
Les Cahiers du GERAD ISSN: 0711–2440

Mean Field Game ε-Nash equilibria for
partially observed optimal execution problems
in finance

D. Firoozi,
P. E. Caines

G–2017–01

January 2017
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La publication de ces rapports de recherche est rendue possible grâce au
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Abstract: Partially observed Mean Field Game (PO MFG) theory was introduced and developed in (Caines
and Kizilkale, 2013, 2014, Şen and Caines 2014, 2015), where it is assumed the major agent’s state is partially
observed by each minor agent, and the major agent completely observes its own state. Accordingly, each
minor agent can recursively estimate the major agent’s state, compute the system’s mean field and thence
generate the feedback control which yields the ε-Nash property. This PO MM LQG MFG theory was further
extended in recent work (Firoozi and Caines, 2015) to major-minor LQG systems in which both the major
agent and the minor agents partially observe the major agent’s state. The existence of ε-Nash equilibria,
together with the individual agents’ control laws yielding the equilibria, were established wherein each minor
agent recursively generates (i) an estimate of the major agent’s state, and (ii) an estimate of the major agent’s
estimate of its own state (in order to estimate the major agent’s control feedback), and hence generates a
version of the system’s mean field. In the current work, PO MM LQG MFG theory is applied to the optimal
execution problem in the financial sector where an institutional investor, interpreted as a major agent, has
partial observations of its own inventories, and high frequency traders (HFTs), interpreted as minor agents,
have partial observations of the major agent’s inventories. The objective for each agent is to maximize its
own wealth and to avoid the occurrence of large execution prices, large rates of trading and large trading
accelerations which are appropriately weighted in the agent’s performance function. PO LQG MFG theory
is utilized to establish the existence of ε-Nash equilibria and a simulation example is provided.

Acknowledgments: This work was supported by grants from NSERC, Canada. The authors wish to thank
Mojtaba Nourian for helpful discussions concerning this work.
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1 Introduction

Partially observed Mean Field Game (PO MFG) theory was introduced and developed in [4], [5], [12], [13]

where it is assumed the major agent’s state is partially observed by each minor agent, and the major agent

completely observes its own state. Accordingly, each minor agent can recursively estimate the major agent’s

state, compute the system’s mean field and thence generate the feedback control which yields the ε-Nash

property. This PO MM LQG MFG theory was further extended in recent work [8] to major-minor LQG

systems in which both the major agent and the minor agents partially observe the major agent’s state. The

existence of ε-Nash equilibria, together with the individual agents’ control laws yielding the equilibria, were

established wherein each minor agent recursively generates (i) an estimate of the major agent’s state, and

(ii) an estimate of the major agent’s estimate of its own state (in order to estimate the major agent’s control

feedback), and hence generates a version of the system’s mean field.

It is to be noted that the work [4], [5], [12], [13] and the work here does not cover the case where each

agent has only partial observations on its own state; the extension of MFG to that case was addressed in the

LQG case in [11] and in the nonlinear case is analyzed in [6], [7].

In the current work, PO MM LQG MFG theory is applied to the optimal execution problem in the

financial sector where an institutional investor, interpreted as a major agent, has partial observations of its

own inventories, and high frequency traders (HFTs), interpreted as minor agents, have partial observations

of the major agent’s inventories (see [1], [2], [3]). The objective for each agent is to maximize its own wealth

and to avoid the occurrence of large execution prices, large rates of trading and large trading accelerations

which are appropriately weighted in the agent’s performance function. PO LQG MFG theory is utilized to

establish the existence of ε-Nash equilibria and a simulation example is provided.

The terms major agent (respectively minor agent), major trader (respectively, minor trader), and insti-

tutional trader (respectively, HFT) are used interchangeably in this paper.

The paper is organized as follows. Section 2 is devoted to the description of trading dynamics in the

market and the execution problem. In Section 3 the optimal execution problem is formulated in the mean

field game framework. Full observation and partial observation optimal execution problems are addressed in

Sections 4 and 5, respectively. Section 6 presents the simulation results.

2 Trading dynamics of agents in the market

As stated in the Introduction, the institutional investor is considered as a major agent in the mean field

model of the market and the HFTs are considered as minor agents, where the state dynamics of the trading

process of the major agent and any generic minor agent are described by the time evolution of the inventories,

the prices and cash levels of each agent.

2.1 Inventory dynamics

It is assumed that the institutional investor liquidates its inventory of shares, Q0(t), by trading at a rate

ν0(t) during the trading period [0, T ]. Hence the major agent’s inventory dynamics is given by

dQ0(t) = ν0(t)dt+ σQ0 dw
Q
0 , 0 ≤ t ≤ T, (1)

where wQ0 is a Wiener process modeling the noise in the information on the inventory the institutional head-

quarters collects from branches in different locations; σQ0 is a positive scalar and we assume that Q0(0)� 1.

The same dynamical model is adopted for the trading dynamics of a generic HFT

dQi(t) = νi(t)dt+ σQi dw
Q
i , 1 ≤ i ≤ N, 0 ≤ t ≤ T, (2)

where wQi is a Wiener process that models the HFT’s information noise, σQi is a positive scalar, Qi(t) is the

minor agent’s remaining shares at time t, and νi(t) is its rate of trading which can be positive or negative

depending on whether the agent is buying or selling its shares. However, the initial share stock of the HFTs,
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{Qi(0), 1 ≤ i ≤ N}, are not considered to be large, furthermore they are not motivated to retain share stocks

and are assumed to trade them quickly. We assume that the trading rate of the major agent is controlled via

u0(t) as

dν0(t) = u0(t)dt+ σν0dw
ν
0 , 0 ≤ t ≤ T, (3)

where wν0 , is a Wiener process, σν0 is a positive scalar and the trading strategy u0(t) can be seen to be the

trading acceleration of the major trader. Correspondingly, ui(t) controls the trading rate of minor agent, Ai,
by

dνi(t) = ui(t)dt+ σνi dw
ν
i , 1 ≤ i ≤ N, 0 ≤ t ≤ T, (4)

where wνi is a Wiener process and σνi is a positive scalar.

2.2 Price dynamics

The trading rate of the major agent and the average trading rates of the minor agents give rise to the

fundamental asset price which models the permanent effect of agents’ trading rates on the market price.

Further, each agent has a temporary effect on the asset price which only persists during the action of the

trade and which determines the execution price, that is to say the price at which each agent can trade.

2.2.1 Fundamental asset price

We model the dynamics of the fundamental asset price, as seen from the major agent’s viewpoint, by

dF0(t) =
(
λ0ν0(t) +

λ

N

N∑
i=1

νi(t)
)
dt+ σdwF0 (t), 0 ≤ t ≤ T, (5)

where the Wiener process wF0 (t) models the aggregate effect of all traders in the market which - unlike the

major and minor agents A0, Ai, - have no partial observations on any of the state variables appearing in

the dynamical market model (these are termed uninformed traders). Further, σ denotes the intensity of the

market volatility and λ0, λ ≥ 0 denote the strength of the linear permanent impact of the major and minor

agents’ tradings on the fundamental asset price, respectively. Similarly, we model the fundamental asset price

dynamics, as seen by a minor agent Ai, by

dFi(t) =
(
λ0ν0(t) +

λ

N

N∑
i=1

νi(t)
)
dt+ σdwFi (t), 0 ≤ t ≤ T, (6)

where 1 ≤ i ≤ N , and the Wiener process, wFi (t), represents the mass effect of all uninformed traders in the

market. The assumption of the Wiener processes, wFi , 0 ≤ i ≤ N being independent is valid due to the time

differences per agent in getting data from the fast changing limit order book.

2.2.2 Execution price

The major agent’s execution price, S0(t), is assumed to be given by

S0(t) = F0(t) + a0ν0(t), 0 ≤ t ≤ T, (7)

where a0 ≥ 0 controls the temporary impact strength of the major agent on fundamental asset price. Likewise,

a minor agent’s execution price, Si(t), is assumed to be determined by

Si(t) = Fi(t) + aνi(t), 1 ≤ i ≤ N, 0 ≤ t ≤ T, (8)

where a models the temporary impact of a minor agent’s trading on its execution price.
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2.3 Cash process

The cash process for the major agent and a generic minor agent, Z0(t), Zi(t), are given by

dZ0(t) = −S0(t)ν0(t)dt, 0 ≤ t ≤ T, (9)

dZi(t) = −Si(t)νi(t)dt, 1 ≤ i ≤ N, 0 ≤ t ≤ T, (10)

where each agent has no cash at the beginning of trading interval, i.e. Z0(0) = 0, and Zi(0) = 0, 1 ≤ i ≤ N ,

and we note that the value of the trading velocity ν0(t) in a stock sale is negative and hence for positive

S0(t), Z0(t) increases.

2.4 Cost function

The objective for the major trader is to maximize the cash it holds at the end of the trading horizon, i.e.

maximize Z0(T ), and if the remaining inventory at the final time T is Q0(T ), the resulting loss is modeled

by the penalty Q0(T )(F0(T ) + αQ0(T ). Further, the major trader’s utility in minimizing the inventory over

the period [0, T ] is modeled by including the penalty φ
∫ T
0
Q2

0(s)ds in its objective function, and the utility

of avoiding very high execution prices, large trading intensities and large trading accelerations by including

the terms εS2
0(T ),

∫ T
0
δS2

0(s)ds, βν20(T ),
∫ T
0
θν20(s)ds and

∫ T
0
R0u

2
0(s)ds in the objective function. Therefore,

its cost function to be minimized is given by

J0(u0, u−0) = E
[
− Z0(T ) +Q0(T )

(
F0(T ) + αQ0(T )

)
+ εS2

0(T ) + βν20(T )

+

∫ T

0

(
φQ2

0(s) + δS2
0(s) + θν20(s) +R0u

2
0(s)

)
ds
]
, (11)

where α, ε, β, φ, δ, θ, and R0 are positive scalars, and u−0 := (u1, ..., uN ) are trading strategies of the minor

traders. Note that for large values of φ the trader attempts to liquidate its inventory quickly whereas with

φ = 0 it is indifferent to the level of its share stock. In a similar way, the objective function to be minimized

for an HFT is given by

Ji(ui, u−i) = E
[
− Zi(T ) +Qi(T )

(
Fi(T ) + ψQi(T )

)
+ ξS2

i (T ) + µν2i (T )

+

∫ T

0

(
γS2

i (s) + %ν2i (s) +Ru2i (s)
)
ds
]
, 1 ≤ i ≤ N, (12)

where ψ, ξ, µ, γ, % and R are positive scalars, u−i := (u0, u1, ..., ui−1, ui+1, ..., uN ), Zi(T ) is the minor agent’s

total cash at the end of the trading horizon T , Qi(T )
(
Fi(T ) +ψQi(T )

)
is the penalty to be paid by an HFT

if it keeps Qi(T ) shares at the terminal time T , and its tendency to avoid high execution prices, large trading

intensities and large trading accelerations is modeled by including ξS2
i (T ) +µν2i (T ) +

∫ T
0

(
γS2

i (s) + %ν2i (s) +

Ru2i (s)
)
ds in the objective function. Note that there is no inventory cost for the HFT if it trades rapidly and

does not hold shares.

3 MFG formulation of the optimal execution problem

In this section we put the optimal execution problem into the MM LQG MFG framework.

3.1 Finite population
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3.1.1 Major agent

The stochastic optimal control problem for major trader is modeled

dν0(t) = u0(t)dt+ σν0dw
ν
0 , (13)

dQ0(t) = ν0(t)dt+ σQ0 dw
Q
0 , (14)

dF0(t) =
(
λ0ν0(t) +

λ

N

N∑
i=1

νi(t)
)
dt+ σdwF0 (t), (15)

with the cost function

J0(u0, u−0) = E
[
Q0(T )

(
F0(T ) + αQ0(T )

)
+ ε
(
F0(T ) + a0ν0(T )

)2
+ βν20(T )

+

∫ T

0

(
φQ2

0(s) + ν0(s)
(
F0(s) + a0ν0(s)

)
+ δ
(
F0(s) + a0ν0(s)

)2
+ θν20(s) +R0u

2
0(s)

)
ds
]
, (16)

wherein the final cash process in (11) was replaced by Z0(T ) = −
∫ T
0
S0(s)ν0(s)ds = −

∫ T
0

(
F0(t) + a0ν0(s)

)
ν0(s)ds, and the execution prices S0(T ), S0(t) were replaced using (7). As can be seen, the major agent is

coupled with the minor agents by the average term λ
N

∑N
i=1 νi in the fundamental asset price dynamics (15).

Now let the major agent’s state be denoted by

X0 =

 ν0
Q0

F0

 , (17)

and subsequently, the major agent’s cost function will be written in the standard quadratic form

J0(u0) = E
[
‖X0(T )‖2M0

+

∫ T

0

(
‖X0(s)‖2N0

+ ‖u0(s)‖2R0

)
ds
]
, (18)

with

M0 =

 εa20 + β 0 a0ε
0 α 1

2
a0ε

1
2 ε

 , N0 =

 a0 + δa20 + θ 0 a0δ + 1
2

0 φ 0
1
2 + a0δ 0 δ

 , R0 > 0.

The Equations (13)–(15) together with the cost function (18) form the standard stochastic LQG problem for
the major agent. It should be remarked that for M0, N0 to be positive semi definite matrices, the conditions

ε ≥ 1
4α , β(αε− 1

4 ) ≥ 1
4εa

2
0 and δ ≥ 1

4θ must hold, respectively, and this will be assumed throughout this paper.

3.1.2 Minor agent

Similarly, the stochastic optimal control problem for a minor trader Ai, 1 ≤ i ≤ N , is given by the set of

dynamical equations

dνi(t) = ui(t)dt+ σνi dw
ν
i , (19)

dQi(t) = νi(t)dt+ σQi dw
Q
i , (20)

dFi(t) =
(
λ0ν0(t) +

λ

N

N∑
i=1

νi(t)
)
dt+ σdwFi , (21)

with the cost function

Ji(ui, u−i) = E
[
Qi(T )

(
Fi(T ) + ψQi(T )

)
+ ξ
(
Fi(t) + aνi(T )

)2
+ µν2i (T )

+

∫ T

0

νi(s)
(
Fi(s) + aνi(s)

)
+ γ
(
Fi(s) + aνi(s)

)2
+ %ν2i (s) +Ru2i (s)

)
ds
]
, (22)
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where the final cash process in (12) has been replaced using (10) by Zi(T ) = −
∫ T
0
Si(s)νi(s)ds = −

∫ T
0

(
Fi(t)+

aνi(s)
)
νi(s)ds, and the execution prices Si(T ), Si(t) were replaced using (8). The equations above show that

a minor agent is coupled with the major agent and other minor agents through the fundamental asset price

dynamics (21). Similar to the major trader, we define a generic minor trader’s state vector as

Xi =

 νi
Qi
Fi

 (23)

and its quadratic cost function is given by

Ji(ui, u−i) = E
[
‖Xi(T )‖2M +

∫ T

0

(
‖Xi(s)‖2N + ‖ui(s)‖2R

)
ds
]
, (24)

where

M =

 ξa2 + µ 0 aξ
0 ψ 1

2
aξ 1

2 ξ

 , N =

 a+ γa2 + % 0 1
2 + aγ

0 0 0
1
2 + aγ 0 γ

 , R > 0.

The set of Squations (19)–(21) and the cost function (24) constitute the standard stochastic LQG problem

for a minor trader. Again, for the matrices M , N to be positive semi definite, ξ > 1
4ψ , µ(ψξ − 1

4 ) ≥ 1
4ξa

2

and γ > 1
4% must be, respectively, satisfied and this is adopted as an assumption.

3.2 Mean field evolution

Following the LQG MFG methodology [9], the mean field, X̄, is defined as the L2 limit, when it exists, of

the average of minor agents’ states when population size goes to infinity

X̄(t) = lim
N→∞

XN (t) = lim
N→∞

1

N

N∑
i=1

Xi(t), a.s.

Now, if the control strategy for each minor agent is considered to have the general feedback form

ui = L1Xi + L2X0 +

N∑
j 6=i,j=1

L4Xj + L3, 1 ≤ i ≤ N, (25)

then mean field dynamics can be obtained by substituting (25) in the minor agents’ dynamics (19)–(21) and

taking the average and then its limit as N →∞. However, the only element of the mean field directly active

in the dynamics in our setup is

ν̄ = lim
N→∞

1

N

N∑
i=1

νi. (26)

We now derive the evolution equation of ν̄. Substituting (25) in the trading dynamics (19), for 1 ≤ i ≤ N

we get

dνi =
[
L1Xi + L2X0 + L3

]
dt+

N∑
j 6=i,j=1

L4Xjdt+ σνi dw
ν
i .

Summing up over {i : 1 ≤ i ≤ N} yields to

NdνN = N
[
L1,1ν

N + L1,2Q
N + L1,3F

N + L2,1ν0 + L2,2Q0 + L2,3F0 + L3

]
dt

+
[ N∑
i=1

N∑
j 6=i,j=1

L4,1νj +

N∑
i=1

N∑
j 6=i,j=1

L4,2Qjdt+

N∑
i=1

N∑
j 6=i,j=1

L4,3Fj

]
dt+ σνi

N∑
i=1

dwνi .
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Then with N →∞ (as in[9], [4]), the mean field equation for ν̄ is given by

dν̄ = [L̄1,1ν̄ + L̄1,2Q̄+ L̄1,3F̄ ]dt+ [L̄2,1ν0 + L̄2,2Q0 + L̄2,3F0]dt+ L̄3dt, a.s. (27)

where L̄1,1, L̄1,2, L̄1,3, L̄2,1, L̄2,2 L̄2,3 and L̄3 are the constants which can be calculated from consistency

condition, and by (26), and the strong law of large numbers,

dQ̄ = lim
N→∞

1

N

N∑
i=1

dQi = lim
N→∞

[ 1

N

N∑
i=1

νidt+
σQi
N

N∑
i=1

dwQi

]
= ν̄dt, a.s.

dF̄ = lim
N→∞

1

N

N∑
i=1

Fi = lim
N→∞

[(
λ0ν0 +

λ

N

N∑
i=1

νi
)
dt+

σ

N

N∑
i=1

dwi

]
=
(
λ0ν0 + λν̄

)
dt, a.s.

where we have used a differential increments notation for the sake of brevity. Equivalently, the set of mean

field equations can be written as dν̄
dQ̄
dF̄

 =

 L̄1,1 L̄1,2 L̄1,3

1 0 0
λ 0 0

 ν̄
Q̄
F̄

 dt+

 L̄2,1 L̄2,2 L̄2,3

0 0 0
λ0 0 0

 ν0
Q0

F0

 dt+

 L̄3

0
0

 dt. (28)

The matrices in the mean field dynamics shall be denoted as follows

Ā =

 L̄1,1 L̄1,2 L̄1,3

1 0 0
λ 0 0

 , m̄ =

 L̄3

0
0

 , Ḡ =

 L̄2,1 L̄2,2 L̄2,3

0 0 0
λ0 0 0

 .
3.3 Infinite population

The dynamics of the major agent and a generic minor agent in the infinite population where the average

term in the finite population is replaced with its L2 limit, i.e. the mean field, are given below.

3.3.1 Major agent

 dν0
dQ0

dF0

 =

 0 0 0
1 0 0
λ0 0 0

 ν0
Q0

F0

 dt+
 1

0
0

u0dt+
 0 0 0

0 0 0
λ 0 0

 ν̄
Q̄
F̄

 dt+
 σν0 0 0

0 σQ0 0
0 0 σ

 dwν0
dwQ0
dwF0

 .
(29)

The matrices shall be denoted by

A0 =

 0 0 0
1 0 0
λ0 0 0

 , B0 =

 1
0
0

 , E0 =

 0 0 0
0 0 0
λ 0 0

 , D0 =

 σν0 0 0

0 σQ0 0
0 0 σ

 , W0 =

 wν0
wQ0
wF0


3.3.2 Minor agent

 dνi
dQi
dFi

 =

 0 0 0
1 0 0
0 0 0

 νi
Qi
Fi

 dt+

 0 0 0
0 0 0
λ 0 0

 ν̄
Q̄
F̄

 dt+

 1
0
0

ui(t)dt
+

 0 0 0
0 0 0
λ0 0 0

 ν0
Q0

F0

 dt+

 σνi 0 0

0 σQi 0
0 0 σ

 dwνi
dwQi
dwFi

 . (30)

and the matrices in the minor agent’s dynamics are denoted as follows

A =

 0 0 0
1 0 0
0 0 0

 , E =

 0 0 0
0 0 0
λ 0 0

 , B =

 1
0
0

 , G =

 0 0 0
0 0 0
λ0 0 0

 , D =

 σνi 0 0

0 σQi 0
0 0 σ

 , Wi =

 wνi
wQi
wFi

.
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4 Full observation optimal execution problem

Following the mean field game methodology with the major agent [9], [10], the optimal execution problem

first is solved in the infinite population case yielding the best accelerations of trading for each agent. For this

purpose, major agent’s state is extended with the mean field, and minor agent’s state is extended with the

mean field and major agent’s state.

4.1 Major agent

The Major agent’s extended dynamic in the infinite population is given by[
dX0

dX̄

]
=

[
A0 E0

Ḡ Ā

] [
X0

X̄

]
dt+

[
03×1
m̄

]
dt+

[
B0

03×1

]
u0(t)dt+

[
D0 0
0 0

] [
dW0

0

]
(31)

Accordingly, the following matrices are defined

A0 =

[
A0 E0

Ḡ Ā

]
, M0 =

[
03×1
m̄

]
, B0 =

[
B0

03×1

]
, D0 =

[
D0 0
0 0

]
.

Following [9], [10], the infinite population best response control is given by

u◦0(t) = −R−10 BT0 Π0

(
XT

0 , X̄
T
)T
. (32)

Let us define N̄0 = [I3×3, 03×3]TN0[I3×3, 03×3] and M̄0 = [I3×3, 03×3]TM0[I3×3, 03×3], then Π0 is calculated

by the following Riccati equation as

−dΠ0

dt
= Π0A0 + AT0 Π0 −Π0B0R

−1
0 BT0 Π0 + N̄0, Π0(T ) = M̄0.

4.2 Minor agent

A generic minor agent’s extended dynamics is dXi

dX0

dX̄

 =

[
A

[
G E

]
06×3 A0

] Xi

X0

X̄

 dt+

[
03×1
M0

]
dt+

[
03×1
B0

]
u0(t)dt

+

[
B

06×1

]
ui(t)dt+

[
D 03×6

06×3 D0

] dWi

dW0

0

 . (33)

Substituting the major agent’s control action (32) into (33), we define

A =

[
A

[
G E

]
06×3 A0 − B0R

−1
0 BT0 Π0

]
, M =

[
03×1,
M0

]
, B =

[
B

06×1

]
, D =

[
D 03×6

06×3 D0

]
.

Then the best response control for a generic minor agent is

u◦i (t) = −R−1BTΠ
(
XT
i , X

T
0 , X̄

T
)T
, (34)

where

−dΠ

dt
= ΠA + ATΠ−ΠBR−1BTΠ + N̄ , Π(T ) = M̄.

with N̄ = [I3×3, 03×6]TN [I3×3, 03×6] and M̄ = [I3×3, 03×6]TM [I3×3, 03×6].
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4.3 Consistency condition

The closed loop trading dynamics of a generic minor agent applying (34) is consequently

dνi = −R−1BTΠ
(
XT
i , X

T
0 , X̄

T
)T
dt+ σνi dw

σ
i , 1 ≤ i ≤ N,

and so we obtain the mean field ν̄ process as follows.

N∑
i=1

dνi = −
N∑
i=1

R−1BTΠ
(
XT
i , X

T
0 , X̄

T
)T
dt+ σνi

N∑
i=1

dwσi ,

which yields

lim
N→∞

dνN = −R−1BTΠ lim
N→∞

(
(XN )T , XT

0 , X̄
T
)T
dt

and hence

dν̄ = −R−1BTΠ(X̄T , XT
0 , X̄

T )T dt

= −R−1
(
Π1,1ν̄ + Π1,2Q̄+ Π1,3F̄ + Π1,4ν0

+ Π1,5Q0 + Π1,6F0 + Π1,7ν̄ + Π1,8Q̄+ Π1,9F̄
)
dt, a.s.

So the consistency equations become

L̄1,1 = −R−1(Π1,1 + Π1,7),

L̄1,2 = −R−1(Π1,2 + Π1,8),

L̄1,3 = −R−1(Π1,3 + Π1,9),

L̄2,1 = −R−1Π1,4,

L̄2,2 = −R−1Π1,5,

L̄2,3 = −R−1Π1,6,

L̄3 = 0 ≡ M0 = 0, M = 0, (35)

where the L. scalars were defined in (27).

5 Partially observed MM LQG MFG problem

We now follow the general development in [8] for PO MM LQG MFG systems where the major agent has

only partial observations on its own states.

5.1 Major agent

let the major agent’s observation process be

dy0 = H0[XT
0 , X̄

T ]T dt+ σv0dv0 (36)

where H0 is a constant matrix with appropriate dimension. Then the corresponding Kalman filter equation

to generate the estimates of the major agent’s states are given by

dX̂0|Fy
0

= A0X̂0|Fy
0
dt+M0dt+ B0û0|Fy

0
dt+K0(t)[dy0 −H0X̂0|Fy

0
dt] (37)

where the filter gain is given by

K0(t) = V0(t)HT0 R−1v0 , (38)

where Rv0 = σv0σ
T
v0 . The associated Riccatti equation is

V̇0(t) = A0V0(t) + V0(t)AT0 −K0(t)Rv0K0(t)T +Qw0
. (39)

Assumption: [A0, Qw0 ] is controllable and [H0,A0] is observable.
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5.1.1 Cost function

The system states can be decomposed into ν0
Q0

F0

 =

 ν̂0|Fy
0

Q̂0|Fy
0

F̂0|Fy
0

+

 ν0 − ν̂0|Fy
0

Q0 − Q̂0|Fy
0

F0 − F̂0|Fy
0

 (40)

So by the Separation Principle

J0(u0) = E
[
‖X̂0|Fy

0
(T )‖2M0

+

∫ T

0

(
‖X̂0|Fy

0
(s)‖2N0

+ ‖u0(s)‖2R0

)
ds

+ ‖X0(T )− X̂0|Fy
i
(T )‖2M0

+

∫ T

0

(
‖X0(s)− X̂0|Fy

0
(s)‖2N0

)
ds
]

(41)

and the corresponding infinite population best response control action is given by

û◦0 = −R−10 BT0 Π0

(
X̂T

0|Fy
0
, ˆ̄XT
|Fy

0

)T
(42)

5.2 Minor agent

The extended state shall be denoted by

Xi = [XT
i , X

T
0 , X̄

T , X̂T
0|Fy

0
, ˆ̄XT
|Fy

0
]T . (43)

Let the minor agent’s observation process be given by

dyi(t) = H[XT
i , X

T
0 , X̄

T , X̂T
0|Fy

0
, ˆ̄XT

0|Fy
0
]T dt+ σvidvi (44)

with H constant matrix. Then the extended dynamics of minor agent are given by
dXi

dX0

dX̄

dX̂0|Fy
0

d ˆ̄X|Fy
0

 =

 A [G,E] 03×6
06×3 A0 −B0R

−1
0 BT0 Π0

06×3 K0H0 A0 − B0R
−1
0 BT0 Π0 −K0H0




Xi

X0

X̄

X̂0|Fy
0

ˆ̄X|Fy
0

 dt+

 03×1
M0

M0

 dt

+

[
B

06×1

]
ui(t)dt+

[
D 0
0 K0

]
dWi

dW0

0
dv0

 , (45)

or equivalently

dXi = AXidt+Mdt+ Buidt+ Σ
[
dWT

i , dW
T
0 , 0, dv0

]T
. (46)

The Kalman filter which generates the estimates of the minor agent’s states is

dX̂i|Fy
i

= AX̂i|Fy
i
dt+Mdt+ Bûi|Fy

i
dt+K(t)

[
dyi −HX̂i|Fy

i
dt
]

(47)

where the filter gain is given as

K(t) = V (t)HTR−1vi , (48)

with Rvi = σviσ
T
vi .

Assumption 1 [A, Qw] is controllable (respectively stabilizable) and [H,A] is observable (respectively de-

tectable).

The corresponding Riccati equation is

V̇ (t) = AV (t) + V (t)AT −K(t)RvK(t)T +Qw. (49)
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5.2.1 Cost function

We can decompose a generic minor agent’s state as νi
Qi
Fi

 =

 ν̂i|Fy
i

Q̂i|Fy
i

F̂i|Fy
i

+

 νi − ν̂i|Fy
i

Qi − Q̂i|Fy
i

Fi − F̂i|Fy
i

 (50)

By Separation Theorem we have

Ji(ui, u−i) = E
[
‖X̂i|Fy

i
(T )‖2M +

∫ T

0

(
‖X̂i|Fy

i
(s)‖2N + ‖ui(s)‖2R

)
ds

+ ‖Xi(T )− X̂i|Fy
i (T )‖2M +

∫ T

0

‖Xi(s)− X̂i|Fy
i
(s)‖2Nds

]
. (51)

So the corresponding infinite population best response control is given by

û◦i (t) = −R−1BTΠ
(
X̂T
i|Fy

i
, X̂T

0|Fy
i
, ˆ̄XT
|Fy

i

)T
. (52)

The infinite population best response control laws applied to a finite population system yield to an ε-Nash

equillibrium.

Theorem 1 (ε-Nash equilibria for PO MM-MF systems) The KF-MF state estimation scheme (37), (39)

and (47), (49) together with the MM-MFG equation scheme (35) generate the set of control laws ÛNMF ,
{û◦i ; 0 ≤ i ≤ N}, 1 ≤ N <∞, given by

û◦0 = −R−10 BT0 Π0(X̂T
0|Fy

0
, ˆ̄XT
|Fy

0
)T ,

û◦i = −R−1BTΠ(X̂T
i|Fy

i
, X̂T

0|Fy
i
, ˆ̄XT
|Fy

i
)T , 1 ≤ i ≤ N

such that

(i) All agent systems Ai, 0 ≤ i ≤ N , are second order stable.

(ii) {ÛNMF ; 1 ≤ N <∞} yields an ε-Nash equilibrium for all ε, i.e. for all ε > 0, there exists N(ε) such that

for all N ≥ N(ε);

Js,Ni (û◦i , û
◦
−i)− ε ≤ inf

ui∈UN
i,y

Js,Ni (ui, û
◦
−i) ≤ J

s,N
i (û◦i , û

◦
−i).

6 Simulation results for MFG optimal execution problem

In numerical experiment, it is assumed that the trading action takes place within T = 500 seconds. The

dynamical parameters and the cost function parameters are chosen based on the simulation practice in [2].

Hence, the temporary impact strength of the major agent’s trading and a generic minor agent’s trading on the

market are a0 = a = 5.43×10−6, while their permanent impact strengths are taken to be λ0 = λ = 2×10−8.

The diffusion coefficients in trading dynamics are selected as σν0 = 0.05, σνi = 0.03, σQ0 = 0.05, and σQi = 0.02.

The penalty coefficient for the remaining inventory stocks at the end of trading horizon for the major agent

is α = 5a0, and for a minor trader is ψ = 5a. The inventory (storage) penalty coefficient for the major

agent is φ = 10−1a0. Furthermore, the market volatility is σ = 0.6565, the initial asset price is taken to be

F0(0) = Fi(0) = $35, 1 ≤ i ≤ N , and the initial inventory stock of the major trader and an HFT are assumed

to be Q0(0) = 5000 and Qi(0) = 500, 1 ≤ i ≤ N , respectively. In estimation part, the measurement noise

standard deviation for the major trader is σ0 = 0.05, and for the HFT is σ = 0.5. The resulting ε-Nash

equilibrium trajectories of the major agent and an HFT for the Full Observation case are displayed in Figures

1–2, and those of Partial Observation case are depicted in Figures 3–4. In Full (Partial) Observation case,

the major agent has full (partial) observations of its own states, and an HFT has full (partial) observations

of its own states and the major agent’s states.
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Figure 1: Major agent’s states in full observation
case
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Figure 2: A generic minor agent’s states in full
observation case
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Figure 3: Major agent’s state trajectories and major
agent’s estimates of its own states in partial obser-
vation case
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Figure 4: A generic minor agent’s state trajecto-
ries and minor agent’s estimates of its own states in
partial observation case

7 Conclusion

An initial application of PO MM LQG MFG Theory to the financial execution problem was presented in

this paper. Current and future work will expand the dynamical models of the financial execution systems,

explore the robustness of the model with respect to its modeling hypothesis and take into account the

nonlinear dynamical effects, where the latter constitutes a very challenging problem [6], [7].
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