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Abstract: In this study, the problem environment consists of two fast fashion retailing firms where one can
obtain the other’s selling data from an outside agent. The aim of the study is to assess the value of such
a third party and the each information piece obtained from it. This paper proposes a labelling algorithm
based on a dynamic discrete choice modelling approach and uses it to study the effect of different attributes
on estimation performance. Our extensive numerical study shows that the dynamic discrete choice-based
procedure leads to highly accurate estimation for the hidden demand factors. Secondly, we show that if the
seller is a strategic decision maker, it actually enhances the degree of accuracy as it becomes easier for the
discrete-choice model to reverse-engineer the true values of the hidden demand factors. Finally, as the depth
of discount increases, the degree of accuracy decreases. This comes from the fact that the deeper discounts
disincentivizes the seller to offer discounts, which in turn reduces the chances of observing the demand at
different price points.

Keywords: Retailing, fast fashion, pricing, dynamic discrete choice models
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1 Introduction

In fast fashion retailing, rapid and effective translation of the changes in fashion trends into the selling

strategies is a necessity for the success. The leading companies are the ones who manage to foresee the

upcoming trends and adjust their assortment, inventory and pricing decisions accordingly. One of the world’s

leading companies, Zara, is well known by their successful business model where they use sophisticated

operations research methods which enables them to efficiently lead their operations (Caro et al., 2010). In

the market, while the big actors benefit from their advanced tools and flexible supply chain systems, smaller

and local actors cannot easily set up such systems since it might not be feasible for them. However; as they

still need to get the knowledge on current trends in fast fashion sector, they look for alternative ways to

obtain this information. In some markets, there are third party companies which collect competitors’ selling

data and provide to the firm that they work for. For the smaller firms, such data could be useful to depict

the information that competitor firms already have. They can examine competitors’ pricing decision process

and find out the driving forces for them to make these decisions.

In this study, we aim to assess the value of the competitor firms’ data that third party companies provide

to a fast fashion retail company.

Research question 1: Can the hidden information known only by the competitors be identified?

Research question 2: How the content of this data affect the amount of information that the firm can depict?

Research question 3: Under which conditions the identification error increases or decreases?

In order to answer these research questions, we use dynamic discrete choice structural model because

of two reasons. First of all, this model enables us to address the dynamic nature of pricing actions. We

can examine the effect of each pricing decision on the upcoming decisions will be made throughout the the

given time period. Secondly, the estimation is done under the principle of revealed preference in this model

(Aguirregabiria and Mira, 2010). Even if a specific action is not seen in the data, knowing that another

action is chosen over the other one, the model can depict some information related to the unobserved action.

The dynamic discrete choice framework is widely applied on various problems in the literature such as

fertility modelling (Wolpin, 1984), job matching (Miller, 1984), patent renewal (Pakes, 1984), bus engine

replacement (Rust, 1987), career decision modelling (Keane and Wolpin, 1997), brand choice (Erdem et al.,

2003), product launch (Hitsch, 2006) etc. The main advantage of this framework is the tractability provided

for the choice models. However, the tradeoff is the computational burden comes from two sources which are

curse of dimensionality and complexity of likelihood function. In order to handle this computational issue,

papers such as (Hotz and Miller, 1993), (Keane and Wolpin, 1994), (Rust, 1997), (Aguirregabiria and Mira,

2002) and (Ackerberg, 2009) proposed approximate solution methods for approximate dynamic programming.

Recently (Imai et al., 2009) utilized Bayesian approach to significantly decrease the computational burden

for infinite horizon dynamic discrete choice problems. (Ishihara and Ching, 2016) modifies their method to

apply a bayesian approach for finite horizon problem. They propose a modified backward reduction approach

to reduce the number of value function computation.

The remainder of the paper is structured as follows. In Section 2 we formulate the problem and as-

sumptions imposed in this paper. In Section 3, we explain the use of dynamic discrete choice models as an

estimation algorithm. Section 4 presents the results of the numerical study. Finally, we conclude with future

research directions in Section 5.

2 Problem formulation

We consider a market where two fast fashion retail companies are operating and selling a specific product.

Firms sell the product throughout a given season. Firm 1 has more information on the demand structure of

the product and starts to sell it before Firm 2. As seen in Figure 1 firms start the season by determining

inventory levels for the product according to demand information they have. It is assumed that no inventory
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replacement is made during the season. At each period, firms choose their selling prices as regular or

discounted price. It is assumed that there are two predetermined price levels. Firms want to maximize their

expected total profit. Firms can estimate their expected profit either myopically or strategically. We assume

Firm 1 starts selling the product earlier than Firm 2. Firm 2 obtains various information related to Firm 1’s

selling process from the outside agent since Firm 2 wants to estimate the part of the demand known by

Firm 1. Hence, we focus on Firm 1’s selling process throughout this study.

Figure 1: Process of a firm in the market

In this study, due to the two-level pricing assumption, we also define two levels for the demand structure

corresponding to regular and discounted price as in Equation 1 where each level consists of three parts which

is shown in Equation 2 and 3. First part is the base demand, represented by µ, which is exactly known by

both firms. Both firms are able to use their own historical data and experience to extract this information.

Our focus in this study is the second parameter γ, which represents the finer demand information only known

by Firm 1. We also assumed that there are two levels for this part representing whether the product is a

trendy or an ordinary product. Firm 2 only has a priori information. In this case, the values of the parameters

at corresponding type of the product are known by Firm 2 but the true type is not known. Finally, demand

also includes a random shock part, represented by ε, whose true level is not known by both firms. Random

shock is assumed that normally distributed with zero mean and σ standard deviation.

Dt =

{
DR pt = pR

DD pt = pD
(1)

DR =

Known by everyone︷︸︸︷
µR +

Only known by the seller︷︸︸︷
γmR +

Random Shock︷︸︸︷
ε (2)

DD =

Known by everyone︷︸︸︷
µD +

Only known by the seller︷︸︸︷
γmD +

Random Shock︷︸︸︷
ε (3)

where ε ∼ N(0, σ2), m = trendy or m = ordinary. We also assume that

γtrendyf ≥ γordinaryf (4)

for all f ∈ {R,D}.

State variables represent the additional information that Firm 1 uses while making their pricing decisions

at each period. Because of tractability and computational issues, two state variables are kept which are
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selling price level at previous period and number of units on hand at the beginning of the current period.

Specifically, Firm 2 obtains these state variables from the outside agent and try to estimate the type of

the product.

States:

s1t: Chosen price at t-1

s2t: Number of units in the inventory at the beginning of period t

Action:

pt: Price of the product in period t

ptε{pR, pD}

Firm 1’s price optimization

Firm 1 makes pricing decision at the beginning of each period in order to maximize the expected profit values.

We represent this as a dynamic model where this decision process is repeated at every period during the

selling season of the product. The firm calculates expected profit which will be generated both under the

action of regular price and discounted price as in Equation 5. Then, the firm chooses the price level for the

corresponding period. Next period, previous period’s price action becomes a new state variable and the firm

does these calculations again.

Vt(s1t, s2t) = max(EDR
[V R

t (s1t, s2t)], EDD
[V D

t (s1t, s2t)]) (5)

For the firm, value function calculations can change according to how much future periods’ returns are

considered. The firm could be interested in only the current period’s expected profit or they also look at the

upcoming periods. This study examines two extreme cases where the firm is myopic or completely forward

looking. By “completely forward looking”, it is meant that the firm’s value function includes the expected

value functions for all the periods in the remaining part of the season. In practice, firms might not be

distinctively myopic or forward looking. Some firms might be more forward looking than others or vice versa.

Still, examining these two distinct cases would give a broad understanding of the effect of the level of firm’s

forward looking behaviour.

Case I: Firm 1 is myopic

V R
t (s1t, s2t|DR) = pR ∗ [min(s2t, DR)]+ (6)

V D
t (s1t, s2t|DD) = pD ∗ [min(s2t, DD)]+ (7)

If the firm is myopic, the value functions are calculated as in Equations 6 and 7 for regular and discounted

price options, respectively. The firm can sell number of products demanded at the corresponding price level as

long as the inventory on hand allows for it. The firm only calculates the revenue they obtain from these sales.

Case II: Firm 1 is dynamic

V R
t (s1t, s2t|DR) = pR ∗ [min(s2t, DR)]+ + Vt+1(pR, [s2t −DR]+) (8)

V D
t (s1t, s2t|DD) = pD ∗ [min(s2t, DD)]+ + Vt+1(pD, [s2t −DD]+) (9)

If Firm 1is forward looking, the value functions are calculated recursively as it is shown in Equa-

tions 8 and 9.
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3 Estimation algorithm

The estimation algorithm constructed in this study is a labelling algorithm which aims to reveal the product

type that can be either trendy or ordinary. Basically, the algorithm constructs likelihood values for two

possible product types. As explained in Section 1, our algorithm is based on dynamic discrete choice approach.

At each period, the algorithm looks at the actual chosen price by Firm 1 and compare expected value functions

for regular and discounted price both under the product is trendy and ordinary. Then according to consistency

of the actual chosen price by Firm 1 and this comparison, likelihood values are calculated for each type. In

Figure 2, estimation procedure is shown as process chart.

Figure 2: Estimation procedure

The probability of observing choice j (regular or discounted) given the observed state st = {s1t, s2t} and

assuming type of the product is m is presented in Equation 10. This is the probability of expected profit

generated by choosing price j being higher than the expected profit generated by choosing any other possible

price level.

Pj(st;m) = P (EDj
[V j

t (st;m)] ≥ EDk
[V k

t (st;m),∀k)] (10)
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Since we discretize the finer demand part for the product by defining two types and actions in two levels,

the likelihood increments has also a discretized structure as shown in Equation 11. Here lt(m|st; pt) represents

the likelihood increments for type m under given states and actual chosen price pt by Firm 1 at period t.

lt(m = j|st; pt) =


1 EDj [V j

t (st;m)] > EDk
[V k

t (st;m)]&pt = j
1
2 EDj [V j

t (st;m)] = EDk
[V k

t (st;m)]

0 otherwise

(11)

The likelihood of the product type m is equal to j is calculated by summing all the likelihood increments

at each period as in Equation 12. Finally, using these likelihood probabilities the probability of the product

type is j is found by normalization as shown in Equation 13.

L(m = j|s; p) =
∑
t

l(m = j|st; pt) (12)

P (m = j) =
L(m = j|s; p)∑
i

L(m = i|s; p)
(13)

Table 1 represents how the algorithm works on a simple 4-week example where it is assumed that the true

product type is trendy. The available data includes states and pricing decisions made by Firm 1. At each

period, a consistency check is applied using expected value functions. For the first week, we assume that

according to the consistency check, agent would earn more profit by offering regular price both for a trendy

and ordinary product. These results are consistent with Firm 1’s action since regular price is seen in the

first week. Since the consistency check gives the same results with the chosen action for the both types, both

likelihoods are incremented by one. In the second week, under the assumption that product type is ordinary,

consistency check fails since according to calculations choosing discounted price would yield higher profit

which contradicts with the Firm 1’s action. Hence the likelihood increments for the product type is ordinary

does not get any value. In the case of equality, considering that there is not a strong superiority of an action

over another, the likelihood increment takes a value of 0.5. The remaining of the likelihood increments are

calculated in the same fashion and these increments constitutes the likelihood values. Finally with a simple

normalization procedure probabilities for each product type is calculated. The algorithm labels the product

type according to these probabilities.

Table 1: Estimation algorithm demonstration example

Week State Price Consistency Check lt(m = tr) lt(m = or)

1 S1 R
V R
1 (S1;m = tr)] > V D

1 (S1;m = tr)
V R
1 (S1;m = or)] > V D

1 (S1;m = or)
1 1

2 S2 R
V R
2 (S1;m = tr)] = V D

2 (S1;m = tr)
V R
2 (S1;m = or)] < V D

2 (S1;m = or)
1/2 0

3 S3 D
V R
3 (S1;m = tr)] = V D

3 (S1;m = tr)
V R
3 (S1;m = or)] > V D

3 (S1;m = or)
1/2 0

4 S4 D
V R
4 (S1;m = tr)] < V D

4 (S1;m = tr)
V R
4 (S1;m = or)] < V D

4 (S1;m = or)
1 1

Sum 3 2
Prob 3/5 2/5

4 Numerical results

4.1 Design of experiment

In order to test the estimation procedure, a simulation study is conducted. Selling data of Firm 1 is simulated
under a set of parameters represented in Table 2. N1 is the number of experiments, while N2 is the number of



6 G–2017–06 Les Cahiers du GERAD

Table 2: Specified parameters

Parameter Value

N1 1000
N2 5

Initial Stock 15
Season length (weeks) 8

µR ∼ (DiscreteUniform( 1
5
)− 1) ∗ 1

2
µD ∼ (DiscreteUniform( 1

5
)− 1) ∗ 1

2
γmR ∼ (DiscreteUniform( 1

5
)− 1) ∗ 1

2
γmD ∼ (DiscreteUniform( 1

5
)− 1) ∗ 1

2
σ0 ∼ (DiscreteUniform( 1

5
)− 1) ∗ 1

2

identical stores simulated at each experiment. We assume that the product is sold in N2 stores with exactly

same demand parameters.

Demand parameters are randomly generated from a discrete uniform function. The values of initial stock

and demand parameters are selected in such a way to ensure a balance between demand and inventory on

hand. In most of the instances, we see neither a stock out in the first weeks nor an excessive amount of

remaining product in the inventory at the end of season. Additionally, trend effect parameters are chosen

with the following two constraints 14 and 15.

γtrD > γtrR > γorR (14)

γtrD > γorD > γorR (15)

The performance of the algorithm is tested for various cases. First of all, in order to assess the effect of the

true product type, half of the simulations is done assuming the true product type is trendy and the other half

is done under the assumption that the true product type is ordinary. Then, for each case, we also examine

Firm 1’s behaviour of decision making. Similarly, for each type of product, half of the instances are simulated

assuming Firm 1 is myopic and the other half is generated as if Firm 1 is forward looking. Finally, in order

to assess the effect of the discount depth, four discount percentages as 10%, 30%, 50% and 70% are used. As

1000 instances are simulated for each case, in total 16000 instances are generated.

4.2 Effect of trendiness

This section presents the results of the effect of product type on estimation algorithm performance. For

each product type 8000 instances examined. In order to obtain consistent results, the parameters other

than trendiness parameter are kept same for corresponding instances for each product type. The results are

summarized in Figure 3.

Figure 3: Effect of trendiness
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Observation 1. [Accuracy of the method] Inaccurate results are rarely seen.

This first observation shows that the algorithm does not mislead. However, there are many indecisive

cases where the algorithm could not choose one product type to another. When the parameters representing

the product type are close to each other, it is expected that the algorithm cannot simply distinguish the

types. In this study, as seen in Table 2, these parameters are deliberately selected close to each other. If they

were separate enough, the algorithm would easily detect the types and it would be difficult to assess the real

performance of the algorithm under various cases.

Observation 2. [Effect of Trendiness] Accuracy of detecting the true product type is higher for ordinary

products.

Even though these results do not point out a clear difference between accuracy levels of two types, when

true product type is ordinary, the accuracy is slightly higher. It is harder to sell an ordinary product for

the firm. The firm tries to increase the demand by offering discounts. Therefore for ordinary products, it is

more likely that the demand is observed both under regular and discounted price. This creates an additional

information that the algorithm can use to label the product type. For the instances where the trendiness

parameters are close to each other, such discounts can also be seen when true product type is trendy. This

explains why there is not a distinct difference in number of accurate estimations for each type.

4.3 Effect of decision behaviour

This section tries to answer how Firm 1’s decision making process affects the performance of the algorithm.

It is examined both assuming the true product type is ordinary and trendy. Here it is assumed that Firm 2

also obtains the information related to Firm 1 behaviour.

Observation 3. [Effect of Decision Behaviour] Algorithm estimates more accurately when the firm is forward

looking.

Figure 4 summarizes the results where it is clearly seen that the number of accurate estimations are higher

when Firm 1 considers the future periods expected profits in decision making process. Not obtaining high

accuracy when the firm acts myopically is expected due to the limited information taken consideration by the

firm in the value function. When the firm is forward looking, they assess the profits that they are going to

make through out the remaining season. The richness of their evaluation enables the model to make better

predictions.

Figure 4: Effect of firm being myopic or dynamic

4.4 Effect of discount depth

Finally, how depth of the discount affects the labelling algorithm is analyzed by dividing instances even more

by changing the discount percentages ranging from 10% to 70%. The results are replicated under two product

types and myopic and forward looking behaviour of Firm 1.
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Observation 4. [Effect of discount depth] Accuracy decreases as discount depth increases.

Figure 5 and 6 present the summary of results where it is seen that the increase in discount depth leads to

a decrease in the number of successful estimations made by the algorithm. This observation can be explained

in a similar way that is pointed out in Section 4.2. As discount depth increases, there is less incentive for the

firm to give discounts. The demand increase coming from the discount may not compensate the loss from

the price reduction. Hence, for larger discount levels, the algorithm gets less information from sale data and

struggles more.

Figure 5: Effect of discount depth when true product type is trendy

Figure 6: Effect of discount depth when true product type is trendy

5 Concluding remarks and future research directions

This study constructs a labelling algorithm which can be used by a firm who possesses selling data of another

firm. The aim of the study is to assess the effect of the each information piece obtained from an outside agent

on the performance of estimation. As a preliminary work, discretized cases are studied. For the upcoming

works, an extensive approach which includes more levels for price actions could be followed. The product

type can be extended in a parameterized way so that the model will not be restricted by two discrete types.

In the future stages of this study, it is also planned to investigate the effect of level of information that

Firm 2 obtains. First of all, we would like to examine how the accuracy would change with inclusion of more

data from Firm 1. It could be also possible to use less data. How much would the accuracy decrease when the

algorithm cannot observe the inventory levels or whether Firm 1 being myopic or forward looking? Would it

be possible to depict these informations from pricing decisions?

Finally, we have an extensive dataset taken from a fast fashion retailing company that we would like to

apply the algorithm on. It should be noted that the computational complexity of this approach is a limitation.
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Since the dynamic programming model is solved exactly in our current algorithm, number of variables in

state variables can worsen the computational performance due to the curse of dimensionality. As we plan

to implement our algorithm on a large real dataset, the computational issues are needed to be solved. One

alternative is to use approximation techniques to solve dynamic program as applied in the literature. We will

construct an appropriate approximation approach to overcome the computational problems.
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