Kn,t(y,x)dy,∫ −M
−∞ Kt(y,x)dy and

∫ +∞
M

Kt(y,x)dy can all be made arbitrarily small in probability by choosing M large

enough. The rest of the proof is similar to the one of Proposition 3.1 in Genest and Rémillard (2004) and

uses Lemma F.1 in Genest et al. (2017).

Remark 2 Using Algorithm 1 and Corollary 3, one can construct a 95% confidence interval about mt(x).

Choose N large enough (say N = 10000), and let sN be the standard deviation of the bootstrapped values

M(k)
n,t(x) = −

∫ +∞
−∞ K(k)

n,t(y,x)dy, k ∈ {1, . . . , N}. Then a 95% interval for mt(x) is mn,t(x)± 1.96 sN√
n

.

3.3 Conditional expected shortfall

Suppose Z ∼ K, where K is a continuous distribution function with quantile function q. Assume that

E{|Z|} <∞. Then the expected shortfall of level α ∈ (0, 1) can be defined by E(Z|Z < qα). It is then easy

to show that

E(Z|Z < qα) = qα −
1

α

∫ qα

−∞
K(z)dz. (29)

Based on (29), for any α ∈ (0, 1), the conditional expected shortfall is given by

ESt(α,x) = Qt(α,x)− 1

α

∫ Qt(α,x)
−∞

Kt(y,x)dy, (30)

while the proposed estimator is

ESn,t(α,x) = Qn,t(α,x)− 1

α

∫ Qn,t(α,x)
−∞

Kn,t(y,x)}dy. (31)
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Corollary 4 Suppose that the smoothness conditions hold, together with the assumptions of Theorem 1. As-

sume also that Y has a finite moment of order 2. Then, for given t and Xt = x, as n → ∞, En,t(α,x) =

n1/2 {ESn,t(α,x)− ESt(α,x)} converges in law to a continuous centered Gaussian variable Et(α,x), where

Et(α,x) = − 1

α

∫ Qt(α,x)
−∞

Kt(y,x)dy. (32)

Remark 3 Using Algorithm 1 and Corollary 4, one can construct a 95% confidence interval about ESt(α,x),

α ∈ (0, 1). Set yn,t = Qn,t(α,x), choose N large enough (say N = 10000), and let sN be the standard

deviation of the bootstrapped values E(k)
n,t(α,x) = − 1

α

∫ yn,t
−∞ K(k)

n,t(y,x)dy, k ∈ {1, . . . , N}. Then a 95% interval

for ESt(α,x) is ESn,t(α,x)± 1.96 sN√
n

.

Remark 4 One might also be interested in E(Z|Z > qα). In this case, the associated formula is

Qt(α,x) +
1

1− α

∫ ∞
Qt(α,x)

{1−Kt(y,x)}dy, (33)

the estimation is Qn,t(α,x) + 1
1−α

∫∞
Qn,t(α,x){1−Kn,t(y,x)}dy, and the estimation error converges to

− 1

1− α

∫ ∞
Qt(α,x)

Kt(y,x)dy.

The details are left to the reader.

4 Simulation study

In this section we consider six Monte Carlo experiments for assessing the level and power of the pro-

posed goodness-of-fit tests based on Kolmogorov-Smirnov and Cramér-von Mises type statistics defined

in Section 2.6. We generated random samples of size n ∈ {100, 250} from four bivariate copula fami-

lies: Clayton, Gumbel, Gaussian and Student (with ν = 5). In the first four experiments, we consid-

ered a “linear” case, i.e., τt = 1/
(

1 + e−H
(1)
t θ(1)

)
, where H

(1)
t θ(1) = .4055t/n, so that τ1 = .5004 and

τn = 0.6. In the last two experiments, we considered a “quadratic” case, i.e., τt = 1/
(

1 + e−H
(2)
t θ(2)

)
where

H
(2)
t θ(2) = −0.4055 + 2.0637t/n− 2.5055t2/n. Both graphs of τt are displayed in Figure 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6
Linear

Quadratic

Figure 1: Kendall’s tau for the linear and quadratic models with n = 250.

The same four families were used under the null hypothesis. For example, we generated data from

Clayton copula and tested four null hypothesis: Clayton, Gumbel, Gaussian and Student copula. We repeat

this by generating data from Gumbel, Gaussian and Student copulas. Furthermore, for each experiment 1000

replications and in each replication, 100 bootstrap samples (N = 100) were used to compute the p-value of

the test statistics.
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For the first two experiments (linear model with n ∈ {100, 250}), the marginal distributions were assumed

to be unknown but constant, in order to focus only on the copula family under the null hypothesis. Next, for

the last four experiments, we considered Gaussian time-dependent margins for Y ( µt = −0.5t/n, σ = 0.2)

and X (µt = 0.5 + 2t/n, σ = 0.1), and both the linear and quadratic cases for the copula families.

The results of the six experiments are displayed in Table 1. As seen for these results, the levels are not

significantly different from the target level of 5% . Also the power of the goodness-of-fit test is satisfactory,

even with n = 100. As expected, the power increases with the sample size. Furthermore, it follows from

Experiments 1–4 that for the linear case, the proposed goodness-of-fit test perform quite well whether the

margins are constant or linear time-dependent. However, in the quadratic case, the power of the test decreases

in general since there are more parameters to estimate.

Finally, it seems that most of the time, the goodness-of-fit test based on the Cramér-von Mises statistic

is more powerful that the one based on the Kolmogorov-Smirnov statistic.

Table 1: Percentage of rejection for the Kolmogorov-Smirnov test statistic (KS) and Cramér-von Mises statistic (CVM) for a
target level of 5% for the six Monte Carlo experiments. The levels of the tests are displayed in bold.

Copula family under H1

Clayton Gumbel Gaussian Student

H0 KS CVM KS CVM KS CVM KS CVM

Exp. 1: Linear case with unknown constant margins (n = 100)

Clayton 4.5 4.1 30.2 37.9 17.7 20.8 16.3 21.4
Gumbel 47.9 62.7 4.2 4.0 9.2 12.0 8.9 12.3
Gaussian 35.7 45.9 12.8 17.3 5.3 4.5 9.2 11.6
Student 19.8 24.3 7.3 7.7 4.0 4.1 3.3 3.0

Exp. 2: Linear case with unknown constant margins (n = 250)

Clayton 4.4 3.6 72.7 84.6 47.3 58.1 42.2 53.6
Gumbel 92.4 98.2 4.9 5.5 21.1 29.4 18.8 24.6
Gaussian 81.5 92.1 30.2 40.4 6.0 5.7 15.9 24.0
Student 60.5 73.5 19.2 23.6 5.0 4.3 4.2 3.8

Exp. 3: Linear case with estimated Gaussian margins (n = 100)

Clayton 4.3 4.7 29.8 38.6 22.4 28.0 20.4 26.8
Gumbel 54.0 66.9 4.5 5.0 10.3 11.4 12.3 14.8
Gaussian 43.3 52.3 16.9 19.3 4.8 4.3 10.7 13.1
Student 26.8 33.7 9.2 11.1 4.1 4.2 5.0 3.4

Exp. 4: Linear case with estimated Gaussian margins (n = 250)

Clayton 5.8 5.2 67.1 78.0 44.6 55.1 37.8 46.7
Gumbel 91.6 96.5 5.6 5.8 21.7 30.2 21.6 29.6
Gaussian 84.1 91.7 35.5 43.7 5.2 5.6 15.0 21.0
Student 65.2 76.5 21.9 25.9 5.4 6.2 3.9 3.7

Exp. 5: Quadratic case with estimated Gaussian margins (n = 100)

Clayton 5.3 5.4 18.7 23.5 17.7 19.3 12.2 14.3
Gumbel 36.2 44.6 4.7 4.3 10.7 13.2 9.0 11.4
Gaussian 25.5 33.2 9.8 13.8 4.6 5.1 5.4 7.1
Student 18.0 21.8 8.5 8.2 4.2 4.2 3.6 2.7

Exp. 6: Quadratic case with estimated Gaussian margins (n = 250)

Clayton 3.7 3.7 43.4 54.4 30.4 37.6 23.8 30.7
Gumbel 78.4 89.3 4.9 4.7 17.2 23.8 16.1 20.7
Gaussian 60.3 72.4 20.4 27.2 4.1 4.4 8.8 11.1
Student 32.1 40.6 7.4 10.8 3.9 3.8 3.2 2.2

Remark 5 When estimating the parameter ν of the Student copula, we restricted its value to be lower than 25,

since the Student copula converges to the Gaussian copula when ν tends to infinity.

We did not consider the Frank copula family in these simulations because there is no explicit formula

expressing its parameter in terms of Kendall’s tau. Since the latter varies with time, it means that one has

to perform n numerical inversions to obtain the associated parameter for a given τt, t ∈ {1, . . . , n}. To have
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an idea of the computing time required to estimate the parameters when n = 250, we refer the reader to

the last line of Table 3. Performing the goodness-of-fit test for the Frank copula family in the linear case

described previously requires about 20 minutes, while it takes 13 seconds for the Gaussian copula family.

Note also that performing 1000 goodness-of-fit tests with N = 100 bootstrap samples when n = 250 requires

about 116000 seconds on a laptop with 6 cores, even if we were using parallel computing. The construction

of Table 1 below required 3 weeks.

5 Applications

In this section, we illustrate the proposed methodology with one simulated data set suggested in Dette et al.

(2014), and two real data sets. The first application is basically a discussion on the choice of a copula when

the relation between the variable of interest and a covariate is quadratic, so it is assumed that the copula and

the margins are constant. However, in the last two examples, either the margins or the copula vary with time.

5.1 Dette et al. (2014)’s example

In this paper, the authors tried to model the dependance between Xt and Yt, where Yt = (Xt − 0.5)2 + εt,

with εt ∼ N(0, σ2) and σ = 0.1, using a copula-based mean regression model as describe in Section 3.2.

They assumed that the copula and the margins were constant over time. Then, they looked for a copula

family which could capture this kind of dependance. However, they limited their search to the basic families

(Elliptical and Archimedean), and their rotations. This is indeed true that these families fail to reproduce

non monotonic dependance.

In the literature, there are many copula families for which E(Y |X = x) is not monotonic in x. Here is

an example: consider the chi-square copula introduced by Quessy et al. (2016). A chi-square copula with

parameters a1, a2 ∈ R, and ρ ∈ [−1, 1] is the copula associated with the random variables (Z1 − a1)2 and

(Z2 − a2)2, where Z1 and Z2 are joint standard Gaussian variables with correlation ρ. As an experiment, we

simulated 1000 pairs of variables (Xt, Yt) from the above regression model and we estimated the parameters

for the chi-square copula. Rounding the parameters, we got a1 = 2.6, a2 = 0, and ρ = 0.99.
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Figure 2: Panel a: Simulated data for the regression model; panel b: pseudo-observations for the regression model; panel c:
simulated data from a chi-square copula with parameters a1 = 2.6, a2 = 0, and ρ = 0.99.

Next, we applied this copula to the simulated dataset defined previously. By using the conditional

expectation estimator defined in Section 3.2, one can check from Figure 3 that the quadratic dependance can

be indeed reproduced quite well with a copula-based model.

5.2 Estimation of conditional quantile of maximum annual streamflow

For Southeastern Canada extreme streamflow characterization, daily amounts in (m3/s) of streamflow have

been extracted from all of the 312 stations located in Ontario (ON), Québec (QC), Newfoundland and

Labrador (NFL), Nova Scotia (NS), New Brunswick (NB), and Prince Edward Island (PEI) provinces.

Data comes from Environment Canada’s HYDAT interface (ftp://arccf10.tor.ec.gc.ca/wsc/software/

HYDAT/) and the center of Québec water expertise (https://www.cehq.gouv.qc.ca/). We kept only stations

ftp://arccf10.tor.ec.gc.ca/wsc/software/HYDAT/
ftp://arccf10.tor.ec.gc.ca/wsc/software/HYDAT/
https://www.cehq.gouv.qc.ca/
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Figure 3: Quadratic regression curve (squares) and conditional expectation estimator (circles) for the simulated dataset.

with: (i) record length of at least 30 full years to ensure good quality fitting; (ii) non serial dependencies;

(iii) some form of nonstationarity. Finally, 33 stations were chosen, of which 17 are located in ON, 8 in

QC, 4 in NS, 3 in NL, and 1 in NB. Figures 4 and 5 illustrate respectively the geographic location of all

selected stations and the variations of daily annual maximum streaflows (AMS) at some chosen station from

each province for case illustration. For this study, we tested the dependence between the AMS and several

climatic indices covariables: Atlantic Multidecadal Oscillation (AMO), Pacific Decadal Oscillation (PDO), El

Niño–Southern Oscillation (ENSO), etc. (see, e.g. Nasri et al. (2017) for definitions). Climate indices data

come from NOAA website (http://www.esrl.noaa.gov). These covariates are considered at the same day

for which the maximum of streamflow is observed for each station. Ultimately, only the covariate that have

the most significant dependence with the variables of interest was kept, which is AMO. AMO is found to have

the most significant dependence with AMS time series and it indicates the fluctuation in the sea temperature

in the North Atlantic ocean. Figure 6 illustrates the variations of the AMO index at the chosen stations.

The change-point in the AMO time series is studied in all of the 33 stations using the same tests cited above

for the change-point in AMS series. The results show that generally, in all selected stations, there is indeed

a change-point, which is coherent with the existing literature (Knudsen et al., 2011). The change-point in

dependence (copula) between AMO and AMS is also investigated by using the test proposed in Holmes et al.

(2013) and the results show that, in most of the stations, the dependence is constant over time.

Figure 4: Study region in Southeastern Canada and locations of 33 stations in this study region. Red highlighted stations are
targeted ones for case illustration.

Before estimating the conditional quantile functions for each selected station, we have to choose first the

marginal distributions for the covariate (AMO) and the dependent variable (AMS), and then we can select

the best copula function fitting the data. For the marginal distributions, several cumulative functions are

compared, including Normal, 2-parameter Weibull, GEV, lognormal and Gamma. This comparison is done

by using the Akaike information criterion (AIC)(Akaike, 1974). The variation in time of the parameters
of the selected marginal distributions is described by using the B-spline function structure (De Boor, 2001;

http://www.esrl.noaa.gov
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Nasri et al., 2017). Note that a B-spline is a polynomial piecewise function which depends on a number of

knots and a degree of function. When the number of knots is equal to one, B-spline is a polynomial function.

As for copulas, several dependence models were compared, including Frank, Clayton, Gumbel, Gaussian and

Student, in order to find the best model. The choice is done by calculating the p-value of the goodness-of fit

test statistics Sn(B) and Sn(C) developed in Genest et al. (2009).

Figure 5: Variation of maximum daily annual streamflows (m3/s) for the stations selected for case illustration. Here, we have
three stations from Ontario, two from Quebec and one from NS, NL and NB.

Figure 6: Variation of AMO index for the stations selected for case illustration. Here, we have three stations from Ontario, two
from Quebec and one from NS, NL and NB.

As described in the methodology section, we have to choose the margins for the studied variables, the

best B-spline function linking their parameters and time, and also the best copula model. For all stations,

the Gaussian distribution is selected for the AMO, while the GEV is chosen for the response variable. The

results show that only the location parameter for the Gaussian and GEV varies over time. This variation is

modeled generally by two piecewise linear functions. For the copula models, the Gaussian copula was selected

most of the time but for some stations in the Southern region, where the Student copula was chosen. Recall
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that the conditional quantile of a Student copula, with parameters ν > 0 and ρ ∈ (0, 1), is given by

Γ(u, v) = tν

ρt−1ν (u) + t−1ν+1(α)

√
ν + {t−1ν (u)}2

ν + 1
(1− ρ2)

 , α ∈ (0, 1),

where tν is the c.d.f. of a Student distribution with ν degrees of freedom. Figure 7 illustrates these results for

all stations. Using the best selected copula models together with the margins, a nonstationary conditional

quantile is estimated for each station, for levels α ∈ {0.5, 0.9}, corresponding to return periods of T = 2

years and T = 10 years. Quantiles for high returns periods (e.g. T = 50, T = 100) could also be estimated.

The 95% confidence band is constructed for those quantiles. Figure 8 displays the relevant results for the

chosen stations. It can be seen that generally, for higher levels, the nonstationary conditional quantiles take

much larger values that the stationary unconditional quantiles. For example, the results for station ”02KD”

in ON shows that the stationary unconditional median is equal to 65 (m3/s). However, the nonstationary

conditional quantile can reach 83 (m3/s). The same behaviour can be observed for other stations, confirming

the importance of considering nonstationary conditional quantiles for better water resource management

practices.

Figure 7: All stations depicted by blue circles have a Gaussian dependence structure with negative Kendall’s tau and one or two
piecewise linear dependence functions between time and location parameter. Red stars highlighted stations have two piecewise
quadratic dependence between time and location parameter, while the purple triangles display a positive Kendall’s tau, and the
green squares have a Student copula dependence structure with two piecewise linear dependance functions.

Figure 8: 0.5 and 0.9 nonstationary conditional quantile results with their corresponding uniform confidence bands for the selected
stations.
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5.3 Bivariate HMM models

There have been a huge literature on the dependence between individual stocks and the market, the most

popular being of the form Yt = α + βXt + εt, where Yt is the return of an individual stock at period t, and

Xt is the return of the market where the stock is traded. The coefficient β is interpreted as the relative risk

of the stock compared to the market, leading to a linear dependence between the stock returns and market

returns. However this is quite limitative if the dependence is nonlinear. This is why it might be much better

to look at copula-based methods.

Here we consider the monthly log-returns of Apple and the Nasdaq index from December 1996 to October

2017 and we fit a dynamic model to each time series separately. They are displayed in Figure 9. We first

tried to fit GARCH models with Gaussian and unknown innovations but these models were rejected, using

the tests proposed in Ghoudi and Rémillard (2013, 2018). In order to fit this dataset better, we propose to

use regime switching models for the dynamics of each time series. Recall that in a regime-switching model

(Xt, τt), the regimes τt ∈ {1, . . . , `} are not observed and they are modeled by a finite Markov chain with

transition matrix Q. Then, given the regimes τ1 = i1, . . . , τn = in, the variables X1, . . . , Xn are independent

with distribution functions F (i1), . . . , F (in), where F (j) and f (j) are respectively the cdf and the density under

regime j ∈ {1, . . . , `}.

According to Rémillard et al. (2017), if ηt−1(j) is the probability of being in regime j ∈ {1, . . . , `} at

time t − 1 given the past observations X1, . . . , Xt−1, then the conditional distribution of Xt given the past

has distribution function Ft(x) =
∑`
i=1 F

(i)(x)Wt−1(i), with density ft(x) =
∑`
i=1 f

(i)(x)Wt−1(i), where

Wt−1(i) =
∑`
j=1 ηt−1(j)Qji is the probability of being in regime j at time t given the past observations. It

then follows that the sequence Vt = Ft(Xt) are i.i.d. uniform random variables.

Here, to simplify the presentation, we choose Gaussian distributions with mean µ and standard deviation

σ depending on the regimes. Using the goodness-of-fit test proposed in Rémillard et al. (2017), we find

that the optimal number of regimes for both financial time series is two, with p-values of 13.4% and 9.7

% respectively, using 1000 bootstrap samples. The estimated parameters for both time series are given in

Table 2.

Figure 9: Variation of Apple and Nasdaq index over time.

Table 2: Estimated parameters for Apple and the Nasdaq index using Gaussian hidden Markov models. Here, ν is the stationary
distribution of the regimes.

Apple Nasdaq

Parameter Regime 1 Regime 2 Regime 1 Regime 2

µ 0.0052 0.0304 -0.0098 0.0132
σ 0.1917 0.0776 0.1067 0.0412
ν 0.2940 0.7060 0.2820 0.7180

Q

(
0.9635 0.0365
0.0152 0.9848

) (
0.9607 0.0393
0.0154 0.9846

)
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From now on, let X denotes the monthly returns of the Nasdaq index and let Y denotes de monthly

returns of Apple. Let Gt and Ft be the conditional distributions of Yt and Xt given the past observations, as

defined previously. Further set Ut = Gt(Yt) and Vt = Ft(Xt). As proposed in Nasri and Rémillard (2017), let

Ct be the copula associated with (Ut, Vt). Since Ft and Gt are not known exactly, (Ut, Vt) is never observed

and one has to use the pseudo-observations ut,n = Gt,n(Yt) and vt,n = Ft,n(Yt), where Ft,n and Gt,n are

computed with the parameters of Table 2. As shown in Nasri and Rémillard (2017), the pseudo-observations

(ut,n, vt,n) can be used as if (Ut, Vt) were observed, as long as one takes the ranks to estimate the copula and

its parameters.

Next, to check whether the copula is time-dependent, we performed a change-point test as in Rémillard

(2013). We got a p-value of 3.4%, so we do conclude that the copula is time-dependent. Since the simplest

model to implement is a linear case for τ , i.e., τt = 1
/(

1 + e−θ0−θ1t/n
)
, this is what we try first, applying this

to five copula families: Clayton, Gumbel, Frank, Gaussian and Student. We did not considered the Frank

family for the Monte Carlo experiments described in Section 4, but for a goodness-of-fit test, one can consider

it even if it takes a long time to compute. The results of the goodness-of-fit tests for the five copula families

are displayed in Table 3, together with the computation time. Clearly, the best model is the Gaussian copula

for which one gets θ0 = −1.1601 and θ1 = 1.4751. The corresponding values of ρt are displayed in Figure 10,

while the conditional 5% expected shortfall and the conditional expectation of the return of Apple given the

Nasdaq index for November 2017 are displayed in Figure 11.

Table 3: P -values in percentage calculated with N = 100 bootstrap samples.

Copula family

Statistic Clayton Gumbel Frank Gaussian Student

Kolmogorov-Smirnov 0 25 26 91 8
Cramér-von Mises 0 33 14 65 10

Computation time (sec) 14 20 1183 13 159

Figure 10: Graph of ρt for the Gaussian copula.

Figure 11: Copula-based conditional expectation estimator (plain line) and 5% conditional expected shortfall (dashed line) for the
next month returns of Apple given Nasdaq returns.
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6 Conclusion

Statistical risk management is of great importance in finance, hydrology and many other fields of applications.

For example, in the last two decades, one has witnessed the development of a number of statistical modeling

approaches for extreme quantile functions in the presence of non-stationarity of the variable of interest and/or

the covariates.

In this paper, we proposed a copula-based approach to estimate non-stationary marginal, copula and con-

dition distribution functions. Doing aso we were able to propose estimators for conditional quantile functions,

conditiona expectations, and conditional expected shortfalls. More precisely, we assumed a parametric model

for the time-dependent copula function and the time-dependent marginal distribution of the response vari-

able, while we used a combination of nonparametric and time-dependent parametric models for the marginal

distributions of the covariates, depending whether they are stationary or not. Under some smoothness con-

ditions, the asymptotic normality of the proposed estimators is obtained. Also, we proposed a bootstrap

procedure in order to construct uniform confidence bands around functionals of the conditional distribution,

As a by-product, we obtained a formal goodness-of-fit test, and through Monte Carlo experiments, we were

able to show that the proposed tests are powerful enough. Finally, to illustrate the approach, we considered

three applications, one with simulated data, one using a hydro-climatic dataset, and one with a financial

dataset. Finally, note that the proposed methodology can easily be adapted to a large number of covariates,

by using vine copula structures as in Kraus and Czado (2017) and Rémillard et al. (2017).

A Proofs of the main results

In this section, we study the asymptotic behavior of the estimators, and we prove the validity of both the

bootstrap algorithm and the goodness-of-fit test.

A.1 Proof of Theorem 1

Recall that Gt = Gβ(t). Under the smoothness assumptions of the copula density cφ, and φ(t,θ), one gets

0 = n−1/2
n∑
t=1

h>t ċφ(t,θn)(Un,t,Vn,t)

cφ(t,θn)(Un,t,Vn,t)

= Wn + n−1
n∑
t=1

h>t

{
∇vċt(Ut,Vt)

ct(Ut,Vt)
− ċt(Ut,Vt)∇vct(Ut,Vt)

>

c2t (Ut,Vt)

}
Fn,t(Xt)

+n−1
n∑
t=1

h>t

{
∂uċt(Ut,Vt)

ct(Ut,Vt)
− ċt(Ut,Vt)∂uct(Ut,Vt)

c2t (Ut,Vt)

}
Gn,t(Yt)− InΘn + oP (1)

= Wn +

∫ 1

0

∫
Rd

[
n−1

n∑
t=1

h>t

{
∇vċt{u,Ft(x)} − ċt{u,Ft(x)}∇vct{u,Ft(x)}>

ct{u,Ft(x)}

}
At(x)ft(x)

]
duAn(x)dx

+

[
n−1

n∑
t=1

h>t

∫
(0,1)d+1

{
∂uċt(u,v)− ċt(u,v)∂uct(u,v)

ct(u,v)

}
Gt ◦ G−1t (u)>Btdudv

]
bn

−IΘn + oP (1)

= Wn +

∫
Rd
Jn(x)An(x)dx + Knbn − IΘn + oP (1).

Then, as n→∞, (bn,An,Wn,Θn) converges in law to (b,A,W,Θ), the limit of Θn can be deduced. Note in

passing that E(bW>) = E(q(j)b>) = E(q(j)W>) = 0, for any j 6∈ L, while for any j ∈ L and any vj ∈ [0, 1],

E{bB>j (vj)) = E{Bj(vj)W>} = 0. This results will be useful in the proof of Theorem 3.

A.2 Proof of Theorem 2

The asymptotic behavior of the parametric quantile process, follows readily from the Delta method (van der

Vaart and Wellner, 1996). It is also similar to the proofs in Rémillard et al. (2017).
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A.3 Proof of Theorem 3

First, we need an auxiliary result, which is an easy extension of the work of Genest and Rémillard (2008) to

the non-stationary case. To this end, set

Un = n−1/2
n∑
t=1

B>t Ġt(Y
?
t )
∂uct(U

?
t , V

?
t )

ct(U?t , V
?
t )

, (34)

Mn = n−1
n∑
t=1

B>t Ġt(Y
?
t )
∂uct(U

?
t , V

?
t )∂uct(U

?
t , V

?
t )Ġt(Y

?
t )>Bt

c2t (U
?
t , V

?
t )

, (35)

E(j)n = n−1/2
n∑
t=1

(Q
(j)
t )>{Ḟ (j)

t }>(X?
tj)
∂vjct(U

?
t , V

?
t )

ct(U?t , V
?
t )

, j 6∈ L, (36)

E(j)
n = n−1

n∑
t=1

(Q
(j)
t )>Ḟ

(j)
t (X?

tj)
∂vjct(U

?
t , V

?
t )∂vjct(U

?
t , V

?
t )Ḟ

(j)
t (X?

tj)
>Q

(j)
t

c2t (U
?
t , V

?
t )

, j 6∈ L. (37)

For the proof of the theorem, we need the following auxiliary lemma.

Lemma 1 Let (Y ?1 ,X
?
1), . . . , (Y ?n ,X

?
n) be an independent copy of (Y1,X1), . . . , (Yn,Xn), and denote by Pn

the joint distribution of the latter. Next, define

F
(j)
γ(t,q)(xj) =

{
F (j)(xj), j ∈ L,
F

(j)

γ(j)(t,q(j))
(xj), j 6∈ L.

Further let P?n be the distribution defined by the log-likelihood ratio

`n = log

[
dP?n
dPn

{(Y ?1 ,X?
1), . . . , (Y ?n ,X

?
n)}
]

(38)

=

n∑
t=1

log

[
gβ(t,bn)(Y

?
t )

gβ(t,b0)(Y
?
t )

]
+
∑
j 6∈L

n∑
t=1

log

f (j)γ(j)(t,qn)
(X?

tj)

f
(j)

γ(j)(t,q0)
(X?

tj)


+

n∑
t=1

log

cφ(t,θn)
{
Gβ(t,bn)(Y

?
t ), F

(j)

γ(j)(t,q
(j)
n )

(X?
tj)
}

cφ(t,θ0)(U
?
t ,V

?
t )

 ,
where U?t = Gβ(t,b0)(Y ?t ) and V?

t = Ft(X
?
t ), t ∈ {1, . . . , n}. Finally, let S?n, b?n, V?n, q?n, W?

n, I?n be defined

by (6), (7), (10), (11), (16), and (17), using (Y ?1 ,X
?
1), . . . , (Y ?n ,X

?
n). Under the smoothness assumptions

and conditions of Theorem 1, (bn,Θn,An, b?n,Θ?
n,A?n, `n) converges in law to (b,Θ,A, b⊥,Θ⊥,A⊥, `), where

(b⊥,Θ⊥,A⊥) is an independent copy of (b,Θ,A), and

` = b>Sb⊥ − 1

2
b>Sb +

∑
j 6∈L

{
(q(j))>V(j)(q(j))⊥ − 1

2
(q(j))>V(j)q(j)

}
+ Θ>W⊥ − 1

2
ΘIΘ (39)

+b>U⊥ − 1

2
b>Mb +

∑
j 6∈L

{
(q(j))>(E(j))⊥ − 1

2
(q(j))>E(j)q(j)

}
−b>E

(
UW>

)
Θ− (q(j))>

∑
j 6∈L

E
(
E(j)W>

)
Θ− (q(j))>

∑
j 6∈L

E
(
E(j)U>

)
b.

Furthermore, E(Ub>) = E(E(j)b>) = 0 and E(UA>) = E(E(j)A>)0, so E(e`) = 1.

By construction, it is obvious that (bn,Θn,An, b?n,Θ?
n,A?n) converges in law to (b,Θ,A, b⊥,Θ⊥,A⊥),

where (b⊥,Θ⊥,A⊥) is an independent copy of (b,Θ,A). Next, it follows from the results of Sections 2.1–2.4

and the proofs in Genest and Rémillard (2008) that
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`n = b>nS?nb
?
n −

1

2
b>nS?nbn +

∑
j 6∈L

[
{q(j)n }>{V(j)

n }?{q(j)n }? −
1

2
{q(j)n }>{V(j)

n }?{q(j)n }
]

+Θ>nW?
n −

1

2
ΘnI?nΘn + b>nU?n −

1

2
b>nM

?
nbn

+
∑
j 6∈L

[
{q(j)n }>{E(j)n }? −

1

2
{q(j)n }>{E(j)

n }?q(j)n
]
− b>nE

{
U?n(W?

n)>
}

Θn

−
∑
j 6∈L

(q(j)n )>E
{

(E(j)n )?(W?
n)>

}
Θn −

∑
j 6∈L

(q(j)n )>E
{

(E(j)n )?(U?n)>
}
bn + oP (1).

Hence, `n converges in law to ` given by (39). It is easy to check that E(Ub>) = E(E(j)b>) = 0 and

E(UA>) = E(E(j)A>)0, so E(e`) = 1. This completes the proof of the lemma.

We can now complete the proof of Theorem 3. As in Genest and Rémillard (2008), the idea of the proof

is to use LeCam’s third Lemma (van der Vaart and Wellner, 1996). Using Theorem 2 and Lemma 1, we get

(bn,Θn,Wn,An,Un, En, b?n,Θ?
n,W?

n,A?n,U?n, E?n) 
(
b,Θ,W,A,U , E , b⊥,Θ⊥,W⊥,A⊥,U⊥, E⊥

)
,

where
(
b⊥,Θ⊥,W⊥,A⊥,U⊥, E⊥

)
is an independent copy of (b,Θ,W,A,U , E). Since `n converges in law to

` given by (39), and (U?1 ,V
?
1), . . . , (U?n,V

?
n) have joint distribution P?n, it follows from Lecam’s third lemma

that for any bounded continuous function Ξ of the variables (bn,Θn,Wn,An,Un, En, b?n,Θ?
n,W?

n,A?n,U?n, E?n),

E {Ξ (bn,Θn,Wn,An,Un, En, b?n,Θ?
n,W?

n,A?n,U?n, E?n)} converges as n→∞ to

E {Ξ (b,Θ,W,A,U , E , b?,Θ?,W?,A?,U?, E?)} = E
{
e`Ξ

(
b,Θ,W,A,U , E , b⊥,Θ⊥,W⊥,A⊥,U⊥, E⊥

)}
.

Now, using representation (39) and the fact that the joint distributions are Gaussian, one obtains eas-

ily that b? = b + b⊥, for any j 6∈ L, (q(j))? = q(j) + (q(j))⊥. Next, take j ∈ L. It follows that if

B?nj(vj) = 1
n+1

∑
t=1 I(Vtj ≤ vj), vj ∈ [0, 1], then B?nj  B?j = B⊥j . As a result, n1/2(vnj − vj) =

n1/2
{
F

(j)
n,t (xj)− Ft(xj)

}
= Bnj(vj), so

n1/2
{

(F
(j)
n,t)

?(xj)− vj
}

= B?nj(vnj) + Bnj(vj) Bj(vj) + B⊥j (vj).

Furthermore, Θ? = Θ + Θ>. Combining these results, one gets that A?n  A + A⊥. To complete the

proof, set v = Ft(x). It follows from the Delta Method, Theorem 2, and the previous calculations that if
u = Gβ(t)(y), then, using (19), one obtains

n1/2
{
K?n,t(y,x)−Kt(y,x)

}
= Ḋt(u, v)>htΘ

?
n +∇vDt(u,v)At(x)A?n(x)

+dt{u,v}∇βGβ(t)(y)>Btb
?
n + oP (1)

 Ḋt(u, v)>ht
(
Θ⊥ + Θ

)
+∇vDt(u,v)At(x)

{
A⊥(x) + A(x)

}
+dt(u,v)∇βGβ(t)(y)>Bt

(
b⊥ + b

)
= K⊥t (y,x) + Kt(y,x),

where K⊥t is an independent copy of Kt. As a result, K(1)
n,t, . . . ,K

(N)
n,t converge to independent copies of Kt.

Similarly, using (18), one gets that H(1)
n,t, . . . ,H

(N)
n,t converge to independent copies of Ht.

A.4 Proof of Corollary 1

It follows from Theorem 2 that

Kt(y,x) = Θ>h>t Ḋt{Gβ(t)(y),v}+ Gt(y)dφ(t){Gβ(t)(y),v}+ Ft(x)>∇vDφ(t){Gβ(t)(y),v}.

The rest of the proof is an adaptation of Ghoudi and Rémillard (1998, Theorem 2.1) with r ≡ 1. The only

new assumptions are the ones guaranteeing the convergence of µn(K)(u) = 1
n

∑n
t=1 Kt{Qt(u,Xt),Xt)} to

µ(K)(u).



20 G–2017–102 – Revised Les Cahiers du GERAD

References
Ahn, K.-H. and Palmer, R. N. (2016). Use of a nonstationary copula to predict future bivariate low flow frequency in

the Connecticut river basin. Hydrological Processes, 30(19):3518–3532.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control,
19(6):716–723.

Billingsley, P. (1995). Probability and Measure. Wiley Series in Probability and Mathematical Statistics. John Wiley
& Sons Inc., New York, third edition. A Wiley-Interscience Publication.

De Boor, C. (2001). A practical guide to spline. Springer Series in Statistics.

Dette, H., Van Hecke, R., and Volgushev, S. (2014). Some comments on copula-based regression. Journal of the
American Statistical Association, 109(507):1319–1324.

Fermanian, J.-D. and Lopez, O. (2015). Single-index copulae. ArXiv e-prints.

Genest, C., Ghoudi, K., and Rivest, L. (1995). A semiparametric estimation procedure of dependence parameters in
multivariate families of distributions. Biometrika, 82:543–52.
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