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– Library and Archives Canada, 2018

GERAD HEC Montréal
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légales associées à ces droits. Ainsi, les utilisateurs:
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tivité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publication.
Si vous pensez que ce document enfreint le droit d’auteur, contactez-
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1 Introduction

The Cartesian product of graphs was introduced by G. Sabidussi [24, 25] in 1957, and it has been studied

since 1972 in the context of communication networks [7, 22]. Cartesian product graphs are well suited for

network design and analysis, regarding scalability, performance, and fault-tolerance [23], due to the following

properties. The Cartesian product G2H of two connected graphs G and H provides a way of building a

graph much larger than the first ones, while keeping relatively small diameter and maximum degree. That

is, whereas the order of G2H is given by the product of the orders of G and H, its diameter corresponds

to the sum of the diameters of G and H, and its maximum degree corresponds to the sum of the maximum

degrees of G and H. Besides this, the (edge) connectivity of G2H is never less than the sum of the (edge)

connectivities of G and H [24]. Thus, whatever the (edge) connectivities of two connected graphs G and

H, G2H will remain connected after the removal of any single edge or vertex. Such a removal can however

impact the number of shortest paths in a Cartesian product graph but, to the best of our knowledge, this

problem is not yet covered by the literature, even if other invariants [4, 5, 6, 8, 16, 19, 20, 21, 26, 27] are

intensively studied for this class of graphs. The main contribution of this paper is to fill this gap.

Of course, in studying topological properties of interconnection networks, the number of shortest paths

for fault-tolerance is frequently studied [9, 10, 11, 14, 18]. For instance, it is well known that there are

H(u XOR v)! distinct shortest paths between nodes u and v in the hypercube graph, where H(.) is the

Hamming weight function, i.e., the number of 1’s in the binary instance, and XOR the exclusive-or operation.

However, as mentioned before, none of them is dedicated to the Cartesian product graphs.

Naturally, in order to obtain networks with specific properties (for example, large number of vertices but

small degree and diameter), some authors designed new networks or they generalized well known networks: for

instance, the n-star graphs [1], the (n, k)-star graphs [12], the arrangement graphs [13], the higher dimensional

hexagonal networks [14]. Moreover, other authors [2, 3] gave their proper definition of the product graphs.

However, in this paper, we focus only on the class of Cartesian product graphs, as defined in Section 2.

This paper investigates in Section 3 the number of three kinds of shortest paths in Cartesian product

graphs: the basic1 shortest paths, the vertex-disjoint shortest paths and the edge-disjoint shortest paths.

Moreover, we study the impact of a vertex or an edge removal on the first invariant. We provide the needed

background of the Cartesian product of graphs in Section 2, and our results are summarized in Section 4.

For an overview of Cartesian product graphs, we refer the reader to [16, 15, 17].

2 Background

Let G = (V (G), E(G)) and H = (V (H), E(H)) be two connected graphs with the vertex set V (G), respec-

tively V (H), and the edge set E(G), respectively E(H). An edge between vertices u and u′ of G is denoted

uu′, similarly for the adjacency in H. In this paper, we assume that |V (G)| ≥ 2 and |V (H)| ≥ 2. By

definition, the Cartesian product G2H of these two graphs G and H is the following:

V (G2H) = {(u, v)|u ∈ V (G) and v ∈ V (H)}

and

E(G2H) = {(u, v)(u, v′)|vv′ ∈ E(H)} ∪ {(u, v)(u′, v)|uu′ ∈ E(G)}

We denote by Gv̄ the induced subgraph of G2H on the vertex set {(u, v̄) | u ∈ G} and say that Gv̄ is the

copy of G associated to the vertex v̄ ∈ H. Conversely, H ū denotes the induced subgraph on the vertex set

{(ū, v) | v ∈ H} and is called the copy of H associated to the vertex ū ∈ G. Obviously, Gv̄ is isomorphic to

G and H ū is isomorphic to H, and the different copies of G are connected only by edges in copies of H and

vice-versa.

Let dG(u, u′) denote the geodesic distance between vertices u and u′ in G, and dH(v, v′) be the one

between v and v′ in H. Similarly, dG2H((u, v), (u′, v′)) is the geodesic distance between vertices (u, v) and

(u′, v′) in the Cartesian product G2H. Let δG(u) denote the degree of the vertex u in the graph G, similarly

for δH(v).

1We say “basic” by opposition of vertex-disjoint and edge-disjoint.
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3 Main results

The outcome of the paper is subdivided in three subsections: one for each kind of shortest paths. Through

the three subsections, we illustrate the theory by two examples: the cube (see Figure 1) and the Cartesian

product of a specific graph G, namely , with itself (see Figure 2). Actually, the former is the Cartesian

product of a cycle on 4 vertices and a path on 2 vertices, i.e., take two copies of the cycle on 4 vertices and

join two corresponding vertices from different copies by an edge.

(a, 1) (b, 1)

(c, 1)
(d, 1)

(a, 2)
(b, 2)

(c, 2)

(d, 2)

Figure 1: The cube is the Cartesian product of a cycle on vertices {a, b, c, d} and a path on vertices {1, 2}.

a
b c
d

e

A

a
b c
d

e

B
a

b c
d

e

C

a
b c
d

e D

a
b c
d

e E

Figure 2: The Cartesian product G2G where edges between two copies of G are not explicitly drawn.

3.1 Maximum number of basic shortest paths

We denote by νsG(u, u′) the maximum number of basic shortest paths between u and u′ in G, similarly in H

and in G2H. Following theorems establish the maximum number of basic shortest paths in a Cartesian

product graph, and what happens after an edge removal or a vertex removal.
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Theorem 1 The maximum number of basic shortest paths in the Cartesian product graph G2H between (u, v)

and (u′, v′) is exactly

νsG2H((u, v), (u′, v′)) = νsG(u, u′)νsH(v, v′)

(
dG(u, u′) + dH(v, v′)

dG(u, u′)

)
= νsG(u, u′)νsH(v, v′)

(
dG(u, u′) + dH(v, v′)

dH(v, v′)

)
.

Proof. Let u, u2, u3, . . . , uk, u
′ be a sequence of vertices in a shortest path PG in G and v, v2, v3, . . . , vj , v

′

be a sequence of vertices in a shortest path PH in H, where k = dG(u, u′) and j = dH(v, v′). Notice

that by property of binomial coefficients,
(dG(u,u′)+dH(v,v′)

dH(v,v′)

)
=
(dG(u,u′)+dH(v,v′)

dG(u,u′)

)
. We prove that from these

two paths PG and PH , we can build
(dG(u,u′)+dH(v,v′)

dH(v,v′)

)
=
(
k+j
j

)
paths from (u, v) to (u′, v′) in G2H. By

property of the Cartesian product graph, we know that dG2H((u, v), (u′, v′)) = k+ j, i.e., the shortest paths

from (u, v) to (u′, v′) contain k + j edges. In G2H, these edges are alternatively from PG in a copy of G

and from PH in a copy of H. For instance, if we first take all the edges from PG and then from PH , the

corresponding path is: (u, v)(u2, v)(u3, v) . . . (uk, v)(u′, v)(u′, v2)(u′, v3) . . . (u′, vj)(u
′, v′), and in the other

direction, if we first take all the edges from PH and then from PG, vertices (u, v), (u, v2), (u, v3), . . . , (u, vj),

(u, v′), (u2, v
′), (u3, v

′), . . . , (uk, v
′), (u′, v′) form a shortest path from (u, v) to (u′, v′). Another shortest

path is (u, v)(u2, v)(u2, v2)(u2, v3) . . . (u2, vj)(u3, vj) . . . (uk, vj)(u
′, vj)(u

′, v′). By definition of the Cartesian

product graph, all shortest paths can be built by this way. Actually, all such shortest paths are well-defined

by the paths PG and PH if and only if we know exactly which edge is in a copy of which graph: G or H. So,

to count the maximum number of shortest paths, it is sufficient to count the number of manners to choose

among the k + j edges which ones will be in G, or, equivalently, which ones will be in H. In fact, there are(
k+j
j

)
such manners. All in all, by considering all shortest paths PG between u and u′ in G and all ones PH

between v and v′ in H, we obtain νsG(u, u′)νsH(v, v′)
(
k+j
j

)
shortest paths between (u, v) and (u′, v′) in G2H.

Let’s go back to our first example. If we count all possible basic shortest paths between vertices (a, 1)

and (c, 2) in the cube (see Figure 1), we can construct this family by considering shortest paths in the cycle

on 4 vertices and those in the path on 2 vertices, and by combining them. Indeed, in the cycle C4 on vertices

{a, b, c, d} with the edge set {ab, bc, cd, ad}, the only 2 shortest paths between a and c are one going through

the vertex b (noted by α) and another one going through the vertex d (noted by β). The length of both is

2. Naturally, there is only one direct shortest path in the path P2 on 2 vertices. To construct shortest paths

in the Cartesian product graph, it is sufficient to determine which path we use among {α, β} and when we

switch from the first copy of C4 to the second one (at the beginning at the position “0”, in the middle at

the position “1” or at the end at the position “2”). All basic shortest paths of the cube are illustrated by

Figure 3. There are exactly six such paths:

νsC4
(a, c)νsP2

(1, 2)

(
dC4(a, c) + dP2(1, 2)

dC4(a, c)

)
= 2× 1×

(
2 + 1

2

)
= 2× 1× 3 = 6.

Pα,0 Pα,1 Pα,2 Pβ,0 Pβ,1 Pβ,2

Figure 3: The cube and the only 6 basic shortest paths between (a, 1) and (c, 2), of length 3.
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For the second example, Theorem 1 ensures that the maximum number of basic shortest paths between

(E, a) and (A, e) is exactly

νsG2G((E, a), (A, e)) = νsG(E,A)× νsG(a, e)

(
dG(E,A) + dG(a, e)

dG(E,A)

)
= 2× 2×

(
6

3

)
= 80.

The goal of this example is not to enumerate all basic shortest paths in G2G but we will see that counting

vertex-disjoint shortest paths, or edge-disjoint shortest paths, is not as easy as expected, due to this graph.

Theorem 2 Let e be an arbitrary edge in G2H. Without loss of generality, we can suppose that e links

vertices (u′′, v′′) and (u′′, v′′′). Then the number of shortest paths going through this edge from (u, v) to

(u′, v′) in G2H is exactly the following: in the case where the vertex u′′ appears in at least one shortest path

PG in G between u and u′, and where the edge v′′v′′′ appears in at least one shortest path PH in H between v

and v′, ∑
PG:u′′∈V (PG)

∑
PH :v′′v′′′∈E(PH)

(
dG(u, u′′) + dH(v, v′′v′′′, PH)

dG(u, u′′)

)(
dG(u′′, u′) + dH(v′, v′′v′′′, PH)

dG(u′′, u′)

)
,

where dH(x, yz, PH) = dH(x, y) if y is the first vertex among {y, z} encountered in PH from x, dH(x, z)

otherwise. In other cases, this number is 0.

Proof. Let PG be a shortest path from u to u′ in G and PH be a shortest path from v to v′ in H. Clearly if

the vertex u′′ does not appear in PG or if the edge v′′v′′′ does not appear in PH , no shortest path from (u, v)

to (u′, v′) in G2H, built from PG and PH , goes through the edge e. So we may suppose that u′′ ∈ V (PG)

and v′′v′′′ ∈ E(PH). Without loss of generality, we can assume that v′′ is the first vertex among {v′′, v′′′}
encountered in PH from v. In that case, it is sufficient to count the number of shortest paths between (u, v)

and (u′′, v′′) and the number of shortest paths between (u′′, v′′′) and (u′, v′), because a shortest path from

(u, v) to (u′, v′), going through e, begings with a shortest path from (u, v) to (u′′, v′′), goes through e and

then finishes by a shortest path from (u′′, v′′′) to (u′, v′). Therefore, based on the previous result, we obtain∑
PG:u′′∈V (PG)

∑
PH :v′′v′′′∈E(PH)

(
dG(u, u′′) + dH(v, v′′)

dG(u, u′′)

)(
dG(u′′, u′) + dH(v′, v′′′)

dG(u′′, u′)

)
shortest paths from (u, v) to (u′, v′), going through e, which completes the proof.

With a similar proof of the previous theorem, Theorem 3 counts the number of basic shortest paths going

through a vertex.

Theorem 3 Let (u′′, v′′) be an arbitrary vertex in G2H. Then the number of shortest paths going through

this vertex from (u, v) to (u′, v′) in G2H is exactly∑
PG:u′′∈V (PG)

∑
PH :v′′∈V (PH)

(
dG(u, u′′) + dH(v, v′′)

dH(v, v′′)

)(
dG(u′′, u′) + dH(v′′, v′)

dH(v′′, v′)

)
,

if the vertex u′′ (respectively, v′′) appears in at least one shortest path PG (respectively, PH) in G (respectively,

in H) between u and u′ (respectively, between v and v′), 0 otherwise.

3.2 Maximum number of vertex-disjoint shortest paths

We denote by νvG(u, u′) the maximum number of vertex-disjoint shortest paths between u and u′ in G,

similarly in H and in G2H. Let Gs(u,u′) be the subgraph of G induced by all basic shortest paths between u

and u′, similarly for Hs
(v,v′). Following theorem establishes lower and upper bounds on the maximum number

of vertex-disjoint shortest paths in a Cartesian product graph.
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Theorem 4 The maximum number of vertex-disjoint shortest paths in the Cartesian product graph G2H

between (u, v) and (u′, v′) is bounded as follows:

α > νvG2H((u, v), (u′, v′)) > νvG(u, u′) + νvH(v, v′),

where α is the minimum between δG
s
(u,u′)(u) + δH

s
(v,v′)(v) and δG

s
(u,u′)(u′) + δH

s
(v,v′)(v′).

Proof. Because all shortest paths are made from shortest paths in G and shortest paths in H, the number

of neighbors of (u, v) (or edges adjacent to (u, v)) used in a shortest path from (u, v) to (u′, v′) in G2H is at

most the sum between the number of neighbors of u (or edges adjacent to u) used in a shortest path from

u to u′ in G and the number of neighbors of v (or edges adjacent to v) used in a shortest path from v to v′

in H. Thus,

νvG2H((u, v), (u′, v′)) 6 δG
s
(u,u′)(u) + δH

s
(v,v′)(v).

The same argumentation holds for the other extremity (u′, v′) to obtain

νvG2H((u, v), (u′, v′)) 6 min(δG
s
(u,u′)(u) + δH

s
(v,v′)(v), δG

s
(u,u′)(u′) + δH

s
(v,v′)(v′)).

We will describe νvG(u, u′) + νvH(v, v′) shortest paths from (u, v) to (u′, v′). Let P ?G be a shortest path

from u to u′ in G, and let P ?H be a shortest path from v to v′ in H. For these two paths, we will consider

the two shortest paths in G2H, by taking first all the edges from P ?G and then from P ?H , and conversely, i.e.,

if P ?G = uu?2 . . . u
?
ku
′ and P ?H = vv?2 . . . v

?
j v
′, then one shortest path in G2H is (u, v)(u?2, v) . . .

(u?k, v)(u′, v)(u′, v?2) . . . (u′, v?j )(u′, v′) whereas the other one is (u, v)(u, v?2) . . . (u, v?j )(u, v′)(u?2, v
′) . . .

(u?k, v
′)(u′, v′). Clearly these two paths are vertex-disjoint.

For any other possible shortest path PG from u to u′ in G (notice that if such path exists, then

dG(u, u′) > 2), we proceed in the following way: if PG = uu2 . . . uku
′, then taking the first edge from

PG then following P ?H except the last edge, finishing PG and finally finishing P ?H , i.e., (u, v)(u2, v)(u2, v
?
2) . . .

(u2, v
?
j )(u3, v

?
j ) . . . (uk, v

?
j )(u′, v?j )(u′, v′) is a shortest path from (u, v) to (u′, v′), which is vertex-disjoint from

the other ones since it is also the case for paths in G. For any other possible shortest path PH from v to v′

in H, a similar argument holds, by symmetry of the Cartesian product graph.

In our example of the cube, it is easy to see that the maximum number of vertex-disjoint shortest paths

between (a, 1) and (c, 2) is 3 = νvC4
(a, c) + νvP2

(1, 2). Moreover, an instance of family reaching this bound is

{Pα,0, Pα,2, Pβ,1} from Figure 3.

Unfortunately, the lower bound in Theorem 4 is not tight. Indeed, if we strengthen it by νs,2G (u, u′) +

νs,2H (v, v′), where νs,2G (u, u′) is the maximum number of basic shortest paths between u and u′ in G which are

vertex-disjoint for the second vertices and ones before the last, similarly for νs,2H (v, v′), then our construction

is still valid. However, even with this new lower bound, Theorem 4 remains loose. The second example is a

good illustration of this phenomenon:

νvG2G((E, a), (A, e)) = 3 6= νvG(E,A) + νvG(a, e) = νs,2G (E,A) + νs,2G (a, e) = 1 + 1.

because of the three vertex-disjoint shortest paths:

• (E, a)(D, a)(B, a)(A, a)(A, b)(A, d)(A, e)

• (E, a)(E, b)(E, d)(E, e)(D, e)(B, e)(A, e)

• (E, a)(E, c)(D, c)(C, c)(C, d)(C, e)(A, e)

Since the degree of a vertex in an induced subgraph is always upper bounded by the degree of this vertex

in the original graph and since the degree of a vertex z in the subgraph induced by all basic shortest paths

whose z is one extremity is always upper bouded by the maximum number of basic shortest paths, the upper

bound in Theorem 4 can be loosened as mentioned in the following corollary.
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Corollary 1 The maximum number of vertex-disjoint shortest paths in the Cartesian product graph G2H

between (u, v) and (u′, v′) is upper bounded as follows:

νsG(u, u′) + νsH(v, v′) > νvG2H((u, v), (u′, v′))

and

min(δG(u) + δH(v), δG(u′) + δH(v′)) > νvG2H((u, v), (u′, v′)).

This corollary implies that the maximum number of vertex-disjoint shortest paths in a Cartesian product

graph is globally the sum between those in the original graphs, in comparison to the basic shortest path case.

3.3 Maximum number of edge-disjoint shortest paths

We denote by νeG(u, u′) the maximum number of edge-disjoint shortest paths between u and u′ in G, similarly

in H and in G2H. The theory about vertex-disjoint shortest paths in the previous subsection yields same

results on the maximum number νeG2H((u, v), (u′, v′)) of edge-disjoint shortest paths between (u, v) and (u′, v′)

in G2H. Indeed, in this paper, we consider only simple2 graphs and if P = uu2 . . . uku
′ and P • = uu•2 . . . u

•
ku
′

are two edge-disjoint shortest paths from u to u′ in G then u2 must be different from u•2 and uk must be

different from u•k, which implies that paths in the collection C described in Theorem 4 are edge-disjoint if it

is also the case for paths from u to u′ in G and paths from v to v′ in H.

Theorem 5 The maximum number of edge-disjoint shortest paths in the Cartesian product graph G2H be-

tween vertices (u, v) and (u′, v′) is bounded as follows:

α > νeG2H((u, v), (u′, v′)) > νeG(u, u′) + νeH(v, v′),

where α is the minimum between δG
s
(u,u′)(u) + δH

s
(v,v′)(v) and δG

s
(u,u′)(u′) + δH

s
(v,v′)(v′).

As expected for our examples, results on the maximum number of edge-disjoint shortest paths are the

same as those on the maximum number of vertex-disjoint shortest paths. Naturally, Corollary 1 can be

adapted to the edge-disjoint case.

Corollary 2 The maximum number of edge-disjoint shortest paths in the Cartesian product graph G2H be-

tween (u, v) and (u′, v′) is upper bounded as follows:

νsG(u, u′) + νsH(v, v′) > νeG2H((u, v), (u′, v′))

and

min(δG(u) + δH(v), δG(u′) + δH(v′)) > νeG2H((u, v), (u′, v′)).

4 Conclusions

In this paper, we found relations on the maximum number of basic, vertex-disjoint and edge-disjoint shortest

paths in Cartesian product graph in terms of those from the original graphs. For basic shortest paths, the

maximum number in the Cartesian product graph is the product of the maximum numbers in the original

graphs multiplied by a binomial coefficient depending on distances in the original graphs, i.e., for every

u, u′ ∈ V (G) and v, v′ ∈ V (H),

νsG2H((u, v), (u′, v′)) = νsG(u, u′)νsH(v, v′)

(
dG(u, u′) + dH(v, v′)

dG(u, u′)

)
.

Besides, we established the exact number of shortest paths going through a fixed vertex or a fixed edge,

measuring the impact of a vertex removal or an edge removal.

2The word “simple” means here “without loops or multiple edges”.
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However, for vertex-disjoint and edge-disjoint shortest paths, the results are quite different from the basic

case. Instead of a product, the maximum number of such paths in the Cartesian product graph is roughly

the sum of the corresponding maximum numbers in the original graphs, i.e., for every u, u′ ∈ V (G) and

v, v′ ∈ V (H),

νsG(u, u′) + νsH(v, v′) > νvG2H((u, v), (u′, v′)) > νvG(u, u′) + νvH(v, v′)

and

νsG(u, u′) + νsH(v, v′) > νeG2H((u, v), (u′, v′)) > νeG(u, u′) + νeH(v, v′).

Computing the maximum number of vertex-disjoint/edge-disjoint shortest paths in the Cartesian product

graphs is not as easy as we can expect since a family of vertex-disjoint/edge-disjoint shortest paths can be

built from families of shortest paths which are not necessary vertex-disjoint/edge-disjoint, as illustrated by

our second example. Consequently, the two following open questions remain.

Open question 1 Is it possible to compute precisely νvG2H((u, v), (u′, v′)) in terms of νvG(u, u′) and νvH(v, v′)?

Similar question holds for νeG2H((u, v), (u′, v′)) in terms of νeG(u, u′) and νeH(v, v′).

Open question 2 Is it possible to describe all cases for which νvG2H((u, v), (u′, v′)) is decreasing by 1 after a

vertex removal / an edge removal? Same question for νeG2H((u, v), (u′, v′)).
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[17] W. Imrich, S. Klavžar, D. F. Rall, Topics in Graph Theory: Graphs and Their Cartesian Product, AK Peters
Ltd (2008).

[18] J. Irving, A. Rattan, Minimal factorizations of permutations into star transpositions, Discrete Mathemat-
ics 309 (6) (2009), 1435–1442.



8 G–2017–07 – Revised Les Cahiers du GERAD

[19] T. Jiang, I. Pelayo, D. Pritikin, Geodesic convexity and Cartesian products in graphs, manuscript (2004).

[20] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, Vertex and edge PI indices of Cartesian product graphs, Discrete
Applied Mathematics 156 (10) (2008), 1780–1789.

[21] C.-h. Lu, The geodetic numbers of graphs and digraphs, Science in China Series A: Mathematics 50 (8) (2007),
1163–1172.

[22] B. R. Myers, Class of optimal damage-resistant communication nets, Electronics Letters 8 (11) (1972), 285–286.

[23] E. Parsonage, H. X. N. R. Bowden, S. Knight, N. Falkner, M. Roughan, Generalized graph products for network
design and analysis, Network Protocols (ICNP),19th IEEE International Conference on (2011), 79–88.

[24] G. Sabidussi, Graphs with given group and given graph-theoretical properties, Canad. J. Math. 9 (1957), 515–525.

[25] G. Sabidussi, Graph multiplication, Mathematische Zeitschrift 72 (1) (1960), 446–457.

[26] J.-M. Xu, C. Yang, Connectivity of Cartesian product graphs, Discrete Mathematics 306 (1) (2006), 159–165.

[27] J.-M. Xu, C. Yang, Connectivity and super-connectivity of Cartesian product graphs, Ars Combin 95 (2010),
235–245.


	Introduction
	Background
	Main results
	Maximum number of basic shortest paths
	Maximum number of vertex-disjoint shortest paths
	Maximum number of edge-disjoint shortest paths

	Conclusions

