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b Dipartimento di Ingegneria Civile e Ingegneria Informat-
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Abstract: The object of study in the recent theory of Mean Field Games has been primarily large populations
of agents interacting through a population dependent coupling term, entering through individual cost or
dynamics. However, there are situations where agents are essentially independent, except for measurement
interference. This is the case for example in cellular communications networked control across noisy channels.
In previous work, we formulated the case of interference coupled linear partially observed stochastic agents as a
game. Conditions were developed under which naively ignoring the interference term leads to asymptotically
in population size, optimal control laws which are Riccati gain based. We tackle here the case of exact
decentralized filtering under a class of time invariant certainty equivalent feedback controllers, and numerically
investigate both stabilization ability and performance of such controllers as the state estimate feedback gain
varies. While the optimum filters have memory requirements which become infinite over time, the stabilization
ability of their finite memory approximation is also tested.
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1 Introduction

Large population stochastic multi-agent systems have gained significant attention in the control community in

recent years. This is due to the rich theory associated with decentralized control and system performance as

well as to the growing number of important and challenging applications in control of networked dynamical

systems, such as wireless sensor networks [1], very large scale robotics [2], controlled charging of a large

population of electric vehicles [3], synchronization of coupled oscillators [4], swarm and flocking phenomenon

in biological systems [5, 6], evacuation of large crowds in emergency situations [7, 8], sharing and competing

for resources on the Internet [9], to cite a few. It is common in multi-agent systems to limit each individual

agent in the system in terms of what it can decide on its own, what it can do on its own, and what it

can measure on its own about its local environment. Owing to the limited sensing ability, it is not feasible

for each individual agent to collect all other agents’ state information, especially for large-scale dynamic

systems. Therefore, the design of decentralized control and estimation laws depending only on local state

measurements are required.

Several decentralized and distributed estimation schemes for large-scale systems have been proposed to

make the estimation problem computationally efficient. In [10, 11] distributed and decentralized approaches

to state estimation and control were developed for large-scale multi-rate systems with applications to power

networks and plantwide processes, respectively. In [12–16] distributed decision-making with partial observa-

tion for large population stochastic multi-agent systems was studied, where the synthesis of Nash strategies

was investigated for the agents that are weakly coupled through either individual dynamics or costs.

In previous work [17], the case of N uniform agents described by linear stochastic dynamics with quadratic

costs and partial linear observations involving the mean of all agents was considered, and the problem was

formulated as an interference induced game. We explored conditions under which a Luenberger like observer,

together with a constant state feedback in individual systems would be: (i) ideally optimal, (ii) at least

stable. Our objective in the current paper is to extend the class of candidate stabilizing control structures

via optimal filtering. In particular, we study the optimal decentralized filtering problem under a class of

certainty equivalent controllers, and numerically investigate both stabilization ability and performance of such

controllers as the state estimate feedback gain varies. While the optimum filters have memory requirements

which become infinite over time, the stabilization ability of their finite memory approximation is also tested.

The rest of the paper is organized as follows. The problem is defined and formulated in Section 2. A

summary of the previous work [17] is given at the start of Section 3, followed by detailed derivations of

the optimal growing dimension filter and associated approximate finite memory filters. In Section 4, both

stabilization ability and performance of this class of state estimate feedback controllers are numerically

investigated. Section 5 presents an application example for a class of networked multi-agent control systems.

Concluding remarks are stated in Section 6.

2 Model formulation and problem statement

Consider a system of N agents, with individual scalar dynamics for simplicity of computations. The evolution

of the state component is described by

xk+1,i = axk,i + buk,i + wk,i, (1)

with partial scalar state observations given by

yk,i = cxk,i + h

 1

N

N∑
j=1

xk,j

+ vk,i, (2)

for k ≥ 0 and 1 ≤ i ≤ N , where xk,i, uk,i, yk,i ∈ R are the state, the control input and the measured output of

the ith agent, respectively. The random variables wk,i ∼ N (0, σ2
w) and vk,i ∼ N (0, σ2

v) represent independent

Gaussian white noises at different times k and at different agents i. The Gaussian initial conditions x0,i ∼
N (x̄0, σ

2
0) are mutually independent and are also independent of {wk,i, vk,i, 1 ≤ i ≤ N, k ≥ 0}. σ2

w, σ2
v and σ2

0
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denote the variance of wk,i, vk,i and x0,i, respectively. Moreover, a is a scalar parameter and b, c, h > 0 are

positive scalar parameters. In addition, the individual cost function for each agent is given by

Ji , lim
T→∞

1

T
E
T−1∑
k=0

(x2k,i + ru2k,i). (3)

where r > 0 is a positive scalar parameter, E{.} is the expectation operator, and lim is lim sup.

The problem to be considered is to develop decentralized estimation policies such that each agent is

stabilized by a linear feedback control of the form

uk,i = −fx̂k,i, (4)

where f is a constant scalar gain, and x̂k,i is an estimator of xk,i based only on observations of the ith

agent. More specifically, the control is a linear feedback −fx̂k,i on the state estimate of xk,i, while the state

estimate x̂k,i is obtained based solely on agent i’s own observations yk,i, yk−1,i, yk−2,i, yk−3,i, ....

3 Filtering for a class of certainty equivalent controllers

3.1 Previous work

In [17], we explored the conditions under which a Luenberger like observer of the form

x̂k+1,i = (a− bf)x̂k,i +K(yk+1,i − c(a− bf)x̂k,i), (5)

together with a constant state estimate feedback in individual systems would be: (i) ideally optimal, (ii) at

least stable. It was found that (i) was asymptotically true (as N goes to infinity) when state gain a is less

than a value called aNash and which can be exactly computed. Up to aNash, the optimum control policy is

the isolated (naive) Kalman gain K∗ (obtained by assuming zero interference in the local measurements, i.e.,

setting h = 0 in (2)) combined with the Riccati dictated optimal gain f∗, with

K∗(a) =
cP∞(a)

c2P∞(a) + σ2
v

, (6)

where P∞(a) is the unique positive solution of

c2P 2
∞(a) + ((1− a2)σ2

v − c2σ2
w)P∞(a)− σ2

wσ
2
v = 0, (7)

and

f∗(a, r) =
abΣ∞

b2Σ∞ + r
, (8)

where Σ∞ is the positive solution of the algebraic Riccati equation

b2Σ2
∞ + (r − a2r − b2)Σ∞ − r = 0. (9)

There is also asup greater than aNash such that when a is between aNash and asup, one can reverse engineer

a range of coefficients r for the cost functions in (3) for which the naive Kalman gain K∗ combined with

the feedback gain f∗ dictated by the Riccati equation will be asymptotically optimal. Finally, past asup,

no optimal control interpretation is possible any more, although there exist couples (K, f) which may still

stabilize the system up to a maximum value, and only cooperatively chosen common gains can get us to

approach a minimum cost. Let as be the limit past which constant Luenberger like observer and feedback

gains can no longer stabilize the system. The current paper is a continuation of stabilization and optimality

investigations for values of a past as.

From [17], for each fixed a it is possible to stabilize the system using a Luenberger like observer Equa-

tion (5) and the pair (K, f) if and only if (K, f) is in a stability region denoted by S(a), independent of

N . Let af = a− bf , and also let am(f) (or equivalently am(af )) denote the maximum value of a such that

(K∗(a), af ) ∈ S(a) for some af ∈ [0, 1). Moreover, let am = supaf∈[0,1) am(af ). Then we have the following

numerical results.
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3.1.1 Numerical results

The numerical results reported in this paper are obtained considering the following parameter setting:

b = c = h = 1 and σw = σv = σ0 = 1, with Ex0,i = x̄0 = 0 for all agents i = 1, 2, . . . , N . In addi-

tion, we will only deal with the case a ≥ 0 (a symmetric property holds for the a ≤ 0 case). The value of a

and f will be specified in the different simulations.

By numerical investigation we have am ≈ 3.6 which is obtained by letting af go to 1. Figure 1 is a

representation of the stability regions for the assumed parameter setting when a varies from a = 0.2 to

as = 5.5. It is observed that the stability region gradually shrinks as a increases until it all but vanishes

at as = 5.5. More specifically, for all a < aNash, all intersections of the horizontal line K∗(a) with all the

vertical lines (marking values of f which, given a , satisfy (8) for some value of input penalty coefficient r,

where r goes from 0 to infinity) belong to the stability region. For all a ∈ (aNash, asup) this holds only

for large enough r while for a = asup all the intersections cease to belong to the brown area. For a = am
the Kalman gain ceases to be in the stability region for all af ∈ [0, 1) and, for a = 5.5 the stability region

becomes empty.

3.2 Exact optimal bulk filter

The goal of this section is to extend the class of candidate stabilizing control structures via exact optimal

filtering with h 6= 0 in its formulation. In particular, when local state estimate feedback (4) is included in

the ith agent state Equation (1), the result is as follows:

xk+1,i = axk,i − bfx̂k,i + wk,i. (10)

Figure 1: The stability regions S(a) (brown shaded areas) in the (K, af ) plane. The vertical lines represent the optimal Riccati
gain f∗(a, r) corresponding to all possible values of parameter r while the horizontal line is the optimal isolated (naive) Kalman
filter gain K∗(a).
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In addition, anticipating the need to account for the influence of average states in the dynamics through the

measurement equation, and letting a tilde (̃.) indicate an averaging over agents operation, we define:

mk =
1

N

N∑
j=1

xk,j , m̃k =
1

N

N∑
j=1

x̂k,j , (11)

w̃k =
1

N

N∑
j=1

wk,j , ṽk =
1

N

N∑
j=1

vk,j . (12)

Thus, combining (10), (11), (12), we obtain:

mk+1 = amk − bfm̃k + w̃k (13)

It appears that optimal decentralized estimation in our problem structure, does not lend itself naturally to a

recursive computation. Indeed, the sufficient statistic from the past (adequate state description) appears to

grow by 2 components at every step. More specifically, average agent state (averaging over all agents) and

average agent state estimate enter into the dynamics of the controlled individual agents, through the −fx̂k,i
term into the dynamics (1), and thus the dynamics of both of these averages must be specified to complete

the estimation procedure. As a result, one has to augment the dynamics of (1) by at least that of the agents

states average term in the estimation at the first step. When optimal filtering is applied to the augmented

state, computations of both the innovation term and its gain involve an expected value of the average state

and the average state estimate (because the latter enters the average agent state dynamics). This yields to

the apparent infinite regress effect.

A significant source of complexity in the analysis, is self dependency of filtering equations. Roughly

speaking, since the averaged agent state enters into individual measurements, the effective stochasticity in

a single agent’s measurements depends on how precisely other agents are estimating their individual states.

Thus by symmetry, the level of uncertainty in individual state estimates depends on itself. Furthermore,

the straightforward recursive Kalman filter assumes that the internal and measurement sequences noises are

uncorrelated with their past (white noise property). However, in the sequence of expanding state models

that we need to construct for estimation purposes as the time index increases, the noise vectors are also

expanding, and are partially common from one stage to another.

However, given that all noise and initial random variables are jointly Gaussian and noting that linearity

is preserved in our control structure set up, optimal estimates will be linear functions of the measurements.

Hence, using the classical Gaussian unbiased minimum variance estimation theory [18], we derive the exact

optimal growing dimension filter whereby at every time step, all past and present available measurements

are considered. In particular, let us denote by Kk the time-varying 1× k row vector of filter gains necessary

for computing x̂k,i. Also let Y k1,i indicate the column vector of all measurements up to time k at agent i. The

minimum covariance estimator x̂k,i minimizes the mean square estimation error

Σk = E
[
(xk,i − x̂k,i)2 |Y k1,i

]
, (14)

and is given by the exact growing dimension filter (the optimal Bulk filter) equations [18,19]:

x̂k,i = E [xk,i] +Kk

(
Y k1,i − E

[
Y k1,i
])
, (15)

Σk = Pxk,ixk,i
−KkP

T
xk,iY k

1,i
, (16)

with optimal time-varying gain

Kk = Pxk,iY k
1,i
P−1
Y k
1,iY

k
1,i

, (17)

where

Pxk,iY k
1,i

= E
[
(xk,i − E [xk,i])

(
Y k1,i − E

[
Y k1,i
])T ]

, (18)

PY k
1,iY

k
1,i

= E
[(
Y k1,i − E

[
Y k1,i
]) (

Y k1,i − E
[
Y k1,i
])T ]

. (19)
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The next theorem gives a semi-recursive computational scheme for the exact growing dimension

filter (15)–(17), which uses all of the results from previous cycles up to time k−1 to compute Kk in one shot.

Theorem 1 The optimal decentralized state estimator x̂k,i is given by:

x̂k,i = (a− bf)kx̄0 +Kk


y1,i − (c+ h)(a− bf)x̄0
y2,i − (c+ h)(a− bf)2x̄0

...
yk,i − (c+ h)(a− bf)kx̄0

 , (20)

with optimal time-varying gain Kk, obtained from Levinson-like order-updating relations given by:

Kk =
[
(a− bf)Kk−1 0

]
+
Pxk,iyk,i

− Pxk,iY
k−1
1,i

P−1
Y k−1
1,i Y k−1

1,i

PY k−1
1,i yk,i

Pyk,iyk,i
− PT

Y k−1
1,i yk,i

P−1
Y k−1
1,i Y k−1

1,i

PY k−1
1,i yk,i

[
−PT

Y k−1
1,i yk,i

P−1
Y k−1
1,i Y k−1

1,i

1
]
, (21)

with K1 = Px1,iy1,i/Py1,iy1,i , and

P−1
Y k
1,iY

k
1,i

=

[
P−1
Y k−1
1,i Y k−1

1,i

0(k−1)×1

01×(k−1) 0

]
+

1

Pyk,iyk,i
− PT

Y k−1
1,i yk,i

P−1
Y k−1
1,i Y k−1

1,i

PY k−1
1,i yk,i

[
−P−1

Y k−1
1,i Y k−1

1,i

PY k−1
1,i yk,i

1

]
[
−P−1

Y k−1
1,i Y k−1

1,i

PY k−1
1,i yk,i

1

]T
, (22)

where the covariances Pxk,iyt,i and Pyk,iyt,i are respectively defined as

Pxk,iyt,i = E
[
(xk,i − E [xk,i]) (yt,i − E [yt,i])

T
]
, (23)

Pyk,iyt,i = E
[
(yk,i − E [yk,i]) (yt,i − E [yt,i])

T
]
, (24)

for t = 1, ..., k, and are obtained recursively from the following equations:

Pxk,iyt,i =


aPxk−1,iyt,i − bfKk−1


Py1,iyt,i

...

Pyk−1,iyt,i

 , for t = 1, . . . , k − 1

cPxk,ixt,i + hPxk,imt , for t ≥ k

(25)

Pyk,iyt,i =

{
cPxk,iyt,i + hPyt,imk

, for t = 1, . . . , k − 1

cPxk,iyk,i
+ hPyk,imk

+ σ2
v , for t = k

(26)

Pyk,imt
=


cPxk,imt + hPmkmt , for t ≤ k

aPyk,imt−1
− bfKt−1


(c+ h)Pyk,im1

+ Pyk,iṽ1

...

(c+ h)Pyk,imt−1
+ Pyk,iṽt−1

 , for t > k
(27)

Pxk,ixt,i
=



aPxk−1,ixt,i

−bfKk−1


Pxt,iy1,i

...

Pxt,iyk−1,i

 , for t = 1, . . . , k − 1

a2Pxk−1,ixk−1,i
− 2abfKk−1


Pxk−1,iy1,i

...

Pxk−1,iyk−1,i

+ b2f2Kk−1PY k−1
1,i Y k−1

1,i
KT
k−1 + σ2

w, for t = k

(28)



6 G–2017–04 Les Cahiers du GERAD

Pxk,imt
=



aPxk−1,imt − bfKk−1


Py1,imt

...

Pyk−1,imt

 , for t = 1, . . . , k − 1

a2Pxk−1,imt−1
− abf(c+ h)Kk−1


Pxk−1,im1

...

Pxk−1,imt−1


−abfKk−1


Pxk−1,iṽ1

...

Pxk−1,iṽt−1

− abfKk−1


Py1,imt−1

...

Pyk−1,imt−1


+b2f2Kk−1((c+ h)PY k−1

1,i Mt−1
1

+ PY k−1
1,i Ṽ t−1

1
)KT

k−1

+aPxk−1,iw̃t−1 + aPmt−1wk−1,i
− bfKk−1


Py1,iw̃t−1

...

Pyk−1,iw̃t−1


−bf(c+ h)Kk−1


Pm1wk−1,i

...

Pmt−1wk−1,i

+ Pwk−1,iw̃t−1
for t ≥ k

(29)

Pmkmt
=



aPmk−1mt − bfKk−1


(c+ h)Pm1mt

+ Pmtṽ1

...

(c+ h)Pmk−1mt + Pmtṽk−1

 , for t = 1, . . . , k − 1

a2Pmk−1mk−1
− 2abf(c+ h)Kk−1


Pmk−1m1

...

Pmk−1mk−1


−2abfKk−1


Pmk−1ṽ1

...

Pmk−1ṽk−1

+ b2f2Kk−1((c+ h)2

PMk−1
1 Mk−1

1
+ (c+ h)(PMk−1

1 Ṽ k−1
1

+ PT
Mk−1

1 Ṽ k−1
1

) + PṼ k−1
1 Ṽ k−1

1
)KT

k−1 +
σ2
w

N , for t = k

(30)

Pyk,iwt,i = cPxk,iwt,i + hPmkwt,i , (31)

Pmkwt,i
=



0, for t > k − 1
σ2
w

N , for t = k − 1

aPmk−1wt,i − bf(c+ h)Kk−1


Pm1wt,i

...

Pmk−1wt,i

 , for t < k − 1

(32)

Pxk,iwt,i



0, for t > k − 1

σ2
w, for t = k − 1

aPxk−1,iwt,i − bfKk−1


cPx1,iwt,i

+ hPm1wt,i

...

cPxk−1,iwt,i + hPmk−1wt,i

 , for t < k − 1

(33)
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Pyk,iw̃t = cPxk,iw̃t + hPmkw̃t , (34)

Pmkw̃t =



0, for t > k − 1
σ2
w

N , for t = k − 1

aPmk−1w̃t − bf(c+ h)Kk−1


Pm1w̃t

...

Pmk−1w̃t

 , for t < k − 1

(35)

Pxk,iw̃t
=



0, for t > k − 1
σ2
w

N , for t = k − 1

aPxk−1,iw̃t − bfKk−1


cPx1,iw̃t + hPm1w̃t

...

cPxk−1,iw̃t
+ hPmk−1w̃t

 , for t < k − 1

(36)

Pyk,ivt,i =


0, for t > k

σ2
v , for t = k

cPxk,ivt,i + hPmkvt,i , for t < k

(37)

Pmkvt,i =



0, for t > k − 1

−bfKk−1(k − 1)
σ2
v

N , for t = k − 1

aPmk−1vt,i − bfKk−1(t)
σ2
v

N − bf(c+ h)Kk−1


Pm1vt,i

...

Pmk−1vt,i

 , for t < k − 1

(38)

Pxk,ivt,i =



0, for t > k − 1

−bfKk−1(k − 1)σ2
v , for t = k − 1

aPxk−1,ivt,i − bfKk−1(t)σ2
v − bfKk−1


cPx1,ivt,i + hPm1vt,i

...

cPxk−1,ivt,i + hPmk−1vt,i

 , for t < k − 1

(39)

Pyk,iṽt =


0, for t > k
σ2
v

N , for t = k

cPxk,iṽt + hPmkṽt , for t < k

(40)

Pmkṽt =



0, for t > k − 1

−bfKk−1(k − 1)
σ2
v

N , for t = k − 1

aPmk−1ṽt − bfKk−1(t)
σ2
v

N − bf(c+ h)Kk−1


Pm1ṽt

...

Pmk−1ṽt

 , for t < k − 1

(41)

Pxk,iṽt =



0, for t > k − 1

−bfKk−1(k − 1)
σ2
v

N , for t = k − 1

aPxk−1,iṽt − bfKk−1(t)
σ2
v

N − bfKk−1


cPx1,iṽt + hPm1ṽt

...

cPxk−1,iṽt + hPmk−1ṽt

 , for t < k − 1

(42)
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where Kk(j) denotes the jth element of Kk, and Mk
1 , Ṽ k1 respectively indicate the column vector of m and ṽ

from time 1 up to time k.

Proof. See the Appendix.

Remark 1 Note that the Bulk filter estimation at step k requires solving all the intermediate steps from 1

to k, because this is a situation of dual control whereby the quality of estimation at time step k depends on

previous control actions, themselves a function of previous filtering results.

Remark 2 Note also that all the above expressions capitalize on computations already carried out at the

previous time step; otherwise, the complexity of calculations would make bulk filtering estimates an essentially

insurmountable task.

The next Lemma gives the cross covariance of two arbitrary agents.

Lemma 1 The cross covariance of two arbitrary agents xk,i and xk,j over time are obtained recursively from

the following equations:

Pxk,ixt,j
=



aPxk−1,ixt,j
− bfKk−1


Pxt,jy1,i

...

Pxt,jyk−1,i

 , for t = 1, . . . , k − 1

a2Pxk−1,ixk−1,j
− abfKk−1


Pxk−1,iy1,j

...

Pxk−1,iyk−1,j

− abfKk−1


Pxk−1,jy1,i

...

Pxk−1,jyk−1,i

+ b2f2Kk−1PY k−1
1,i Y k−1

1,j
KT
k−1, for t = k

(43)

where

Pxk,iyt,j =


aPxk−1,iyt,j − bfKk−1


Py1,iyt,j

...

Pyk−1,iyt,j

 , for t < k

cPxk,ixt,j + hPxk,imt , for t ≥ k

(44)

Pyk,iyt,j = cPxk,iyt,j + hPyt,jmk
, for t = 1, . . . , k (45)

Proof. See the Appendix.

3.3 Finite memory filtering approximations

The optimal Bulk filter is an infinite impulse response (IIR) filter. Any stable IIR filter can be approximated

to any desirable degree by a finite impulse response (FIR) filter [20]. In this section, we derive approximate

finite-dimensional (time-varying) filters to reduce memory requirements of the Bulk filter. Let any variable

with superscript (n) correspond to an approximate FIR filter of length n, where only the last n measurements

are preserved. In particular, let us denote by K
(n)
k the time-varying 1×n row vector of filter gains necessary

for computing x̂
(n)
k,i . Also let Y kk−n+1,i indicate the column vector of n measurements from time k− n+ 1 up

to time k at agent i, and assume zero mean for initial conditions of all agents, i.e., Ex0,i = x̄0 = 0, i ≥ 1.

The minimum covariance estimator x̂
(n)
k,i minimizes the mean square estimation error

Σ
(n)
k = E

[(
xk,i − x̂(n)k,i

)2
|Y kk−n+1,i

]
, (46)
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and is given by [20]:

x̂
(n)
k,i = K

(n)
k Y kk−n+1,i, (47)

Σ
(n)
k = Pxk,ixk,i

−K(n)
k PTxk,iY k

k−n+1,i
, (48)

with optimum time-varying gain

K
(n)
k = Pxk,iY k

k−n+1,i
P−1
Y k
k−n+1,iY

k
k−n+1,i

. (49)

The next theorem gives a semi-recursive computational scheme for the optimum finite memory filter (47)–(49),

which uses all of the results from time k − n up to time k − 1 to compute K
(n)
k in one shot.

Theorem 2 The approximate optimal decentralized state estimator x̂
(n)
k,i is given by:

x̂
(n)
k,i = K

(n)
k Y kk−n+1,i, (50)

with optimal time-varying gain K
(n)
k , obtained from Levinson-like order-updating relations given by:

K
(l+1)
k =

[
0 K

(l)
k

]
+

Pxk,iyk−l,i
− Pxk,iY k

k−l+1,i
P−1
Y k
k−l+1,iY

k
k−l+1,i

PT
yk−l,iY k

k−l+1,i

Pyk−l,iyk−l,i
− Pyk−l,iY k

k−l+1,i
P−1
Y k
k−l+1,iY

k
k−l+1,i

PT
yk−l,iY k

k−l+1,i[
1 −Pyk−l,iY k

k−l+1,i
P−1
Y k
k−l+1,iY

k
k−l+1,i

]
, (51)

for l = 1, ..., n− 1, with K
(1)
k = Pxk,iyk,i

/Pyk,iyk,i
, and

P−1
Y k
k−l,iY

k
k−l,i

=

[
0 01×l

0l×1 P−1
Y k
k−l+1,iY

k
k−l+1,i

]
+

1

Pyk−l,iyk−l,i
− Pyk−l,iY k

k−l+1,i
P−1
Y k
k−l+1,iY

k
k−l+1,i

PT
yk−l,iY k

k−l+1,i[
1

−P−1
Y k
k−l+1,iY

k
k−l+1,i

PT
yk−l,iY k

k−l+1,i

]
[

1
−P−1

Y k
k−l+1,iY

k
k−l+1,i

PT
yk−l,iY k

k−l+1,i

]T
, (52)

for l = 1, ..., n − 1, where the covariances Pxk,iyt,i and Pyk,iyt,i are obtained recursively from the truncated

covariance expressions (25)–(42) by considering k − n+ 1 ≤ t ≤ k, and replacing Kk with K
(n)
k .

Proof. See the Appendix.

3.4 The steady state isolated Kalman sequence

In this section, we obtain the equivalent sequence for the isolated Kalman filter equation in the steady-state.

Proposition 1 In the stability region, the isolated Kalman filter equivalent equation in the steady-state is

given by

x̂k,i = K ′1yk,i +K ′2yk−1,i + ...+K ′ky1,i, (53)
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where

K ′1 =K∗, (54)

K ′2 =(a− bf)(1− cK∗)K∗, (55)

K ′3 =(a− bf)2(1− cK∗)2K∗, (56)

K ′4 =(a− bf)3(1− cK∗)3K∗, and so on.... (57)

Proof. Let K be given as (6) in (5). By rearranging (5) we have:

x̂k+1,i = (a− bf)(1− cK∗)x̂k,i +K∗yk+1,i. (58)

Then substituting

x̂k,i = K ′1yk,i +K ′2yk−1,i + ...+K ′ky1,i, (59)

and

x̂k+1,i = K ′1yk+1,i +K ′2yk,i + ...+K ′k+1y1,i, (60)

into (58) and applying the stationarity property by making the left-hand-side of the resulting equation equal

to its right-hand-side, we get the fixed-point values (54)–(57).

4 Numerical study of filtering and control performance

In this section, we numerically investigate state tracking ability of both the exact (growing dimension) bulk

filter and its approximate finite dimension versions, as well as the control performance of the associated

certainty equivalent controllers.

4.1 Stabilization ability of certainty equivalent controllers

First, we numerically demonstrate the stabilization ability of our class of certainty equivalent controllers

using an arbitrary feedback gain f such that |af | < 1 (where af = a − bf) on the bulk filter estimate. In

particular, Figures 2, 3 and 4 respectively, show the stable behavior of a representative agent (namely, the

50th agent) when a = 10, a = 100, and a = 1000.

0 50 100 150 200 250 300 350 400 450 500

time

-300

-200

-100

0

100

200

300
x

k,50

Estimate of x
k,50

Figure 2: The state and its estimate when a = 10,
af = 0.9, N = 100, i = 50.

0 50 100 150 200 250 300 350 400 450 500

time

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
×10

4

x
k,50

Estimate of x
k,50

Figure 3: The state and its estimate when a = 100,
af = 0.9, N = 100, i = 50.



Les Cahiers du GERAD G–2017–04 11

0 50 100 150 200 250 300 350 400 450 500

time

-3

-2

-1

0

1

2

3
×10

6

x
k,50

Estimate of x
k,50

Figure 4: The state and its estimate when a = 1000, af = 0.9, N = 100, i = 50.

4.2 Stationarization conditions of optimum filter

It is numerically observed that the optimal bulk filter gains become asymptotically stationary for a < ā(f,N)

or equivalently a < ā(af , N). We shall refer to ā(af , N) as the stationarity threshold at af and N . For

example, when a = 2.5, f = 2, N = 1000, we have:

KBulk = [. . . ,−0.0006, 0.0015, 0.0018, 0.0615, 0.8628].

Note that the weights of the past measurements are getting smaller and smaller and disappear. The following

index has been considered to investigate the stationarity of the Bulk Filter:

∆ = ‖KT−1(1 : T − 1)−KT (2 : T )‖, (61)

where Kk(t1 : t2) = (Kk(t1),Kk(t1 + 1), . . .Kk(t2)) comprises the elements from t1 to t2 of the bulk filter

gain vector. In particular, the quantity ∆ in (61) is the norm of the difference between the gains of the

Bulk Filter in the last two steps of the considered time horizon [0, T ]. If this quantity starts to increase

when a is increased, it is an indication that the Bulk filter is losing its stationarity property. The values of

the stationarity index ∆ in (61) are reported in Figure 5 when af = 0.5 (top) and af = 0.99 (bottom) for

different values of N over an horizon of T = 1000 steps. Moreover, the values of the thresholds ā(af , N)

and am(af ) for various af and N are reported in Table 1, where it is shown how the number of agents N

affects ā(af , N). For each fixed N , it can be observed that the threshold increases with af . Also, as for

the dependence on N , for small values of a (namely 0.3 and 0.5) the threshold ā(af , N) roughly decreases

with N while for large values of a (namely a = 0.8 and a = 0.99) it increases. In essence, the dependence

of the threshold ā(af , N) on N remains rather weak (at least for N ≥ 100) and the threshold is always very

close to the threshold am(af ) where the stationary Kalman gain ceases to stabilize (1) for the considered af ,

under the naive filtering scheme (5).

Table 1: Thresholds ā(af , N) and am(af )

af ā(af , N = 100) ā(af , N = 1000) ā(af , N = 10000) am(af )

0.3 2.48 2.44 2.38 2.36
0.5 2.79 2.8 2.76 2.74
0.8 3.25 3.35 3.34 3.304
0.99 3.55 3.72 3.72 3.67
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Figure 5: Stationarity index ∆ as a function of a when af = 0.5 (top) and af = 0.99 (bottom), for different values of N
over T = 1000 steps. The red vertical line represents the threshold am(af ) where (K∗(a), af ) ceases to belong to the stability
region S(a) in Figure 1.

4.3 Relation with the naive Kalman filter approach

When the Bulk filter becomes stationary, it is interesting to investigate the relation between its steady state

gain coefficients and the isolated Kalman filter equivalent equations given by (54)–(57). In particular, consider

the following l2 norm based discrepancy index:

δp = ‖KBulk −Kisolated‖, (62)

where Kisolated = [. . .K ′3, K
′
2, K

′
1], with K ′j = (a− bf)j−1(1− cK∗)j−1K∗. Figure 6 shows the discrepancy

index δp between the Bulk Filter gains at step T and Kisolated as a function of a when af = 0.5 (up), 0.99

(bottom), under different values of N over an horizon of T = 1000 steps. It is observed that the steady

state bulk filter gain with mostly a few coefficients non zero could be recovered by applying the isolated

Kalman filter equivalent equations given by (54)–(57) provided that N is sufficiently large. For example,

when a = 2.5, f = 2, N = 109, we have:

KBulk = [. . . 0.0003 0.0039 0.0584 0.8650],

whereas the stationary Kalman filtering sequence as given by (54)–(57) is given by:

Kisolated = [. . . 0.00026616 0.0039 0.0584 0.8650].
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Figure 6: Discrepancy index δp between the Bulk Filter gains at step T and Kisolated as a function of a when af = 0.5 (up), 0.99
(bottom), for different values of N over T = 1000 steps. The red vertical line represents the threshold am(af ) where (K∗(a), af ))
ceases to belong to the stability region S(a) in Figure 1.
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4.4 Persistently time varying behavior for large enough a

For a ≥ ā(f,N) the optimal bulk filter gains remain time-varying. For example, when a = 5, f = 4.5,

N = 1000. Figures 7, 8 and 9 respectively, show the last entry of Kk, the cross covariance of two arbitrary

agents and the mean variance. It is observed that the gains exhibit an oscillating behavior. In fact, we

know that at a = 5 the line k∗(5) does not intersect the stability region S(a) in Figure 1, and thus the

naive Kalman filtering scheme cannot stabilize. When we apply the optimal Bulk filter, because of its ac-

curacy and the stability of the closed loop dynamics, individual agent dynamics are stabilized and as long

as the individual states remain weakly dependent, as N grows, the law of large numbers dictates that the

interfering mean term in measurement Equation (2) go to zero. At that stage, the agents are essentially

independent (notice the periodic drop in interstate correlation, Figure 8), and non interfering and the op-

timal filtering gain vector ultimately becomes that associated with the naive Kalman filter, i.e. stationary

sequence (54)–(57), with K∗ = 0.9616. However, we do know from Figure 1 that such a filtering scheme fails

to stabilize the mean dynamics, and thus after a while, the interference term grows again, thus dominating

the measurement equation and creating a growing interstate cross correlation (see Figure 8 again, and the

coincidence of its peaks with those of the variance of m in Figure 9). The interdependence of states prevents

the size of N from helping in knocking out interference, and the bulk filter starts again weighing more past

measurements in its estimation (this can be observed in Figure 7 where the peaks of Kk roughly coincide with

the minima of cross covariance terms in Figure 8). Thus persistent oscillations appear in the bulk filtering

gain sequences. As the degree of instability of a increases, the period of cycles gets larger and larger as

the filter has to fight longer to achieve stabilization, while the trail of non negligible coefficients associated

with past measurements becomes longer. At some point, a is sufficiently large that it may become difficult

to clearly distinguish cycles, and filter behavior becomes quite complex to assess, although numerically, it

appears to always maintain boundedness of closed loop behavior irrespective of the size of a. Also, the de-

pendency of closed loop behavior on N becomes non monotonic, as it contributes to worsening interference

when states are correlated, and quickly diminishing it when states become weakly dependent.

500 505 510 515 520 525 530

time

0.7

0.75

0.8

0.85

0.9

0.95

1
K(k)

Figure 7: Last entry of Kk when a = 5, f = 4.5, N = 1000.

4.5 Non–optimality of the Riccati gain

It is observed that, in general, the Riccati gain f∗ given by (8) is not asymptotically optimal as the number N

of agents goes to infinity when using the Bulk Filter. In particular, in the range of a’s for which (k∗, f)

is stabilizing, the coupling term of the mean asymptotically disappears from the measurements. In that

case, f∗ is the optimum provided that f∗ is in the range of (k∗, f) couples which still stabilize the system,

and indeed the bulk filter becomes in that case equivalent to the naive Kalman filter. However, outside of

the stationarization range, the quality of estimation depends on the applied feedback gain (dual effect of the

control [21,22]) and this explains the non-optimality of the Riccati gain in general. For example, Figures 10
and 11 respectively, show the average LQ cost of all the population for a = 2 (in stationarization region)
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Figure 8: The cross covariance of two arbitrary
agents when a = 5, f = 4.5, N = 1000.
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Figure 9: Mean variance when a = 5, f = 4.5,
N = 1000.

and a = 5 (outside of stationarization region) using different values of N , where each point in the figures

represents the average of 50 independent simulation runs and 5/4 markers illustrate the standard deviation

of the 50 simulations. Moreover, the vertical lines in the figures represent the Riccati gain f∗.

Figure 10: The average LQ cost of all the population
for a = 2 and different values of N over T = 1200
steps, while the vertical blue line shows the Riccati
gain f∗.

Figure 11: The average LQ cost of all the population
for a = 5 and different values of N over T = 1200
steps, while the vertical blue line shows the Riccati
gain f∗.

4.6 Performance of the finite memory filter approximations

Figure 12 illustrates the cost defined as maxi |xT,i|, 1 ≤ i ≤ N , i.e. the maximum value of the agent states

in the last step of the simulation (saturated at 1000), obtained by adopting the finite memory Bulk filters

with memory lengths of n = 3, n = 5, n = 10 and n = 50, for different values of a and af . It is observed
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that the stabilizing capability of the approximate finite memory filter is improved by increasing the memory

length n.
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Figure 12: Simulative evaluation of the finite memory approximate Bulk filters with memory length of n when N = 100, T = 1000.
The mesh reports the cost defined as maxi |xT,i|, 1 ≤ i ≤ N .

5 Application to networked control systems

In [17], we presented an application example for decentralized power control in code division multiple access

(CDMA) cellular telephone systems with state gain a = 1. In this section, we present an application example

for control of multi-agent systems over a CDMA network with arbitrary state gain a.

Following the works in [23] and [24], we consider a model of a CDMA based communication and control

system in the context of a large number of users with N users which share a channel and are assumed to

be equally spaced on a circle around the base station, with a signal processing gain proportional to 1/N .

In particular, let p
(m)
k,i and α denote, respectively, the transmitted power and the mean squared value of the

uplink channel gain for the ith mobile user of the network and let p
(b)
k,i denote the received power at the base

station for user i, where p
(b)
k,i = αp

(m)
k,i . The average over slot k of the power of the CDMA signal despread

by the spreading sequence of user i is given by:

zk,i = p
(b)
k,i +

h′

N

N∑
j 6=i

p
(b)
k,j + σ2

th + vk,i, (63)

where σ2
th is the variance of the background thermal noise process (modeled as a zero mean Gaussian random

variable), and vk,i is the measurement noise due to the limited number of samples involved in the average

operation (see [17, 25–27]). Note that the resulting signal processing gain is assumed to be h′/N . Also, a

time slot corresponds to the time period between two consecutive power control commands. Furthermore, the

actual controlling users are assumed to be independent and simply using the base station as a communication

tool. They would not want to share in any way their private information in a cooperative scheme that would

allow others to identify their state.

The base station itself sends the control signal to a collection of individual systems (agents). Downlink

channels are considered noiseless, however the controlled individual systems are stochastic. Agents encode
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their (scalar) state xk,i by sending a power proportional to it, that is to say, p
(m)
k,i = βxk,i, where β is a

constant parameter. The base station in turn computes the required control based on received power which

also is tainted by interference and measurement noise (as in (63)). Thus, by letting

yk,i = zk,i − σ2
th, c = αβ(1− h′

N
), h = αβh′, (64)

the physics of CDMA transmission viewed as a networked control system with N agents can be cast into a

state space form with individual scalar dynamics described by (1) and partial observations given by (2).

6 Conclusion

In this paper, we have studied a class of certainty equivalent controllers with time invariant state estimate

feedback gain for uniform agents that have linear stochastic individual dynamics and are coupled only through

an interference term (the mean of all agent states), entering each of their individual measurement equations.

The main challenge has been one of developing a decentralized filtering scheme under the considered class

of feedback controllers. The optimum filters present several complicating features: (i) their form and perfor-

mance is control dependent and thus a “dual” control effect is present; (ii) the filters are growing memory

while no finite dimensional sufficient statistic appears within grasp. However, we have succeeded in devel-

oping a semi-recursive computational scheme which capitalizes on numerical results from all previous cycles,

for otherwise numerical complexity rapidly explodes; (iii) It is impossible to produce a state estimate at

some time k without proceeding sequentially, i.e., without having to compute filtering state estimates for

all steps before k. We have numerically observed that the proposed estimator in combination with an ar-

bitrary (stabilizing under perfect state observations) state estimate feedback gain, succeeds in maintaining

the boundedness of the closed loop system even when individual systems are highly unstable. Moreover,

we have established existence of a stationarity threshold ā(f,N) past which, the optimal filter gains never

stationarize, i.e. remain time-varying, and essentially periodic in the case of weakly unstable agents. An

interpretation of such behavior was provided. Furthermore, we have derived approximate finite-dimensional

filters to reduce memory requirements of the exact growing dimension filter.

In future work, we will attempt to mathematically establish the stabilization ability of our class of certainty

equivalent controllers. Moreover, we will study the bulk filter properties as a dynamical system when no

periodicity is apparent.

Appendix A

Proof of Theorem 1. We first note that the Bulk filter (15)–(17) is initialized with x̂0,i = x̄0, and therefore

we have:

E [xk,i] = (a− bf)kx̄0, E [mk] = (a− bf)kx̄0, (65)

and

E [yk,i] = cE [xk,i] + hE [mk] (66)

= (c+ h)(a− bf)kx̄0.

Next, we partition PY k
1,iY

k
1,i

in (17) as

PY k
1,iY

k
1,i

=

[
PY k−1

1,i Y k−1
1,i

PY k−1
1,i yk,i

PT
Y k−1
1,i yk,i

Pyk,iyk,i

]
. (67)

Then applying matrix inversion by partitioning lemma [28] we get (22). Moreover, by combining (22) and (17)

we have:

Kk =
[
Pxk,iY

k−1
1,i

P−1
Y k−1
1,i Y k−1

1,i

0
]
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+
−Pxk,iY

k−1
1,i

P−1
Y k−1
1,i Y k−1

1,i

PY k−1
1,i yk,i

+ Pxk,iyk,i

Pyk,iyk,i
− PT

Y k−1
1,i yk,i

P−1
Y k−1
1,i Y k−1

1,i

PY k−1
1,i yk,i[

−PT
Y k−1
1,i yk,i

P−1
Y k−1
1,i Y k−1

1,i

1
]
. (68)

Furthermore, we note that for t = 1, ..., k − 1

Pxk,iyt,i = E[(axk−1,i − bfx̂k−1,i + wk−1,i − E[xk,i])

(yt,i − E[yt,i])] = aPxk−1,iyt,i − bfKk−1PY k−1
1,i yt,i

, (69)

therefore,

Pxk,iY
k−1
1,i

P−1
Y k−1
1,i Y k−1

1,i

= (aPxk−1,iY
k−1
1,i
− bfKk−1 PY k−1

1,i Y k−1
1,i

)P−1
Y k−1
1,i Y k−1

1,i

= (a− bf)Kk−1. (70)

Thus, combining (68) and (70) yields (21).

Next, we show the derivations of the covariance expressions (25)–(42). In particular, for t = 1, . . . , k − 1

we have:

Pxk,iyt,i =E[(xk,i − E[xk,i])(yt,i − E[yt,i])]

=E[(a(xk−1,i − E[xk−1,i])− bfKk−1 y1,i − E[y1,i]
...

yk−1,i − E[yk−1,i]

+ wk−1,i)(yt,i − E[yt,i])] (71)

and for t ≥ k we have:

Pxk,iyt,i =E[(xk,i − E[xk,i])(yt,i − E[yt,i])]

=E[(xk,i − E[xk,i])(c(xt,i − E[xt,i])

+ h(mt − E[mt]) + vt,i)] (72)

thus (71) and (72) yield (25). Also,

Pyk,iyt,i =E[(yk,i − E[yk,i])(yt,i − E[yt,i])]

=E[(c(xk,i − E[xk,i]) + h(mk − E[mk])

+ vk,i)(yt,i − E[yt,i])] (73)

which yields (26). Moreover, for t ≤ k we have:

Pyk,imt
=E[(yk,i − E[yk,i])(mt − E[mt])]

=E[(c(xk,i − E[xk,i]) + h(mk − E[mk])

+ vk,i)(mt − E[mt])] (74)

and for t > k we have:

Pyk,imt
=E[(yk,i − E[yk,i])(mt − E[mt])]

=E[(yk,i − E[yk,i])(a(mt−1 − E[mt−1])− bfKt−1 (c+ h)(m1 − E[m1]) + ṽ1
...

(c+ h)(mt−1 − E[mt−1]) + ṽt−1

+ w̃t−1)], (75)

thus (74) and (75) yield (27). For t = 1, . . . , k − 1 we have:
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Pxk,ixt,i
=E[(xk,i − E[xk,i])(xt,i − E[xt,i])]

=E[(a(xk−1,i − E[xk−1,i])− bfKk−1 y1,i − E[y1,i]
...

yk−1,i − E[yk−1,i]

+ wk−1,i)(xt,i − E[xt,i])] (76)

and for t = k,

Pxk,ixt,i
=E[(a(xk−1,i − E[xk−1,i])− bfKk−1 y1,i − E[y1,i]

...
yk−1,i − E[yk−1,i]

+ wk−1,i)
2] (77)

thus (76) and (77) yield (28). For t = 1, . . . , k − 1 we have:

Pxk,imt =E[(xk,i − E[xk,i])(mt − E[mt])]

=E[(a(xk−1,i − E[xk−1,i])− bfKk−1 y1,i − E[y1,i]
...

yk−1,i − E[yk−1,i]

+ wk−1,i)(mt − E[mt])] (78)

and for t ≥ k,

Pxk,imt =E[(xk,i − E[xk,i])(mt − E[mt])]

=E[(a(xk−1,i − E[xk−1,i])− bfKk−1 y1,i − E[y1,i]
...

yk−1,i − E[yk−1,i]

+ wk−1,i)

(a(mt−1 − E[mt−1])− bfKk−1 (c+ h)(m1 − E[m1]) + ṽ1
...

(c+ h)(mt−1 − E[mt−1]) + ṽt−1

+ w̃t−1)] (79)

thus (78) and (79) yield (29). For t = 1, . . . , k − 1 we have:

Pmkmt
=E[(mk − E[mk])(mt − E[mt])]

=E[(a(mk−1 − E[mk−1])− bfKk−1 (c+ h)(m1 − E[m1]) + ṽ1
...

(c+ h)(mk−1 − E[mk−1]) + ṽk−1

+ w̃k−1)(mt − E[mt])] (80)

and for t = k,

Pmkmt
=E[(mk − E[mk])2]

=E[(a(mk−1 − E[mk−1])− bfKk−1 (c+ h)(m1 − E[m1]) + ṽ1
...

(c+ h)(mk−1 − E[mk−1]) + ṽk−1

+ w̃k−1)2] (81)
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thus (80) and (81) yield (30). Furthermore,

Pyk,iwt,i =E[(yk,i − E[yk,i])wt,i]

=E[(c(xk,i − E[xk,i]) + h(mk − E[mk])

+ vk,i)wt,i] (82)

which gives (31).

Pmkwt,i =E[(mk − E[mk])wt,i]

=E[(a(mk−1 − E[mk−1])− bfKk−1 (c+ h)(m1 − E[m1]) + ṽ1
...

(c+ h)(mk−1 − E[mk−1]) + ṽk−1

+ w̃k−1)wt,i]

=E[aPmk−1wt,i
− bf(c+ h)Kk−1

 Pm1wt,i

...
Pmk−1wt,i

+ Pw̃k−1wt,i
] (83)

which gives (32).

Pxk,iwt,i =E[(xk,i − E[xk,i])wt,i]

=E[(a(xk−1,i − E[xk−1,i])− bfKk−1 y1,i − E[y1,i]
...

yk−1,i − E[yk−1,i]

+ wk−1,i)wt,i]

=E[aPxk−1,iwt,i − bfKk−1

 Py1,iwt,i

...
Pyk−1,iwt,i

+ Pwk−1,iwt,i ] (84)

which gives (33).

Pyk,iw̃t =E[(yk,i − E[yk,i])w̃t]

=E[(c(xk,i − E[xk,i]) + h(mk − E[mk]) + vk,i)w̃t] (85)

which gives (34).

Pmkw̃t =E[(mk − E[mk])w̃t]

=E[(a(mk−1 − E[mk−1])− bfKk−1 (c+ h)(m1 − E[m1]) + ṽ1
...

(c+ h)(mk−1 − E[mk−1]) + ṽk−1

+ w̃k−1)w̃t]

=E[aPmk−1w̃t − bf(c+ h)Kk−1

 Pm1w̃t

...
Pmk−1w̃t

+ Pw̃k−1w̃t ] (86)

which gives (35).
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Pxk,iw̃t =E[(xk,i − E[xk,i])w̃t]

=E[(a(xk−1,i − E[xk−1,i])− bfKk−1 y1,i − E[y1,i]
...

yk−1,i − E[yk−1,i]

+ wk−1,i)w̃t]

=E[aPxk−1,iw̃t
− bfKk−1

 Py1,iw̃t

...
Pyk−1,iw̃t

+ Pwk−1,iw̃t
] (87)

which gives (36).

Pyk,ivt,i =E[(yk,i − E[yk,i])vt,i]

=E[(c(xk,i − E[xk,i]) + h(mk − E[mk]) + vk,i)vt,i] (88)

which gives (37).

Pmkvt,i =E[(mk − E[mk])vt,i]

=E[(a(mk−1 − E[mk−1])− bfKk−1 (c+ h)(m1 − E[m1]) + ṽ1
...

(c+ h)(mk−1 − E[mk−1]) + ṽk−1

+ w̃k−1)vt,i]

=aPmk−1vt,i − bfKk−1

 (c+ h)Pm1vt,i + Pṽ1vt,i
...

(c+ h)Pmk−1vt,i + Pṽk−1vt,i

 , (89)

which gives (38).

Pxk,ivt,i =E[(xk,i − E[xk,i])vt,i]

=E[(a(xk−1,i − E[xk−1,i])− bfKk−1 y1,i − E[y1,i]
...

yk−1,i − E[yk−1,i]

+ wk−1,i)vt,i]

=aPxk−1,ivt,i − bfKk−1

 Py1,ivt,i
...

Pyk−1,ivt,i

 (90)

which gives (39).

Pyk,iṽt =E[(yk,i − E[yk,i])ṽt]

=E[(c(xk,i − E[xk,i]) + h(mk − E[mk]) + vk,i)ṽt], (91)

which gives (40).
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Pmkṽt =E[(mk − E[mk])ṽt]

=E[(a(mk−1 − E[mk−1])− bfKk−1 (c+ h)(m1 − E[m1]) + ṽ1
...

(c+ h)(mk−1 − E[mk−1]) + ṽk−1

+ w̃k−1)ṽt]

=aPmk−1ṽt − bf(c+ h)Kk−1

 Pm1ṽt
...

Pmk−1ṽt

+ Pw̃k−1ṽt , (92)

which gives (41).

Pxk,iṽt =E[(xk,i − E[xk,i])ṽt]

=E[(a(xk−1,i − E[xk−1,i])− bfKk−1 y1,i − E[y1,i]
...

yk−1,i − E[yk−1,i]

+ wk−1,i)ṽt]

=aPxk−1,iṽt − bfKk−1

 Py1,iṽt
...

Pyk−1,iṽt

+ Pwk−1,iṽt (93)

which gives (42). This concludes the proof.

Proof of Lemma 1. For t = 1, . . . , k − 1 we have:

Pxk,ixt,j
=E[(xk,i − E[xk,i])(xt,j − E[xt,j ])]

=E[(a(xk−1,i − E[xk−1,i])− bfKk−1 y1,i − E[y1,i]
...

yk−1,i − E[yk−1,i]

+ wk−1,i)(xt,j − E[xt,j ])] (94)

and for t = k, we have:

Pxk,ixk,j
=E[(a(xk−1,i − E[xk−1,i])− bfKk−1 y1,i − E[y1,i]

...
yk−1,i − E[yk−1,i]

+ wk−1,i)(a(xk−1,j − E[xk−1,j ])− bfKk−1

 y1,j − E[y1,j ]
...

yk−1,j − E[yk−1,j ]

+ wk−1,j)] (95)

thus (94) and (95) yield (43). The rest of the proof is similar to that of Theorem 1.

Proof of Theorem 2. First, we partition PY k
k−l,iY

k
k−l,i

in (49) as follows:

PY k
k−l,iY

k
k−l,i

=

[
Pyk−l,iyk−l,i

Pyk−l,iY k
k−l+1,i

PT
yk−l,iY k

k−l+1,i

PY k
k−l+1,iY

k
k−l+1,i

]
. (96)

Then applying matrix inversion by partitioning lemma [28] we get (52). Moreover, combining (49) and (52)

yields (51). The rest of the proof is similar to that of Theorem 1.
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