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Abstract: High-order sequential simulation techniques for complex and non-Gaussian spatially distributed
variables were developed over the last few years. This paper presents a new extension where high-order
statistics are inferred from the available hard data and then missing high-orders are borrowed from a training
image. The inferred high-order statistics are then used to estimate spline coefficients that are subsequently
employed to approximate conditional probability density functions as needed for the simulation process. The
advantage of using orthogonal splines with respect to standard approaches is their ability to approximate a
probability density function locally using not only high-order spatial cumulants for the whole range of values
in data, but also partial cumulants calculated for particular ranges of values, such as extreme values. The
proposed technique provides a general framework for simulation, both of continuous and categorical variables.
Developments are tested on a synthetic data set.

Keywords: Stochastic simulation, data-driven, splines, high-order spatial statistics, non-Gaussian distribu-
tion, multipoint statistics



 

Geostatistical simulations are used to quantify the uncertainty of spatial attributes of interest describing mineral 

deposits, petroleum reservoirs, hydrogeological horizons, environmental contaminants and others. Since the 1990’s, 

multiple point spatial simulation (MPS) methods and variations (Guardiano and Srivastava, 1993; Strebelle, 2002; 

Strebelle and Zhang, 2005; Journel, 2005, 2007; Zhang et al., 2006; Chuginova and Hu, 2008; Straubhaar et al., 2010; 

De Iaco and Maggio, 2011; Honarkhah, 2011; Tjelmeland, 2013; Kolbjørnsen, 2014; Strebelle and Cavelius, 2014; 

Chatterjee et al., 2015; others) have been developed to advance the simulation technologies beyond the past generation 

of second-order spatial statistics typically combined with Gaussian processes (e.g., David, 1988; Goovaerts, 1997; 

Chiles and Delfiner, 2012). A core limitation of MPS approaches is that they are largely algorithmic and do not 

consistently account for the high-order spatial relations in the available hard data. Patterns and complex spatial 

relations are derived from the so-termed training images (TI) or geological analogues, rather than from hard data, a 

topic critical for relatively data-rich type applications (eg. Osterholt and Dimitrakopoulos, 2007; Goodfellow et al., 

2012). To address some of these limits, high-order simulation techniques for complex and non-Gaussian spatially 

distributed variables have also been developed (Mustapha and Dimitrakopoulos, 2010; 2011) based on generating 

conditional distributions through Legendre polynomials and high-order spatial cumulants introduced by 

Dimitrakopoulos et al. (2010). To improve these in terms of approximating probability density functions (pdf) during 

the sequential simulation process, as well as to generalize the proposed framework for both continuous and categorical 

variables, orthogonal splines are considered herein. 

 

Hereafter, methods that use complex spatial relations derived from TI are called TI-driven, whereas approaches 

focused on the reproduction of spatial relations of hard data are called data-driven. The topic of data-driven MPS 

simulations has already been addressed. Attempts to address it may also be found in direct sampling (Mariethoz and 

Renard, 2010), where the sequential MPS algorithm draws random replicates from a TI and hard data that correspond 

to spatial configuration of conditional data. The similarity measure of a data event and drawn replicate is calculated 

and, if a certain threshold is reached, the value in the central node of the replicate is assigned to a grid node. The 

approach is a random drawing from implicitly approximated conditional probability density function, which does not 

ensure that high-order statistics of data are reproduced. The high-order simulation framework (Mustapha and 

Dimitrakopoulos, 2010, 2011; Boogaart et al., 2014) addresses the above and it is based on the Legendre series 

approximation (Lebedev, 1965) of a conditional pdf at each node to be simulated. The approach is data-driven and 

uses high-order spatial statistics from hard data, which are complemented by high-order spatial statistics from training 

image. Here the high-order spatial statistics are shown to capture directional multiple-point periodicity, connectivity 

(including connectivity of extreme values), and spatial architecture (Dimitrakopoulos et al., 2010). 

 

In an effort to improve upon the estimation of conditional pdfs within the high-order simulation framework, a spline 

approximation of complex multi-dimensional functions (Piegl, 1989; Hughes, 2005) is considered here. Splines are 

functions that are piecewise-defined by polynomials, which are connected by some condition of smoothness at the 

knots. Splines are flexible tools in dealing with discontinuities (Sinha and Schunck, 1992; López de Silanes et al., 

2001;) and functions with locally high gradients (Malagù et al., 2014). Additionally, through the proper choosing of 

knots sequence splines can accurately approximate very complex functions, such as the shapes of three dimensional 

objects in a computer-aided geometric design (Hoschek and Lasser, 1993; Park and Lee, 2007). That is why splines 

are chosen herein for approximating of complex multidimensional joint distributions. 

 

However, B-splines do not compose the orthogonal system of functions and therefore cannot be used in the 

framework proposed by Mustapha and Dimitrakopoulos (2010). In this paper Legendre-like splines (Wei et al., 2013) 

are used, which are shown to be orthogonal and can be easily integrated in the high-order simulation framework. This 

spline approach shows improvements in estimating conditional pdfs and resulting simulated realizations in terms of 

numerical stability and ability to reproduce distribution of extreme values, while also allows the simulation of both 

continuous and categorical variables.  

 

The paper organized as follows. In Section 2 the high-order simulation framework is outlined. Then, the limitations 

of the high-order simulation technique using Legendre polynomials are demonstrated and a new approach using 

Legendre-like orthogonal splines is proposed. In Section 3, a novel data-driven algorithm is introduced within the high-

order simulation framework. Further, in Section 4, the proposed approaches are tested on fully-known datasets and 

conclusions follow. 



 

 

Let 𝑍(𝑥𝑖) or 𝑍𝑖 be a random field indexed in 𝑅𝑛 , 𝑥𝑖 ∈ 𝐷 ⊆ 𝑅
𝑛(𝑛 = 1,2,3), 𝑖 = 1…𝑁, where 𝑁 is the number of points 

in a discrete grid 𝐷 ⊆ 𝑅𝑛. The focus of high-order simulation techniques is to simulate the realization of the random 

field 𝑍(𝑥𝑖) for all nodes of a grid 𝐷 with a given set of conditioning data 𝑑𝑘 = {𝑍(𝑥𝛼), 𝛼 = 1…𝐾} and high-order 

spatial statistics derived from the training image 𝑌(𝑥𝑖). The high-order simulation method proposed by Mustapha and 

Dimitrakopoulos (2010; 2011) uses Legendre polynomials and coefficients in terms of high-order statistics to 

approximate the conditional probability density function at each node of the simulation grid. This method is presented 

by the following Algorithm A.1. 

 

Algorithm A.1 

1. Assign conditioning data values 𝑑𝑘 to the grid’s closest nodes of the simulation grid 𝐷 in term of Euclidian distance. These 

nodes are called sampled, whereas the rest of the nodes are referred to as unsampled ones. 

2. Define a random path visiting all the unsampled nodes. 

3. For each node 𝑥0 in the path: 

a. Find the closest sampled grid nodes 𝑥1, 𝑥2, 𝑥𝑛. The conditioning data at these nodes are denoted by 𝑧1, … , 𝑧𝑛. 

b. Define the template shape 𝑇𝑛+1
𝑒1,𝑒2,…𝑒𝑛(ℎ1, ℎ2, … , ℎ𝑛 ) for the unsampled location 𝑥0 using its neighbors: 

 

 𝑇𝑛+1
𝑒1,𝑒2,…𝑒𝑛(ℎ1, ℎ2, … , ℎ𝑛 ) = {

(𝑥, 𝑥 + ℎ1, … , 𝑥 + ℎ𝑛)

∕ {𝑥, 𝑥 + ℎ1, 𝑖 = 1…𝑛}
}, (1) 

 

where 𝑒𝑖 are unit directional vectors from 𝑥0 to 𝑥𝑖 , correspondingly, and ℎ𝑖 are distances from 𝑥0 to 𝑥𝑖. 

c. Search all the replicates by scanning a TI with the template 𝑇𝑛+1
𝑒1,𝑒2,…𝑒𝑛(ℎ1, ℎ2, … , ℎ𝑛 ). The set of replicates {𝑅𝑚

𝑖 } 𝑚=1…𝑀
𝑖=1…𝑛  

obtained is then given by: 

 

𝑅𝑚
0 = 𝑌(𝑥𝑚) 
𝑅𝑚
𝑖 = 𝑌(𝑥𝑚 + ℎ𝑖), 𝑖 = 1…𝑛 , (2) 

{𝑥𝑚, 𝑥𝑚 + ℎ1, 𝑥𝑚 + ℎ𝑛} ∈ 𝑇𝑛+1
𝑒1,𝑒2,…𝑒𝑛(ℎ1, ℎ2, … , ℎ𝑛 ) 

 

where 𝑚 = 1…𝑀,𝑀 is user defined number of replicates, and 𝑥𝑚 is the central node of the replicate. 

d. Calculate the coefficients of the Legendre polynomial approximation  
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where 𝑃𝑖𝑛 is Legendre polynomial of order 𝑖𝑛 whose explicit form will be discussed in section 2.1. 

e. Build the conditional probability density function 𝑓𝑧0(𝑧0|𝑧1, 𝑧2, … , 𝑧𝑛) of the random variable 𝑍0 at the unsampled 

location 𝑥0 given the conditioning data 𝑧1, … 𝑧𝑛 at the nodes 𝑥1, 𝑥2, … 𝑥𝑛, correspondingly 
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where 𝐶 is the normalization coefficient defined as 𝐶 = 1 ∕ ∫ 𝑓𝑧0(𝑧0|𝑧1, 𝑧2, … , 𝑧𝑛) 𝑑𝑧0 and 𝑟 is the maximal order of 

approximation defined by user. 

f. Draw a random value from this conditional distribution (4) and assign it to the unsampled location 𝑥0. 

g. Add 𝑍0 to the set of sample hard data and the previously simulated values. 

4. Repeat Steps 3a-g for all the points along the random path defined in Step 2.  

 

Mustapha and Dimitrakopoulos (2010; 2011) proposed to use Legendre series for conditional pdf approximation (4), 

where 𝑃𝑚 is the Legendre polynomial of order 𝑚 defined as in Lebedev (1965): 

 

 21
( ) ( 1) , 1 1

2 !

m

m m

d
P z z z

m dz

 
         

 

. (5) 

 



 

The set of Legendre polynomials {𝑃𝑚(𝑧)}𝑚 forms a complete basis set on the interval [−1,1] and the function 𝑓(𝑧) 
in the univariate case can be then approximated as follows 
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where 𝐿𝑚 are coefficients of the Legendre polynomial approximation, 𝑟 is the maximum order of approximation. 

 

In the multivariate case, expression (6) becomes the equation (4). Legendre series perform well approximating the 

conditional pdfs and allow explicitly use of high-order spatial statistics. However, there are some practical limitations 

of using Legendre polynomials for approximation functions in a multidimensional space. 

 

Let us consider an approximation of the conditional pdf for a given unsampled location with 4 neighbors (Figure 1a). 

Half of the all replicates 𝑀1 = 𝑀 ∕ 2 are randomly chosen from TI and approximations of the conditional pdf using 

Legendre series with different maximal orders 𝑟 are calculated. 

 

In Figure 1b, c, d the approximation results for 6 random sets of replicates with maximal order 20, 30, and 40 are 

represented by solid grey lines. The empirical conditional distribution, depicted by the histogram, is calculated using 

all replicates from TI. 

 

It is not hard to see that as the maximal order of approximation is increased the approximation becomes unstable. 

 

 

 
(a) (b) 

  
(c) (d) 

Figure 1. The stability of the polynomial approximation: (a) spatial configuration of the template, (b) the approximation using Legendre 
series up to order 20, (c) the approximation using Legendre series up to order 30, (d) the approximation using Legendre series up to 
order 40. Solid grey lines are the approximation results for different sets of replicates from TI. The empirical conditional distribution is 
depicted by the histogram. 

 

In the next example the sensitivity of polynomial approximation to changes in the distribution of extreme values is 

analysed. The unsampled location with one neighbor is considered. Two empirical conditional pdfs with different 



 

distributions of extreme values are compared with the approximations using Legendre polynomials with maximal 

orders 20 and 30, Figures 2 and 3, correspondingly. 

 

It is quiet straightforward, that the approximation using Legendre series with maximal order 20 is not sensitive for 

changes in distribution of extreme values (Figure 2), whereas the approximation using maximal order of 30 takes into 

account even slight variation in distributions (Figure 3). However, using Legendre polynomial with maximal order 30 

is shown to be unstable (Figure 1c). 

 

  
(a) (b) 

Figure 2. The approximation of conditional pdfs using Legendre polynomials with maximal order 20. Cases (a) and (b) differ by 
distribution of extreme values. The solid grey lines are the approximation results; histograms represent the empirical conditional 
distribution. 

 

  
(a) (b) 

Figure 3. The approximation of conditional pdfs using Legendre polynomials with maximal order 30. Cases (a) and (b) differ by 
distribution of extreme values. The solid grey lines are the approximation results; histograms represent the empirical conditional 
distribution. 

 

Legendre series are usually used for approximation of smooth functions. If discrete or piece-wise smooth pdf is 

considered a polynomial approximation can give high negative values or fluctuations around zero. For example, in 

Figure 1d the actual pdf is equal to zero on intervals [-1; -0.5], [-0.45; -0.4], and [-0.25; 1] and has several kinks on 

the edge of these intervals. As the result, the polynomial approximation has negative probability up to -0.7 and 

oscillations around zero. These numerical issues eventually result in unfounded outliers as in the case study in 

Section 4. 

 

By all means, there are techniques to deal with all these artifacts (Wilson and Wragg, 1973), but the common 

algorithm can be sophisticated. Moreover, the actual conditional pdf is not known and the question whether the 

fluctuations correspond to the real conditional pdf or they are numerical artifacts should be solved providently for each 

unsampled location. 



 

 

In addition to Legendre polynomials, any orthogonal system of functions can be used in the high-order simulation 

described in Algorithm A.1. In this work, Legendre-like splines (Wei et al., 2013) are used to overcome the limitation 

discussed in Paragraph 2.1. 

 

Let us review the construction of Legendre like orthogonal splines of order 𝑟 (Wei et al., 2013). Let [𝑎, 𝑏] be a 

domain for function approximation, which is described by the knot sequence: 
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1 1
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where knots 𝑡𝑘, 𝑘 = 1…𝑘max + 1 divide the domain [𝑎, 𝑏] into a set of 𝑘max intervals [𝑎, 𝑏] = ⋃ [𝑡𝑖 , 𝑡𝑖+1]
𝑘max
1=0 , where 

𝑡0 = a, 𝑡𝑘max+1
= 𝑏. 

 

Then, the set of 𝑟+𝑘max orthogonal splines can be constructed. The first 𝑟 + 1 splines are defined as the Legendre 

polynomials up to order 𝑟: 
 

 𝑆𝑚(𝑡) = 𝑃𝑚(𝑡),𝑚 = 0…𝑟. (8) 

 

The next splines are constructed on subsets 𝑇𝑘 = {𝑡𝑖,𝑘}𝑖=−𝑟
𝑟+𝑘+1

, 𝑘 = 1…+𝑘max − 1 of the knot sequence 𝑇, where 

𝑡𝑖,𝑘 are defined as follows 
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For example, first and second subsets are 𝑇1 = {𝑎, 𝑎, … , 𝑎⏟      
𝑟+1

< 𝑡1 < 𝑏, 𝑏, … , 𝑏⏟      
𝑟+1

} and 𝑇2 = {𝑎, 𝑎, … , 𝑎⏟      
𝑟+1

< 𝑡1 ≤ 𝑡2 <

𝑏, 𝑏, … , 𝑏⏟      
𝑟+1

}, respectively. 

 

Let 𝐵𝑖,𝑟,𝑘(𝑡) be a B-spline of order 𝑟 on the knot sequence 𝑇𝑘 
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where the zero-order B-spline 

 

 𝐵𝑖,0,𝑘 = {
1, 𝑡𝑖,𝑘 ≤ 𝑡 ≤ 𝑡𝑖+1,𝑘
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. (11) 

 

Then, the remaining Legendre-like splines 𝑆𝑚(𝑡),𝑚 = 𝑟 + 2… 𝑟 + 𝑘max are determined by 

 

 𝑆𝑟+𝑘(𝑡) =
𝑑𝑟+1

𝑑𝑡𝑟+1
 𝑓𝑘(𝑡), 𝑘 = 1…𝑘max , (12) 

 

where 𝑓𝑘(𝑡) is the determinant of the matrix 
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Wei et al. (2013) demonstrated the construction of orthogonal splines on a simple example with 𝑟 = 3 and the knot 

sequence 𝑇 = [0,0,0,0,1,2,3,3.5,4,4,4,4]. The full set of splines 𝑆𝑚(𝑡),𝑚 = 0… 𝑟 + 𝑘max is presented in Figures 4 

and 5. 

 

. 

Figure 4. First four Legendre-like splines over the knot sequence T . 

 

 

Figure 5. Last four Legendre-like splines over the knot sequence T . 



 

 

Up until this point, only statistics from TI are used for high-order simulation and no information about the spatial 

relationship from hard data has been taken into account. However, in practice, it is difficult to obtain a reliable TI, 

which is consistent with spatial statistics of the hard data. Furthermore, the TI is a subjective matter and two geologists 

can provide training images with fairly different statistics. Therefore, hard data should be the main source of spatial 

statistics and TI should only be the complimentary one. Ideally, all information available in the hard data should be 

taken into account and then, if required, completed from a training image. 

 

Mustapha and Dimitrakopoulos (2010; 2011) proposed to calculate high-order spatial statistics based on founded 

replicates in hard data and TI. For a given cumulant, the calculation is performed using replicates found in the hard 

data. If the number of replicates is less than a user defined threshold, the search continues through the TI. Nevertheless, 

in practice it is difficult to find replicates in hard data even for the third-order cumulant. Moreover, all the orders of 

spatial statistics are connected by condition of non-negative range of pdf. For example, the value of the second-order 

statistics imposes restrictions on values of higher-orders. Therefore, generally speaking, combining low-order 

cumulants calculated from data with high-order cumulants derived from the TI can result in pdf with negative values. 

 

In this paper, a straightforward data-driven algorithm is proposed (Algorithm A.2). 

 

Algorithm A.2. 

1. Run steps 1,2,3a-b of Algorithm A.1. 

2. For a given template 𝑇𝑛+1
𝑒1,𝑒2,…𝑒𝑛(ℎ1, ℎ2, … , ℎ𝑛 ) of unsampled location 𝑥0 for each hard data location 𝑥𝑚 

a. Define a replicate at location 𝑥𝑚 

 

𝑅𝑚
0 = 𝑍(𝑥𝑚) 
𝑅𝑚
𝑖 = 𝑍(𝑥𝑚 + ℎ𝑖), 𝑖 = 1…𝑛 , (14) 

{𝑥𝑚, 𝑥𝑚 + ℎ1, 𝑥𝑚 + ℎ𝑛} ∈ 𝑇𝑛+1
𝑒1,𝑒2,…𝑒𝑛(ℎ1, ℎ2, … , ℎ𝑛 ) 

 

If 𝑍(𝑥𝑚 + ℎ𝑖) is unsampled consider 𝑅𝑚
𝑖  is undefined, otherwise 𝑅𝑚

𝑖  is defined. 

b. Define a random path visiting all undefined values of replicate 𝑅𝑚
𝑖  

c. Run step 3 of Algorithm A.1 to complete the replicate 𝑅𝑚
𝑖 . 

d. Add the completed replicate to the set of replicates {𝑅𝑚
𝑖 }

𝑚=1…𝑀

𝑖=1…𝑛
 

3. Use the set of completed replicates {𝑅𝑚
𝑖 }

𝑚=1…𝑀

𝑖=1…𝑛
to calculate the coefficients 𝐿𝑖0,𝑖1,…𝑖𝑛 at the unsampled location 𝑥0 using 

expression (3). 

4. Run steps 3e-g, 4 of Algortihm A.1. 

 

In this way, spatial statistics are implicitly calculated from hard data and the TI, therefore the higher-order statistics 

are consistent with each other. 

 

To better analyse the influence of hard data and the TI, let us consider the 2-neighbors spatial relationships, i.e. 

𝑛 = 2. Let {𝑅𝑚
𝑖 }𝑚=1…𝑀

𝑖=0…2  be a set of replicates after step 2a of Algortihm A.2 for an arbitrary unsampled location 𝑥0. 

Let 𝑀0, 𝑀1,𝑀2 be numbers of replicates 𝑅𝑚
𝑖  with defined first value 𝑅𝑚

0 , defined first 𝑅𝑚
0  and second values 𝑅𝑚

1 , and 

with all values 𝑅𝑚
0 , 𝑅𝑚

1 , 𝑅𝑚
2  defined, respectively. It is not hard to see, that 𝑀0 ≥ 𝑀1 ≥ 𝑀2 and 𝑀0 = 𝑀 because 𝑅𝑚

0 =
𝑍(𝑥𝑚), where 𝑥𝑚 is sampled location. Then, the amount of information is taken from data and TI can be expressed in 

terms of 𝑀𝑖. For example, to estimate r-order moments 𝑀𝑜𝑚𝑟(𝑍(𝑥0)) = 𝐸[𝑍(𝑥0)
𝑟] of random variable at location 

0x  

only information from hard data is used, because 𝑅𝑚
0 = 𝑍(𝑥𝑚) belong to hard data by the construction. In the 

estimation of the two-points relationships, i.e. r-order moment 𝑀𝑜𝑚𝑟(𝑍(𝑥0), 𝑍(𝑥1)) = 𝐸[𝑍(𝑥0)
𝑝𝑍(𝑥1)

𝑟−𝑝], 𝑝 =

1… 𝑟 of the random variables at locations 𝑥0 and 𝑥1 = 𝑥0 + ℎ1, 𝑀1 replicates are associated with hard data, and the 

rest 𝑀 −𝑀1 are completed using the TI. For the three-points relationships, i.e. r-order moment 

𝑀𝑜𝑚𝑟(𝑍(𝑥0), 𝑍(𝑥1), 𝑍(𝑥2)) = 𝐸[𝑍(𝑥0)
𝑝𝑍(𝑥1)

𝑞𝑍(𝑥1)
𝑟−𝑝−𝑞], 𝑝 = 1… 𝑟, 𝑞 = 1… 𝑟 − 𝑝 of the random variables at 

locations 𝑥0, 𝑥1 and 𝑥2 = 𝑥0 + ℎ2, only 𝑀2 replicates use information from hard data and the rest is taken from the TI. 



 

Thus, the influence of the TI is greater for multi-point relationships, whereas hard data’s contribution is dominated for 

one- and two-points correlations.  

 

It should be noted, that more hard data is available, more complex multi-point relationships are taken from hard 

data during the simulation. 

 

 

Simulation of continuous variables is tested on the case study, which is based on the real image of a fracture network 

(Figure 6). Grey-scale values of image in Figure 6 are transformed to the [0,1] domain. The left half of Figure 6 is 

used as a reference image, see Figure 7a, and the right one is used as a training image, Figure 7b. The simulation grid 

consists of 100 × 100 nodes and 5% of nodes (500 points in Figure 7c) are randomly sampled from the reference 

image and used as hard data. 

 

 

Figure 6. Image of real fracture network (public dataset). 

  
(a) (b) 

 
(c) 

Figure 7. Fracture network case study: (a) reference image; (b) training image; (c) 500 samples from reference image. 



 

The simulations using three different algorithms are compared in terms of spatial statistics: (a) the TI-driven 

Algorithm A.1 with Legendre polynomials of order 20, (b) the TI-driven Algorithm A.1 with Legendre-like splines of 

order 3, and (c) the data-driven Algorithm A.2 with Legendre-like splines of order 3. 

 

The simulations of the case study are shown in Figure 8. The simulation using Legendre polynomials (Figure 8a) has 

numerical noise due to limitations discussed in paragraph 2.1, whereas simulations using the spline approximation 

(Figure 8b and 8c) show a stable reproduction of complex geometrical features. 

 

  
(a) (b) 

 
(c) 

Figure 8. Simulation results with (a) the TI-driven simulation using polynomials; (b) the TI-driven simulation using splines; (c) the data-
driven simulation using splines. 

Variograms of the hard data, the TI, and three different simulations are similar (Figure 9). Note that the variogram 

of the simulation using Legendre polynomials has the biggest nugget effect (dashed line in Figure 9). 

 

 

Figure 9. Variograms of hard data (dots), the TI (solid line), the TI-driven simulation using Legendre series (dashed line), the TI-driven 
simulation using splines (dotted line), the data-driven simulation using splines (dash-dotted line). 



 

  
(a) (b) 

Figure 10. Estimation of third-order spatial moments of hard data: (a) number of replicates used for estimation, (b) estimation result. 

The high-order spatial statistics are estimated based on a L-shape template with directional vectors 𝑒1 = {1,0,0} 
and 𝑒2 = {0,1,0}. It is hard to analyse higher-order spatial cumulants of data samples due to the low number of 

replicates found in neighbourhoods (Figure 10a). However, along the X and Y axes, where the number of replicates is 

big enough and the third-order spatial cumulants of hard data (Figure 11a) are better reproduced in simulation using 

data-driven Algorithm A.2 (Figure 10d), than in the simulation using the TI-driven Algorithm A.1 (Figure 10 b and c). 

 

  
(a) (b) 

  

  
(c) (d) 

Figure 11. Third-order spatial moments of (a) hard data samples; (b) the TI-driven simulation using Legendre polynomials; (c) the TI-
driven simulation using splines; (d) the data-driven simulation using splines. 

 

The proposed high-order simulation technique using Legendre-like splines allows also simulate categorical variables 

in the same framework by changing only the order of the splines to zero. For the sake of demonstration, data from the 

Stanford V reservoir case study (Mao and Journel, 1999) is used here. The training image and reference image are two 

different 2D-sections of the 3-D training image (Figure 12). 150 points are randomly sampled from the reference image 

and used as hard data. 



 

 

The simulations using snesim (Strebelle, 2002) and the proposed are shown in Figure 12. 

 

  
(a) (b) 

Figure 12. Case study with categorical variables: (a) the reference image, (b) the training image, and (c) hard data. Different colours 
represent different categories. 

  
(a) (b) 

Figure 13. Simulation result for case study with categorical variables: (a) the simulation using snesim; (b) the simulation using the 
proposed approach. Different colours represent different categories. 

 

This paper presents a new data-driven approach for high-order simulation of continuous and categorical variables based 

on Legendre-like orthogonal splines. Splines are flexible tools for the approximation of complex pdf. Using different 

knot sequences, orders of splines, and smoothness of piece-wise polynomials, it is possible to obtain a stable 

approximation with a good reproduction of spatial connectivity of the extreme values. The simulations are completely 

consistent with spatial statistics of hard data and share high-order spatial statistics of hard data and the TI. It is 

important to stress that the more information about high-order spatial statistics is available in the hard data, the less 

TI’s statistics are used.  

 

Additionally, the proposed approach provides a general framework for high-order simulation techniques. For 

example, by using just one interval for spline construction, the technique becomes the one proposed by Mustapha and 

Dimitrakopoulos (2010; 2011). Moreover, using splines of order 0 is obtained an implementation that is comparable 

to snesim (Strebelle, 2002). Furthermore, the technique can also be used for the simulation of multiple correlated 

continuous and discrete variables within a general framework. 

 

Further research will address the adaptive knot sequence for better approximation of conditional pdf and the 

simulation of multiple correlated variables.  
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