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Claire Lucas c

a GERAD & HEC Montréal (Québec) Canada
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Abstract: Graph theoretical heuristics are used extensively in many fields to solve approximately large scale
optimization problems. Graph theoretical heuristics can also be used to advance graph theory per se, i.e.,
to refute, find, corroborate, prove or give ideas of proof of conjectures on graph invariants, i.e., numerical
quantities that not depend on vertex or edge labeling. In this paper, we present and discuss the AutoGraphiX
system which finds automatically or in some cases, interactively conjectures in graph theory. We consider in
particular conjectures on pairs of a set of 20 graph invariants, which gives rise to 1520 cases.

Keywords: Graph, invariant, conjecture, proof, refutation, Variable neighbohood search

Résumé : Les heuristiques basées sur la théorie des graphes sont largement utilisées dans plusieurs domaines
pour résoudre approximativement des problèmes d’optimisation de grandes tailles. Elles sont aussi ulilisées
pour faire progresser la théorie des graphes per se, i.e. réfuter, trouver, corroborer, prouver ou donner des
idées de preuve des conjectures sur des invariants graphiques, i.e., des paramètres numériques indépendants
de la numérotation des sommets ou des arêtes. Dans cet article, nous présentons et discutons le système
AutoGraphiX qui trouve automatiquement ou, dans certains cas, interactivement des conjectures en théorie
des graphes. Nous considérons en particulier des conjectures sur des paires d’invariants pris d’un ensemble
de vingt.

Mots clés : Graphe, invariant, conjecture, preuve, réfutation, recherche à voisinage variable
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1 Variable neighborhood search

Metaheuristics are general frameworks to build heuristics for solving combinatorial and global optimization

problems. They have been the subject of intensive research since Simulated Annealing was proposed [54] as a

general scheme for building heuristics which get out of local minima. Several other metaheuristics were soon

proposed. For discussion of the best-known of them the reader is referred to the books of surveys [21, 41, 60].

Some of the many successful applications of metaheuristics are also mentioned there.

Variable Neighborhood Search (VNS) [49, 50, 51, 52, 56] is a metaheuristic which exploits systematically

the idea of neighborhood change, both in descent to local minima and in escape from the valleys which

contain them. VNS exploits systematically the following observations:

• A local minimum with respect to one neighborhood structure is not necessary so for another.

• A global minimum is a local minimum with respect to all possible neighborhood structures.

• For many problems local minima with respect to one or several neighborhoods are relatively close to

each other.

Unlike many other metaheuristics, the basic schemes of VNS and its extensions are simple and require

few, and sometimes no parameters. Therefore, in addition to providing very good solutions, often in simpler

ways than other methods, VNS gives insight into the reasons for such a performance, which, in turn, can

lead to more efficient and sophisticated implementations.

Function VNS (x, kmax, tmax);
1 repeat
2 k ← 1;
3 repeat
4 x′ ← Shake(x, k);
5 x′′ ← FirstImprovement(x′) ;

6 NbhoodChange(x, x′′, k);

until k = kmax;
7 t← CpuTime();

until t > tmax;

Algorithm 1: Steps of the basic VNS

The Basic VNS (BVNS) method [56] combines deterministic and stochastic changes of neighbourhood.

Its steps are given in Algorithm 1. Often successive neighbourhoods will be nested. Observe that point x′ is

generated at random in Step 4 in order to avoid cycling, which might occur if deterministic rules were applied.

In Step 5, several neighborhoods may be used. In this case, we speak about variable neighborhood descent

(VND), the scheme of which is given in Algorithm 2. For more details about VNS and its applications in

solving problems in different domains of sciences see the recent survey [53] as well as the references therein.

Function VND (x, k′max);
1 repeat
2 k ← 1;
3 repeat
4 x′ ← argminy∈N ′

k
(x) f(x);

5 NbhoodChange (x, x′, k);

until k = k′max;

until no improvement is obtained ;

Algorithm 2: Steps of the basic VND

In all its applications, VNS is used as an optimization tool. These applications are mainly solving specific

optimization problems. However, VNS can also be used in discovery science, i.e., help in the development

of theories. The first domain to be addressed in this way was graph theory. VNS is the fundamental tool

exploited in the system AutoGraphiX (AGX, for short) [5, 26, 27], which is devoted to conjecture–making,

and therefore to scientific discovery, in graph theory. A long series of papers (see the list in [8]) with the

common title “Variable neighborhood search for extremal graphs” was published. Several of the papers which
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use AGX without being included within this series are listed in [8]. This system addresses the following

problems:

• Find a graph satisfying given constraints;

• Find optimal or near optimal graphs for an invariant subject to constraints;

• Refute a conjecture;

• Suggest a conjecture (or repair or sharpen one);

• Provide a proof (in simple cases) or suggest an idea of proof.

A basic idea is then to consider all of these problems as parametric combinatorial optimization problems

on the infinite set of all graphs (or in practice some smaller subset) solved with a generic heuristic. This is

done by applying VNS to find extremal graphs, with a given number n of vertices (and possibly also a given

number of edges). Then a VND with many neighbourhoods is used. Those neighborhoods are defined by

modifications of the graphs such as the removal or addition of an edge, rotation of an edge, and so forth. Once

a set of extremal graphs, parametrized by their order, is found, their properties are explored with various

data mining techniques, leading to conjectures, refutations and simple proofs or ideas of proof.

2 The AutoGraphiX system

Among the first application of VNS, a computer program, called the AutoGraphiX system (AGX, for short)

[5, 26, 27], was built for conjecture–making in graph theory. This system has been developed at GERAD,

Montreal, since 1997. Conjectures obtained with AGX were proved by the present authors or by graph

theorists from several countries. A graph invariant is a function of a graph G which does not depend on

labeling of G’s vertices or edges. Examples of graph invariants are the diameter, the radius, the average

distance, the independence number and the index (definitions will be given below). Graph theory is replete

with theorems involving graph invariants. They are either algebraic, i.e., equalities or inequalities involving

one or several invariants, or structural, i.e., characterizations of the families of graphs for which an invariant

takes an extremal value. Both types of results can be conjectured by AGX, in a fully automated way, or in

some cases, to be carefully distinguished, in an assisted way. Let Gn and Gn,m denote respectively the sets of

all graphs with n vertices, and with n vertices and m edges. Two basic ideas underlie the systems AGX:

• Most problems of extremal graph theory can be viewed as problems of parametric combinatorial opti-

mization of the form

min / max
G∈Gn

i(G) or min / max
G∈Gn,m

i(G) (1)

for some invariant i(G) with parameters n and m, or the exploitation of their solutions (in practice

only moderate values of n and m will be considered);

• All problems of the form (1) can be solved approximately by a generic heuristic.

To obtain such a heuristic, the Variable Neighborhood Search metaheuristic (VNS) is specialized. VNS

exploits systematically changes in neighborhoods used in the search, both in a descent phase to obtain a

locally extremal graph, and in a ”shaking” phase, to get out of the corresponding valley (or away from the

corresponding mountain) in order to find a better graph. Rules of VNS applied in AGX are the following:

1. Select the set of neighborhood structures Nk, k = 1, . . . kmax that will be used in the search for a better

locally optimal graph, and a stopping condition. Choose an initial graph G.

Repeat until the stopping condition is met:

2. Set k = 1;

3. Until k = kmax, repeat the following steps:

(a) (shaking) generate a graph G′ from the kth neighborhood of G (G′ ∈ Nk(G));

(b) (descent) apply VND with G′ as initial graph; denote with G′′ the locally optimal graph obtained;
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(c) (improvement or continuation) if i(G′′) is better than i(G), the best value of i for a previously

visited graph, move there, i.e., replace G by G′′, and continue search within N1(G); otherwise, set

k ← k + 1.

The stopping condition is usually a maximum computing time. The optimization routine of VNS is called

variable neighborhood descent. It explores systematically larger and larger neighborhoods of the current graph,

and performs a move whenever it is profitable (first improvement) or is also best within its neighborhood

(best improvement). The neighborhoods used initially in AGX are the following: remove, add, move, detour,

short cut, 2–opt, insert pending vertex, add pending vertex, and remove vertex.

In the most recent version of AGX, the VND routine is replaced by Learning Descent (LD), in order to

keep track of which transformations are the most fruitful and to reinforce their use. The LD used in AGX is

described in [24].

Once a set of (presumably) extremal graphs has been found, conjectures can be stated by one of the

following 3 approaches [26]:

(i) a numerical method which applies the mathematics of Principle Component Analysis [25] to determine,

in polynomial time, a basis of affine relations between invariants, satisfied by the extremal graphs found.

(ii) a geometric method which views extremal graphs as points in invariants space and applies a “gift-

wrapping” algorithm to find their convex hull and linear inequality relations associated with its facets.

Note that a similar approach is used in GraPHedron [28];

(iii) an algebraic method [3, 7, 5] which recognizes to which family (or families) of graphs the extremal

graphs belong, then uses a database of formulae for invariants in function of the order of G to obtain

conjectures.

3 Bounding invariants

The AGX system was built for finding extremal graphs with respect to a given invariant or an algebraic

combination of invariants, i.e. finding graphs that minimize or maximize a given invariant function. Once

the extremal graphs obtained, research is done for finding a lower bound, in the case of minimization, or an

upper bound in case of maximization, on the invariant function under study. Thus, naturally, the first AGX

task is bounding one invariant at a time, i.e., without considering combinations of invariants. The degree of a

vertex v in G, denoted by d(v) = dG(v) is the number of vertices adjacent to v in G. The minimum, average

and maximum degrees in G are denoted by δ, d and ∆ respectively. The distance d(u, v) = dG(u, v) between

two vertices u and v in a graph G is the length (number of edges) of a shortest path between u and v. The

average distance is denoted by l.

The problem of upper bounding the average distance in terms of order and minimum degree was studied

using AGX in [16]. Six conjectures were obtained, one of which was proved:

Theorem 1 ([16]) Let G = (V,E) be a connected graph on n ≥ 7 vertices with average distance l and

minimum degree δ ≥ 2. Then

l ≤ n+ 1

3
− 8

n
+

4

n− 1

with equality iff G is composed of two triangles linked by a path.

After the above result, we progressively generalized our experiments according to the value of the minimum

degree: δ = 3, δ = 4 and δ = 5.

Then, the general case, with a given lower bound on δ was considered. Among the obtained conjectures,

we recall only the next two. Some graph definitions are needed.

(a) Let n and δ be integers such that n = q(δ + 1) with q ≥ 2 and δ ≥ 3. Consider the graph G obtained

from the graph composed of q copies of Kδ+1, say Ki
δ+1 for i = 1, 2, . . . q, by removing an edge uivi
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from each Ki
δ+1 for i = 2, . . . q− 1, then adding the edges viui+1, uu2 and vq−1v where u is any vertex

from K1
δ+1 and v any vertex from Kq

δ+1. If q = 2, there are two copies of Kδ+1, then we add only the

edge uv. See Figure 1 for (n, δ) = (25, 4).

Figure 1: Presumably extremal graph for (n, δ) = (25, 4)

(b) Let n and δ be integers such that n = q(δ + 1) + 2 with q ≥ 2 and δ ≥ 3. Consider the graph G

obtained from the graph described in (a) by replacing each of K1
δ+1 and Kq

δ+1 by the graph H obtained

from Kδ+2 on the set of vertices {w1, w2, . . . wδ+2}, by deleting the edges w1w2, w1w3 and wiwi+1 for

i = 4, 6, · · · p + 1, where p = δ if δ is even and p = δ + 1 if δ is odd. The vertices u and v from the

graph described in (a) correspond to w1 from each copy of H respectively. Again, if q = 2, there are

two copies of H, then we add only the edge uv. See Figure 2 for (n, δ) = (22, 4).

Figure 2: Presumably extremal graph for (n, δ) = (22, 4)

Conjecture 1 ([16]) Let G = (V,E) be a connected graph on n vertices with minimum degree δ ≥ 3 where

n = (δ + 1) · k for some integer k ≥ 2. Then the average distance l of G satisfies

l ≤ n+ 1

δ + 1
− 4δ

n
+

4δ2 − δ − 2

(δ + 1)(n− 1)

with equality if and only if G is obtained as described in (a).

Note that Kouider and Winkler [55] gave the extremal graphs of Conjecture 1 as extremal cases, without a

proof, for the case n = (δ + 1)k. However, the corresponding bound does not appear to be generalizable for

all integers n and δ. If true, the next conjecture provides a global and sharp upper bound on l in terms of δ.

Conjecture 2 ([16]) Let G = (V,E) be a connected graph on n vertices with minimum degree δ ≥ 3. Then

the average distance l of G satisfies

l ≤ n+ 1

δ + 1
− 2δ2 − 14δ + 36

n
+

12δ2 − 75δ + 150

(δ + 1)(n− 1)
.

The bound is reachable only if n = (δ+ 1) · k+ 2 for some integer k ≥ 2, in which case the extremal graph G

is the graph obtained as described in (b).

The adjacency matrix A of G is a 0–1 n× n–matrix indexed by the vertices of G and defined by aij = 1

if ij ∈ E. Denote by (λ1, λ2, . . . , λn) the A–spectrum of G, i.e., the spectrum of the adjacency matrix of G,

and assume that the eigenvalues are labeled such that λ1 ≥ λ2 ≥ · · · ≥ λn. The spectral spread of G is defined

by s(G) = λ1(G)−λn(G). The problem of finding the maximum value of s(G) among the class of connected

graphs of given order n is an open problem. Experiments were done with AGX to study the problem, and

the extremal graphs were found in [4] (see also [6, 14]). A conjecture was obtained, but before its statement,

recall that a complete split graph with parameters n, q (q ≤ n), denoted by CS(n, q), is a graph on n vertices

consisting of a clique on q vertices and an independent set on the remaining n − q vertices in which each

vertex of the clique is adjacent to each vertex of the independent set.
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Conjecture 3 ([6]) Let G be a connected graph on n ≥ 3 vertices. Then

s(G) ≤
√

4qn− 3q2 − 2q + 1

with equality iff G is the complete split graph CS(n, q) with an independent set of size n − q =
⌈
n
3

⌉
and a

clique of size q =
⌊

2n
3

⌋
.

Note that the above conjecture did appear in [42], in terms of extremal graphs only, where it has been verified

by computer for graphs up to 9 vertices, but remained unsolved.

The energy E(G) of a graph G, introduced in [44], is defined as the sum of the absolute values of its

eigenvalues, i.e.

E(G) =

n∑
i=1

|λi(G)| = 2
∑
λi>0

λi(G) = 2
∑
λi<0

|λi(G)|.

A lollipop Loln,g, with n ≥ g ≥ 3, is a graph obtained from a cycle Cg and a path Pn−g by adding an edge

between a vertex from the cycle and an endpoint from the path. Loln,n−1 is called the short lollipop while

Loln,3 is the long lollipop.

In order to find lower and upper bounds on the energy, AGX was used in [23]. They found the following

conjectures afterwards proved by hand.

Theorem 2 Let G be a simple graph on n vertices and m edges with energy E. Then

1. E ≥ 4m/n;

2. E ≥ 2
√
m with equality iff G is a complete bipartite graph plus possibly some isolated vertices;

3. if G is connected, E ≥ 2
√
n− 1 with equality iff G is the star Sn;

4. E ≤ 2m with equality iff G is composed of disjoint edges and possibly isolated vertices.

In this study, the particular case of unicyclic graphs was considered. Some unicyclic graphs that maximize

the energy are given in Figure 3. The following conjecture was stated.

Figure 3: Unicyclic graphs with largest energy

Conjecture 4 Among unicyclic graphs on n vertices the cycle Cn has maximal energy if n ≤ 7 and

n = 9, 10, 11, 13 and 15. For all other values of n the unicyclic graph with maximum energy is the lol-

lipop Loln,6.

The Laplacian of a graph G is the matrix defined by L = Deg−A, where Deg is the diagonal matrix whose

diagonal entries are the vertex degrees in G and A is the adjacency matrix of G. The Laplacian spectrum of

G is the spectrum of L and is denoted by µ1, µ2, . . . µn, where µ1 ≥ µ2 ≥ · · · ≥ µn−1 ≥ µn = 0. The second

smallest Laplacian eigenvalue of a graph G is called algebraic connectivity of G [39] and denote a = a(G).

Experiments performed in [20] using AGX led to lower and upper bounds on the algebraic connectivity, e.g.,

Theorem 3 ([20]) Let G be a connected graph on n vertices and m edges with algebraic connectivity a. If

G 6∼= Kn, then

a ≤
⌊
−1 +

√
1 + 2m

⌋
.

Moreover, the bound is sharp for all m ≥ 2.
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The signless Laplacian of a graph G is the matrix defined by Q = Deg + A, where Deg is the diagonal

matrix whose diagonal entries are the vertex degrees in G and A is the adjacency matrix of G. The signless

Laplacian spectrum of G is the spectrum of Q and is denoted by q1, q2, . . . qn, where q1 ≥ q2 ≥ · · · qn. For

more details about Q and its spectrum, see [33, 34, 35, 32]. The paper [32] reports on AGX conjectures

obtained at GERAD and related to Q–spectrum of a graph.

AGX was used in [47] for studying the problem of upper bounding the largest signless Laplacian eigen-

value q1 in terms of order n and chromatic number χ of G (the minimum number of colors that can be

assigned to the vertices of a graph such that two adjacent vertices are not assigned the same color).

Theorem 4 ([47]) Let G be a graph on n vertices with signless Laplacian index q1, chromatic number χ.

Then

q1 ≤
2n(χ− 1)

χ

with equality iff G is is a complete regular χ-partite graph.

The above result remains true if χ is replaced by ω. The equivalent result was also obtained using AGX.

The Albertson irregularity Al = Al(G) of a graph G = (V,E), introduced in [1], is defined as the of the

absolute values of the differences between the degrees of the end-vertices of the edges of G, i.e.,

Al = Al(G) =
∑
uv∈E

|d(u)− d(v)|.

Note that the difference |d(u) − d(v)|, for an edge uv is called [1] the imbalance of uv. The experiments

done in [48] with the use of AGX, to find an upper bound on Al, did not only conjecture a bound but

also did suggest a clear idea for proving it. The extremal graphs (see Figure 4) suggested by AGX belong

to the well–known family of fanned complete split graphs. A fanned complete split graph with parameters

n, q, t(n ≥ q ≥ t), denoted by FCS(n, q, t), is a graph (on n vertices) obtained from a complete split graph

CS(n, q) by connecting a vertex from the stable set by edges to t other vertices of the stable set. The curves

of the irregularity for 9 ≤ n ≤ 12 and n− 1 ≤ m ≤ n(n− 1)/2 are given in Figure 5.

Figure 4: The extremal graphs for Al with n = 7
and 6 ≤ m ≤ 20

Figure 5: The curves of Al for 9 ≤ n ≤ 12

The extremal graphs were obtained by AGX using a single move: the rotation of an edge (if uv ∈ E and

uw 6∈ E, the rotation of the uv to uw is the suppression of uv and the addition of uw). From where the proof

idea: show that for any non-optimal graph, there exists an edge rotation that increases the irregularity. This

proof works and the result is the following:
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Theorem 5 ([48]) If G is a graph on n vertices and m edges, then

Al(G) ≤ s(n− s)(n− s+ 1) + t(t− 2s− 1)

where

s =

n− 1

2
−

√(
n− 1

2

)2

− 2m


and

t = m− s(n− s)− s(s− 1)

2
.

Moreover, the bound is attained iff G is a fanned complete split graph.

4 AGX Form 1

In this section, we report on a particular form of results obtained using AGX. More precisely, in our experi-

ments, we considered a set of invariants (20 at first and then few others were added) and sought expressions

of the following form (called AGX Form 1):

b(n) ≤ i1 ⊕ i2 ≤ b(n) (2)

where i1 and i2 are invariants of a graph G from the chosen set, ⊕ denotes one of the 4 operations +,−, / and

×, b(n) and b(n) are, respectively, lower and upper bounding functions depending on the order n, or number

of vertices, of G which are best possible, i.e., such that for each value of n (except possibly very small ones,

due to border effects) there is a graph G for which the bound is tight. Note that the form (2) is reminiscent

of the well-known Nordhaus-Gaddum relations [12, 57]; however, it generalizes this last form in two ways:

(i) the operations − and / are considered in addition to + and ×;

(ii) the invariants i1 and i2 are independent instead of having i2(G) = i1(G), where G denotes the comple-

mentary graph of G, in which an edge joins vertices vi and vj iff there is no such edge in G.

Table 1: The 20 invariants considered in [3] for the AGX Form 1

∆ The maximum degree.
δ The minimum degree.

d The average degree.

l The average distance between all pairs of vertices.
D The diameter.
r The radius.
g The girth, the length of the smallest cycle in a graph.

ecc The average eccentricity.
π The proximity or minimum normalized transmission.
ρ The remoteness is maximum normalized transmission.
λ1 The index or spectral radius.
Ra The Randić index.
a The algebraic connectivity or second smallest Laplacian eigenvalue.
ν The vertex connectivity.
κ The edge connectivity.
α The independence number.
β The domination number.
ω The clique number.
χ The chromatic number.
µ The matching number.

In the thesis [3] expressions of AGX Form 1 were systematically studied for all pairs of invariants among

a list of 20, given in Table 1. This amounts to 1520 cases. Results are summarized in [8]. For each case,

we give the formulae for the lower and upper bounds together with the status of the conjecture: known (K),

trivial (T), open (O), assisted open (AO), structural open (SO), refuted (R). For a proved automated,

assisted or structural conjecture, we refer to the paper where it is proved, and we indicate that no result is

obtained (NR) whenever it is the case. Statistics on the numbers of cases which fall in these categories are

given in Table 2. It appears that:
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(i) cases in which no result was obtained (because the graphs obtained by AGX do not present sufficient

regularity) are rare ( 3.62%);

(ii) known results rediscovered by AGX are also rare (2.43%);

(iii) complete results, i.e., algebraic formulae and extremal graphs, are frequent (82.89%). They comprise

obvious results, usually proved automatically by AGX (55.59%), and non trivial results proved by hand

either at GERAD or by graph theorists of various countries (23.75%), in such cases references to the

proofs are given;

(iv) in some other cases only structural conjectures, i.e., only families of extremal graphs are obtained

(11.06%), in some cases formulas are obtained by hand (5.67%);

(v) cases where AGX conjectures were refuted are rare (3.62%);

(vi) there remains a consequent number of open conjectures (8.42%). This is due to the fact that our

systematic effort done to prove some families of conjectures was not enough or that some invariants

appearing there are hard to handle or that some conjectures appear to be hard.

Table 2: Summary of results

Known results reproduced 37 (2.43 %)
Obvious results 845 (55.59 %)
Complete results proved by hand 361 (23.75 %)
Proved structural results and formulae by hand 46 (3.03 %)
Proved structural results only 21 (1.38 %)
Open complete results 33 (2.17 %)
Open structural results and formulae by hand 34 (2.24 %)
Open structural results only 61 (4.01 %)
Refuted complete results 21 (1.38 %)
Refuted structural results and formulae by hand 6 (0.40 %)
Refuted structural results only 0 (0.00 %)
No results 55 (3.62 %)

Total 1520 (100 %)

Results for a pair of invariants can be complete, i.e., consist of both conjectured best possible functions

b(n) and b(n) and the corresponding characterizations of the extremal graphs, or structural, i.e., consist of

the characterizations of extremal graphs only. This last case occurs when algebraic expressions for b(n) and

b(n) are too difficult for AGX to obtain, or when such expressions do not exist, e.g. because they correspond

to solutions of an equation of degree 5 or more.

In some fairly frequent cases, complete results are simple and can be proved by AGX in a fully automated

way; we then refer to them as observations. If results are structural, algebraic expressions for b(n) and b(n)

can sometimes be deduced, in an assisted way, from the characterization of extremal graphs. In some fairly

rare cases the graphs obtained by AGX and conjectured to be extremal present very little or no regularity

and no results are obtained.

In each case, i.e., each bound, graphs with 5 to 20 vertices were considered. Computing time on Intel

Xeon with 2.66 GHz and 2 Gb RAM, at that moment, varied from less than 1 second in the frequent case

in which a bound could be obtained automatically, without using VNS, up to 75 seconds per graph in the

most complex cases, whether results were obtained or not. Trying longer computing times did not give better

results.

Among all bounds conjectured in [3], 128 remain open, and among all possible cases, AGX failed to find

a conjecture or a false conjecture in 82 cases. Under the assumption that these open conjectures are difficult

to prove and that AGX failed when the cases are difficult to handle, we tried to figure out the reasons of

these difficulties and we gathered the statistics summarized in Table 4 regarding the operations and Table 5
regarding the bounds. In these tables, we use O, AO and SO for open, assisted open and structural open

conjecture, respectively, and R and AR for refuted conjecture and refuted assisted conjecture. NR is used

to say that no result is obtained in the corresponding case. T–O and T–R are used for the total over open

conjectures and cases with no result or with refuted conjectures, respectively. Total indicates the sum of T–O

and T–R.
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According to the statistics, the most difficult invariant to handle is the domination number β with a total

of 46 occurrences over 420 (10.95 %). The second most difficult invariant seems to be the Randić index Ra

with 39 occurrences (9.51 %). Then comes a set of three invariants with 35 occurrences each (8.33 %). Two

of these three invariants are eigenvalues, the index λ1 and the algebraic connectivity a, and the third is a

metric invariant, namely, the remoteness ρ.

After that, we can find three sets each containing two invariants with almost the same occurrences:

the average eccentricity ecc and the average distance l with 30 and 29 occurrences (7.14 % and 6.91 %),

respectively, the proximity π and the independence number α with 25 occurrences each (5.95 %), and the

radius r and the maximum degree ∆ with 20 and 19 occurrences, respectively. The remaining nine invariants

can be split into three sets each with three invariants with almost the same number of occurrences: the

average degree d, the diameter D (the maximum distance in a graph) and the chromatic number χ, with 14,

13 and 13 occurrences, respectively, form the first set, the minimum degree δ, the edge connectivity κ and

the clique number ω, with 9, 9 and 8 occurrences, respectively, form another set, and finally, the set of the

less frequent invariants is composed of the matching number µ, the girth g and the vertex connectivity ν

with 6, 5 and 5 occurrences, respectively.

Table 3: Difficulties regarding the invariants

Inv. O AO SO T–O NR R AR T–R Tot.

β 9 11 12 32 12 0 2 14 46
Ra 9 12 6 27 8 4 0 12 39
λ1 5 1 11 17 10 7 1 18 35
a 4 6 19 29 6 0 0 6 35
ρ 3 8 17 28 6 1 0 7 35
ecc 5 6 9 20 6 4 0 10 30

l 3 5 9 17 9 2 1 12 29
π 6 3 8 17 8 0 0 8 25
α 5 4 7 16 7 2 0 9 25
r 5 4 2 11 8 1 0 9 20
∆ 0 2 3 5 12 1 1 14 19

d 2 1 6 9 1 1 3 5 14
D 3 0 2 5 3 4 1 8 13
χ 0 2 6 8 2 2 1 5 13
δ 2 0 2 4 1 4 0 5 9
κ 2 1 0 3 2 4 0 6 9
ω 0 0 2 2 3 1 2 6 8
µ 1 1 0 2 3 1 0 4 6
g 1 0 1 2 1 2 0 3 5
ν 1 1 0 2 2 1 0 3 5

If we consider the difficulty with respect to the operations, it is easy to see that the product is the most

difficult combination to handle. It occurs 79 times over 210 (37.62 %). The other three operations appear

to present the same degree of difficulty: 41 occurrences (19.52 %) for the addition, 43 occurrences (20.48 %)

for the subtraction and 47 occurrences (22.38 %) for the division.

If we distinguish between lower and upper bound, it is almost the same degree of difficulty in both cases

even if the upper bounds seems to be slightly more difficult than the lower bound with 117 (55.71 %) cases

among 210.

Among the bounds considered in the thesis [3], some were already known in the graph theory literature,

e.g., δ ≤ d ≤ λ1 ≤ ∆; l ≤ α [29]; χ ≤ λ1 + 1 [64]; and a ≤ nδ
n−1 [39].

Table 4: Difficulties regarding the operations

Op. O AO SO T–O NR R AR T–R Tot.

− 11 9 11 31 6 4 2 12 43
+ 5 7 8 20 14 6 1 21 41
/ 5 10 18 33 12 1 1 14 47
× 12 8 24 44 23 10 2 35 79
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Table 5: Difficulties regarding the bounds

Bound O AO SO T–O NR R AR T–R Tot.
Lower 11 18 22 51 31 9 2 42 93
Upper 22 16 39 77 24 12 4 40 117

Note that some of the above listed inequalities were obtained twice. For instance, the inequality λ1 ≤ ∆

was obtained as λ1 −∆ ≤ 0 and λ1/∆ ≤ 1.

Some of the bounds are naturally easy to obtain. When both invariants considered come from the same

vector or matrix, say S, by taking its minimum (m = minS), average s = 1
|S|
∑
s∈S s) or maximum value

(M = maxS), it is obvious that

m ≤ s ≤M

with equality iff the entries of S are equal. Immediate consequences of this double inequality are

M − s ≥ 0; s−m ≥ 0;M −m ≥ 0;
M

s
≥ 1;

s

m
≥ 1;

M

m
≥ 1.

For example, for all connected graphs G with n ≥ 2 vertices, diameter D (the maximum among all the

distances in G) and average distance l,

D − l ≥ 0 and
D

l
≥ 1

with the equalities iff G is a complete graph.

There exists another kind of bounds easy to obtain. Actually, when the relevant families of extremal

graphs for the invariants i1 and i2 are considered and if they have a non-empty intersection a proved and

best possible bounding function is obtained. For our next example, we need the following definitions. The

eccentricity ecc(v) of a vertex v in G is the maximum among the distances from v to all other vertices in G.

The radius r = r(G) of a graph G is the maximum over the eccentricities of its vertices. The Randić index

Ra(G) of a graph G = (V,E), introduced in [59], is defined by

Ra = Ra(G) =
∑
uv∈E

1√
dudv

,

where du and dv denote the degree of the vertices u and v, respectively. It is well known that, on the one

hand, the Randić index Ra is minimum for the star Sn, which is among the graphs that minimize the radius r,

and on the other hand, Ra is maximum for any regular graph, and among the regular graph the cycle Cn
maximizes r. Thus the following bounds are immediately obtained.

1 +
√
n− 1 ≤ Ra+ r ≤ n

2 +
⌊
n
2

⌋
and

√
n− 1 ≤ Ra · r ≤ n

2 ·
⌊
n
2

⌋
with equality in both lower (resp. upper) bounds iff G is the star Sn (resp. the cycle Cn). Another example:

the average distance l is minimum (resp. maximum) for the complete graph Kn (resp. path Pn) with

l(Kn) = 1 (resp. l(Pn) = (n+ 1)/3, while the maximum degree ∆ is maximum for Kn, with ∆(Kn) = n− 1,

and minimum for Pn, with ∆(Pn) = 2. Thus

2− n ≤ l −∆ ≤ n− 5

3
and

1

n− 1
≤ l

∆
≤ n+ 1

6

with equality in both lower (resp. upper) bounds iff G is the complete graph Kn (resp. path Pn).

The other results were obtained as conjectures and can be divided into three types. A common step for all

the three types is the VNS optimization. At that step, the optimization component of AGX is executed and

presumably extremal graphs are obtained. Then, a component, aimed for finding (linear) relations between

selected invariants, is executed. In case of success, we obtain a formula: a lower bound for a minimizing

problem or an upper bound for a maximizing problem. Thus, we get a conjecture containing a bound with

corresponding extremal graphs and we speak about complete conjectures, that constitutes the first type of

results. Among such results, we cite the following theorems and conjectures.
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Theorem 6 ([17]) Let G be a connected graph on n ≥ 3 vertices with index λ1 and average distance l. Then

λ1 + l ≤ n

with equality iff G is the complete graph Kn.

Conjecture 5 ([46]) Let G be a connected graph on n ≥ 6 vertices with signless Laplacian spectral radius q1

and chromatic number χ. Then

q1 − χ ≤
3n− 8

2

with equality iff G is the bn/2c–partite graph Kp,2,2,...,2, where p = 2 + n mod(2).

A relation between q1 and ∆, obtained by AGX, is proved in [32].

Theorem 7 ([32]) Let G be a connected graph on n ≥ vertices with signless Laplacian index q1 and maximum

degree ∆. Then

q1 −∆ ≥ 1

with equality iff G is the star Sn.

The girth g = g(G) of a connected graph G on n ≥ 3 vertices with at least n edges, is the length (number of

edges) of its smallest cycle. The next theorem, proved in [18], was first conjectured by AGX.

Theorem 8 ([18]) Let G be a connected graph on n ≥ 3 vertices and m ≤ n edges with girth g and average

distance l. Then
l

g
≥
{ n

4(n−1) if n is even,
n+1
4n if n is odd.

Moreover, the bound is reached for cycles.

The matching number µ = µ(G) of a graph is the maximum number of independent (pairwise non-incident)

edges in G. The following result was conjectured using AGX and then proved in [63].

Theorem 9 ([63]) Let G be a connected graph, G 6∼= K3, on n ≥ 3 vertices with adjacency index λ1 and

matching number µ. Then

λ1 − µ ≤ n− 1−
⌊n

2

⌋
with equality iff G is the complete graph Kn. Also,

λ1

µ
≤
√
n− 1

with equalities iff G is the star Sn.

Note that there exists an infinite family of counterexamples [63] for the relation λ1 + µ ≥
√
n− 1 + 1 first

conjectured by AGX.

When AGX could not provide a complete conjecture, an interactive procedure for recognizing the extremal

graphs was launched. If the extremal graph are recognized and the corresponding formulas of the invariants

under study are available in the database, substitutions are done and then bounds are obtained. The results

so obtained are called assisted conjectures. First, recall that the vertex connectivity ν = ν(G) of a connected

graph G is the minimum number of vertices whose removal disconnects G.

Theorem 10 ([37, 65]) Let G be a connected graph on n ≥ 3 vertices with index λ1 and vertex connectivity ν.

Then

λ1 − ν ≤ n− 3 + t;
λ1

ν
≤ n− 2 + t,

where t is such that 0 < t < 1 and t3 + (2n− 3)t2 + (n2 − 3n+ 1)t− 1 = 0. Moreover, equalities hold iff G is

the kite Kin,n−1.
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Finding the bound in the above theorem in an automated way was not possible since it contains a factor that

uses an implicit solution of a difficult to solve equation.

Another example with a complicated bound is the following theorem proved in [9].

Theorem 11 ([9]) Let G = (V,E) be a connected graph of order n with independence number α and maximum

degree ∆. Then

α−∆ ≤ max

{⌊
n− n− 1⌈√

n− 1
⌉⌋− ⌈√n− 1

⌉
,

⌊
n− n− 1⌊√

n− 1
⌋⌋− ⌊√n− 1

⌋}
.

The bound is reached for every n.

For the above theorem, the difficulty is in the fact that the bound is an integer that implies a combination

of fractions and square roots of integers.

Finally, when the recognition of the extremal graphs succeeded, but no formulae were found, we state a

conjecture about the structure of the extremal graphs. In this case, we speak about structural conjectures.

The well–known result, in spectral graph theory, λ1(G) ≥ d(G) with equality iff G is a regular graph,

was proved in [30]. Then, they proposed to consider the difference between the index and the average degree

as a measure of the irregularity of a graph (other definitions of irregularity in graphs have been proposed,

see [1, 19], and for a comparison between them see [43]). Thus the irregularity of a graph G is defined by

Irr(G) = λ1(G) − d(G). The problem of finding an upper bound on the irregularity and characterizing the

most irregular graphs remains open. The following conjecture related to the irregularity of a graph have been

formulated after some experiments with the system AGX. First, we need the following definition. A pineapple

with parameters n, q (q ≤ n), denoted by PA(n, q), is a graph on n vertices consisting of a clique (a set of

pairwise adjacent vertices) on q vertices and an independent set (a set of pairwise non-adjacent vertices) on

the remaining n− q vertices in which each vertex of the independent set is adjacent to a unique and the same

vertex of the clique.

Conjecture 6 ([4, 6]) The most irregular connected graph on n (n ≥ 10) vertices is a pineapple PA(n, q) in

which the clique size q is equal to dn2 e+ 1.

The issue in the above theorem is the difficulty to get an explicit formulae of the index for some classes of

graphs.

The well–known result, in spectral graph theory, λ1(G) ≥ d(G) with equality if and only if G is a regular

graph, was proved by Collatz and Sinogowitz [30] in 1957. Then, they proposed to consider the difference

between the index and the average degree as a measure of the irregularity of a graph (other definitions of

irregularity in graphs have been proposed, see [1, 19], and for a comparison between them see [43]). Thus the

irregularity of a graph G is defined by Irr(G) = λ1(G) − d(G). The problem of finding an upper bound on

the irregularity and characterizing the most irregular graphs remains open. The following conjecture related

to the irregularity of a graph have been formulated after some experiments with the system AGX. First, we

need the following definition. A pineapple with parameters n, q (q ≤ n), denoted by PA(n, q), is a graph on

n vertices consisting of a clique (a set of pairwise adjacent vertices) on q vertices and an independent set (a

set of pairwise non-adjacent vertices) on the remaining n−q vertices in which each vertex of the independent

set is adjacent to a unique and the same vertex of the clique. Some pineapples are illustrated in Figure 6.

Figure 6: Presumably most irregular graphs for n = 7, 8, 9, 10
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Conjecture 7 ([4, 6]) The most irregular connected graph on n (n ≥ 10) vertices is a pineapple PA(n, q) in

which the clique size q is equal to dn2 e+ 1.

The issue in the above theorem, as well as in the next, is the difficulty to get an explicit formulae of the index

for some classes of graphs.

Theorem 12 ([10]) Over all connected graphs on n ≥ 4 vertices and m ≥ n edges with girth g and index λ1,

g + λ1 is maximum for the kite Kin,3 (see Figure 7 for Ki9,3). Moreover, for each t > 0, there exists an

integer nt such that for all n ≥ nt,

3 +
√

5− t < g(Kin,3) + λ1(Kin,3) < 3 +
√

5.

Figure 7: Ki9,3: an extremal graph in Theorem 12

A study similar to that of [3] was done in [46] where the signless Laplacian spectral radius q1 is compared

to 19 other graph invariants. The results, to which belongs Conjecture 5, are summarized in [8].

A first generalization of AGX Form 1 to AGX Form 2 was introduced in [62]:

b(m) ≤ i1 ⊕ i2 ≤ b(m) (3)

in which the lower and upper bounding functions b(m) and b(m) depend on the size m (or number of edges)

of the graph instead of its order. Otherwise the symbols have the same meaning and assumptions are the

same. Among the AGX Form 2 results, we give the following theorem.

Theorem 13 ([62]) Let G be a connected graph with size m ≥ 1, radius r and minimum degree δ. Let k

and l be integers such that m = k(k − 1)/2− l, where 0 ≤ l < k − 1. Then

if l = 0, 2− k
if 0 < l < k/2, 3− k
if k/2 ≤ l ≤ k − 1, 4− k

 ≤ r − δ ≤
⌊
m− 1

2

⌋
; (4)

if l = 0, 1/(1− k)
if 0 < l < k/2, 1/(2− k)
if k/2 ≤ l ≤ k − 1, 1/(3− k)

 ≤ r

δ
≤
⌊
m+ 1

2

⌋
; (5)

2 ≤ r + δ ≤
⌊m

2

⌋
+ 2; (6)

1 ≤ r + δ ≤
⌊m

2

⌋
. (7)

The lower bounds for (4) and (5) are attained by the complete graph Kk if l = 0, by Kk \Ml, where Ml is

a matching containing l edges, if 0 < l ≤ k/2 and by Kk \ Cl , where Cl is a cycle containing l edges, if

k/2 < l < k − 1. The lower bounds for (6) and (7) are attained by the star Sm+1. The upper bounds for (4)

and (5) are attained by the path Pm+1. The upper bounds for (6) and (7) are attained by the cycle Cm.

4.1 Other forms

Besides bounding invariants and bounds of AGX Form 1, several results of different forms were studied using

AutoGraphiX. In this section, we report on relations that do not belong to those described in the two previous

sections. As a first example, we give relations involving more than two graph invariants, in addition to the
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order n. Such relationships are rare in the graph theory literature. A second example is a result about one

invariant, in which we consider the behavior of the invariant instead of its minimum or maximum values.

Other examples are given below and more can be found in [4, 6, 13, 26, 32, 33, 34, 35, 36, 48].

Any tree is a bipartite graph and therefore its vertex set can be partitioned into two independent subsets.

Let a be the number of vertices in one subset and b in the other. In this case, we speak about an (a, b)–

partition. Assume, without loss of generality that a ≥ b and let Ta,b be the class of all trees that can be

partitioned into an (a, b)–partition. In [36], the authors considered the problem of finding extremal trees

T ∈ Ta,b with respect to the adjacency index λ1(T ), i.e., solving the problems min{λ1(T ) : T ∈ Ta,b} and

max{λ1(T ) : T ∈ Ta,b} for given a and b. Among their results, we recall the following two theorems and

conjecture.

Theorem 14 ([22, 36]) For fixed order n = a + b and for T ∈ Ta,b, the minimal value of λ1(T ) increases

monotonously with a− b.

Conjecture 8 ([22, 36]) A vertex from the subset with a vertices in a minimal tree over the class Ta,b, with

respect to λ1, has degree 1 or 2.

For the statement of the next conjecture, we need the following definition. A comet Con,∆ is the tree obtained

from a star S∆ by inserting n−∆ vertices (of degree 2) into the same edge.

Theorem 15 ([22, 36]) For a = b+ 2 and n = a+ b ≥ 6, trees T ∗ ∈ Ta,b with minimal λ1 are comets Con,4.

Moreover

lim
n→+∞

λ1(T ∗) = 2.

In [26], after experiments using AutoGraphiX on trees in Ta,b with fixed a and b, the authors obtained the

following unexpected conjecture involving five invariants.

Conjecture 9 ([22, 26]) For fixed integers a and b, let T ∈ Ta,b with size m, independence number α, diam-

eter D, radius r and n1 pendent edges. Then

2α−m− n1 + 2r −D = 0.

The above conjecture is not valid for the class of trees in general. Experiments done in [22, 26] with

AutoGraphiX led to the following theorem, first obtained as a conjecture.

Theorem 16 ([22, 26]) Let T be a tree on n vertices and m edges with independence number α, diameter D,

radius r and n1 pendent edges. Then

m+ n1 +D − 2r −
⌊
n− 2

2

⌋
≤ 2α ≤ m+ n1 +D − 2r

In 1956, Nordhaus and Gaddum [57] proved that

2
√
n ≤ χ(G) + χ(Ḡ) ≤ n+ 1 and n ≤ χ(G) · χ(Ḡ) ≤ (n+ 1)2

4
,

where χ is the chromatic number of a graph. Finck [40] showed that these bounds were sharp (taking floors and

ceilings if necessary) and characterized extremal graphs. Similar bounds, there after called Nordhaus-Gaddum

relations, were obtained for a large number of graph invariants by a variety of authors. For an extensive

survey of such relations see [12] and over 350 references therein. Here, we are interested in Nordhaus–Gaddum

relations only for the index. Nosal [58] and Amin and Hakimi [2] independently proved that

n− 1 ≤ λ1(G) + λ1(Ḡ) ≤
√

2(n− 1).

The best upper bound known up to now is proved by Csikvári [31] in 2009:

λ1(G) + λ1(G) ≤ 1 +
√

3

2
n− 1.
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The problem of finding an upper bound for the index of the Nordhaus–Gaddum type was studied using

AGX [4, 6]. The AutoGraphiX conjecture about the upper bound is as follows.

Conjecture 10 ([4, 12]) For any simple graph G, with complement G, index λ1(G) and n vertices we have

λ1(G) + λ1(G) ≤ 4

3
n− 5

3
−

 f1(n) if n ≡ 1[3]
0 if n ≡ 2[3]
f2(n) if n ≡ 0[3]

where f1(n) = 3n− 2−
√

9n2 − 12n+ 12/6 and f2(n) = 3n− 1−
√

9n2 − 6n+ 9/6.

This bound is sharp and attained if and only if G or G is a complete split graph with an independent set

on bn/3c vertices (and also on dn/3e vertices if n mod(3) = 2).

The process that led to the above conjecture is described in [4, 6], where some partial results can be

found.

The problem of finding Nordhaus–Gaddum inequalities was also considered with AutoGraphiX for the two

other invariants. The transmission t(v) of a vertex v in a connected graph G, is the sum of the distances from

v to all other vertices in G. It is said to be normalized, and then denoted t̃(v), when divided by n− 1. The

proximity π = π(G) and remoteness ρ = ρ(G) [3, 7] of G are, respectively, the minimum and the maximum

normalized transmission in G. That is

π = min
v∈V

t̃(v) and ρ = max
v∈V

t̃(v).

Some properties of proximity and remoteness are studied in [3, 7, 15, 11, 61]. In [13], the authors derived

and proved Nordhaus–Gaddum type inequalities for π and for ρ. The results are stated below.

Theorem 17 ([13]) For any connected graph G on n ≥ 5 vertices for which G is connected

2n

n− 1
≤ π + π ≤

{ n+1
4 + n+1

n−1 if n is odd,
n
4 + n

4(n−1) + n+1
n−1 if n is even.

The lower bound is attained if and only if ∆(G) = ∆(G) = n− 2. The upper bound is attained if and only if

either G or G is the cycle Cn;

n2

(n− 1)2
≤ π · π ≤

{
(n+1)2

4(n−1) if n is odd,
n(n+1)
4(n−1) + n(n+1)

4(n−1)2 if n is even.

The lower bound is attained if and only if ∆(G) = ∆(G) = n− 2. The upper bound is attained if and only if

either G or G is the cycle Cn.

Similar results involving ρ are also obtained using AGX and proved in [13]

5 Conclusions

• Development and use of AGX by many researchers showed that this system can generate many conjec-

tures in graph theory which range from the obvious to the very difficult.

• Mostly relations of AGX form 1 have been studied up to now. There are many other possibilities as

shown in the survey [45]. The AGX Form 2 uses the size m in stead of n in AGX Form 1 (see [62]).

• Forbiden subgraphs characterizations of graphs are used in a way similar to AGX [38].
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Have in Graph Theory? In Graphs and Discovery, S. Fajtlowicz, P.W. Fowler, P. Hansen, M.F. Janowitz,
F.S. Roberts (eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 69, AMS,
Providence, 231–251, 2005.

[46] P. Hansen and C. Lucas, Bounds and conjectures for the signless Laplacian index of graphs. Linear Algebra Appl.
432 (2010) 3319–3336.

[47] P. Hansen and C. Lucas, An inequality for the signless Laplacian index of a graph using the chromatic number.
Graph Theory Notes of New-York 57 (2009) 39–42.

[48] P. Hansen and H. Mélot, Variable neighborhood search for extremal graphs 9. Bounding the irregularity of a
graph. In Graphs and Discovery, S. Fajtlowicz, P.W. Fowler, P. Hansen, M.F. Janowitz, F.S. Roberts (eds.),
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 69, AMS, Providence, 253–264,
2005.
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[53] P. Hansen, N. Mladenović and J. A. Moreno Pérez, Variable neighborhood search: methods and applications.
Ann. Oper. Res. 175 (2010) 367–407.

[54] S. C. D. Kirkpatrick, Jr. Gellatt and P. Vecchi, Optimization by simulated annealing. Science 220 (1983) 671–680.

[55] M. Kouider and P. Winkler, Mean Distance and Minimum Degree. J. Graph Theory 25 (1997) 95–99.
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