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Abstract: In this paper, we focus on the problem that has been described in the second international nurse
rostering competition: a personalized nurse scheduling problem under uncertainty. The schedules must be
computed week by week over a planning horizon of one or two months depending on the instances. We
present the work that was submitted to this competition and which was awarded the second prize.

At each week, a dynamic algorithm is fed with the staffing demand and nurse preferences for the week, and
it computes an irrevocable weekly schedule for all nurses without knowledge on future inputs. The challenge
is to obtain a feasible and near-optimal schedule at the end of the horizon.

The proposed online stochastic algorithm draws inspiration from the primal-dual algorithm for online
optimization and the sample average approximation, and it builds upon an existing static nurse scheduling
software. The procedure generates a small set of candidate schedules, evaluates each of them on few scenarios,
and keeps the one with the best evaluation. Numerical results show that this algorithm is very robust, since
it has been able to produce feasible and near optimal solutions on most of the proposed instances ranging
from 30 to 120 nurses over a horizon of 4 or 8 weeks. Finally, the code of our implementation is open source
and shared on a public repository.

Keywords: Stochastic programming, nurse rostering, dynamic problem, sample average approximation,
primal-dual algorithm, scheduling
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1 Introduction

Western countries are all facing a crisis in the nursing services that is mainly due to the overall aging of the
population. In the United Kingdom, nurses could go on strike for the first time. Nagesh [15] says that “It’s a
message to all parties that the crisis in nursing recruitment must be put center stage in this election”. In the
United-States, “Inadequate staffing is a nationwide problem, and with the exception of California, not a single
state sets a minimum standard for hospital-wide nurse-to-patient ratios.” [20]. In this context, the rotation
ratio of nurses is extremely high, and hospitals try to retain their nurses as much as possible. However,
nurses tend to often change positions, because the work conditions are usually difficult and schedules are
not convenient for the newly hired nurses (mostly due to seniority priority in the collective agreements).
Consequently, providing high quality schedules for all the nurses is a major challenge for the hospitals that
are also bound to provide expected levels of service.

The nurse scheduling problem (NSP) is thus a key problem of the healthcare management science that has
been widely studied for more than two decades (refer to [5] for a literature review of the field). The NSP aims
at building a schedule for the nurses over a certain period of times (typically two weeks or one month) while
ensuring a certain level of service and respecting the collective agreements. However, in practice, nurses often
know their needs for days-off no more than one week ahead of time. To be able to satisfy these preferences,
managers try to update the schedules already computed. If managers were able to compute these schedules
on a weekly basis while ensuring the respect of monthly constraints (e.g., the workload of full-time and part-
time nurses), this would increase the quality of the schedules proposed to the nurses, and thus retain them
longer in the service.

The second International Nurse Rostering Competition (INRC-II) [6] has presented a challenge that
exactly proposed to solve the NSP in a dynamic fashion. The competition presents a problem with a wide
variety of constraints that are close to the reality. In this paper, we present the work we submitted to the
competition and which was awarded the second prize.

1.1 Literature review

Dynamic problems must be solved iteratively without full knowledge of the future. At each stage, new
information is revealed and one needs to compute a new solution based on the solutions of the previous
stages that are irrevocably fixed. The optimal solution of the problem is the same as that of the static (i.e.
offtine) counterpart, where all the information is known beforehand, and the challenge is to approach this
solution even though information is revealed dynamically (i.e. online).

Four main techniques have been developed to do this: computing an offline policy (Markov decision
processes [19] are mainly used), following a simple online policy (Online optimization [4] studies these al-
gorithms), optimizing the current and future decisions (Stochastic optimization [3] handles the remaining
uncertainty), or reoptimizing the system for each new stage (Online stochastic optimization [22] provides a
general framework for designing these algorithms).

Markov decision processes decompose the problem into two different sets (states and actions) and two
functions (transition and reward). An offline policy is then computed for each state, and will be applied at
each stage depending on the current state. Such techniques are overwhelmed by the combinatorial explosion
of problems such as the NSP, even if approximate dynamic programming [18] proposes ways to deal with the
exponential growth of the size of the state space. This technique has been successfully applied to financial
optimization [1], booking [17], and routing [16] problems. The main feature of this method is to invest all
the computational effort beforehand, so this technique relies essentially on the probability model that infers
the future events.

Online algorithms aim at solving problems where decisions are made in real-time, such as online adver-
tisement, revenue management or online routing. As nearly no computation time is available, researchers
have studied these algorithms to ensure a worse case or expected bound on the final solution. For instance,
Buchbinder [4] proposes a primal-dual algorithm for a wide range of problems such as set covering, routing,
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and resource allocation problems, which ensures a competitive-ratio (i.e., a bound on the worst-case scenario)
for each of these applications. Although these techniques can solve very large models, they cannot solve rich
scheduling problems in their own as they do not provide the tools for handling complex constraints.

Stochastic optimization [3] is a wide field that tackles many optimization problems from the scheduling
of operating rooms [7] to the optimization of electricity production [9]. This field studies the minimization of
a statistical function such as the expected value assuming that the probability distribution of the uncertain
data is given. In this framework, it is usual to consider multi-stage problems with recourse, where first-level
decisions must be taken right away, and recourse actions can be executed when uncertain data is revealed. The
value of the recourse function is often approximated with cuts that are dynamically computed from the dual
solutions of some subproblems obtained with Benders’ decomposition. However, for combinatorial problems,
these Benders-based decomposition methods converge slowly, because the dual solutions do not always contain
the right information. Thus, the solution of such problems require an important amount of computational
time that is not always available. To overcome this difficulty, the sample average approximation (SAA) [10]
proposes a scheme to approximate roughly the uncertainty with a small set of scenarios during the solution,
and to evaluate the solution accurately by considering a larger number of scenarios.

Finally, online stochastic optimization [22] is a framework oriented towards the solution of real problems
from industry. The main idea is to decompose the solution in three steps: sampling scenarios of the future,
solving each one of them, and finally computing the decisions of the current stage based on the solution of
each scenario. Such techniques have been successfully applied to solve large scale problems as on-demand
transportation system design [2] or online scheduling of radiotherapy centers [12]. Their main strength is
that any algorithm can be used to solve the scenarios.

1.2 Contributions

The INRC-II challenges the candidates to compute a weekly schedule in a very limited computational time
(less than 5 minutes), with a wide variety of rich constraints, and with important correlations between the
weeks. Due to the important complexity of this dynamic NSP, none of the tools presented in the literature
review allows to solve this problem by themselves.

We describe an online stochastic algorithm that draws inspiration from the primal-dual algorithms and
the SAA. Each of these techniques answer to one of the key features of the competition:

e The online stochastic algorithm offers a framework to solve rich combinatorial problems;
e The primal-dual algorithm speeds up the solution by inferring quickly the impact of some decisions;

e The SAA handles efficiently the important correlations between weeks without increasing tremendously
the computational time.

Finally, the algorithm is based on a free and open-source software that has been developed during the
competition to solve the static version of the NSP. It has already been described in [14], and is summarized
in Section 3.

We emphasize that the algorithm described in this article has been developed in a time-constrained
environment, thus forcing the authors to balance their efforts between the different parts of the software.
The resulting code is publicly shared on a public Git repository [13] for reproduction of the results, future
comparisons, improvements and extensions. The remainder of the article is organized as follows. In Section 2,
we give a detailed description of the NSP as well as the dynamic features of the competition. In Section 3,
we state a static formulation and summarize the main features of the algorithm we developed to solve it. In
Section 4, we present the dynamic formulation of the NSP, the design of the algorithm, and the articulation
of all its components. In Section 5, we give some details on the implementation of the algorithm, discuss
our results during the competition, and compare them to those obtained by the other finalist teams. Our
concluding remarks appear in Section 6.
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2 The Nurse Scheduling Problem

The formulation of the NSP that we consider is the one proposed by Ceschia et al. [6] in the INRC-II, so
the description that we recall here is similar to the one given by the organizers. The constraints and the
objective of the scheduling problem are first presented, and then we discuss the challenges associated to the
uncertainty introduced in the problem.

The NSP aims at computing the schedule of a group of nurses over a given horizon while respecting a
large set of soft and hard constraints. The soft constraints may be violated at the expense of a penalty in
the objective, whereas hard constraints cannot be violated in a feasible solution. The dynamic version of the
problem considers that the planning horizon is divided into one week-long stages and that the demand for
nurses at each stage is known only at the beginning of the stage. Therefore, the schedule of each stage must
be computed individually without full knowledge of the future demand.

A schedule for a nurse is decomposed into work and rest periods and the complete schedules of all the
nurses must satisfy the set of constraints presented in Table 1. Each nurse can perform different skills (e.g.,
Head nurse, Nurse) and each day is divided into shifts (e.g., Day, Night). Furthermore, each nurse has
signed a contract with their employers that determines their work status (e.g., Full-time, Part-time) and
consequently some work agreements on the number of days and weekends worked within a month, and the
minimum and maximum duration of work and rest periods. For the sake of nurses’ health and personal life
and to ensure a sufficient level of awareness, some successions of shifts are forbidden. For instance, a night
shift cannot be followed by a day shift without at least one resting day. The employers also need to ensure
a certain quality of service by scheduling a given number of nurses with the right skills for each shift and
day. Finally, the length of the schedules (i.e., the planning horizon) can be one or two months (four or eight
weeks to be more accurate).

Table 1: Constraints handled by the software.

Hard constraints

H1 Single assignment per day: A nurse can be assigned at most one shift per day.

H2 Under-staffing: The number of nurses performing a skill on a shift must be at least equal to the minimum demand
for this shift.

H3  Shift type successions: A nurse cannot work certain successions of shifts on two consecutive days.

H4 Missing required skill: A nurse can only cover the demand of a skill that he/she can perform.

Soft constraints

S1 Insufficient staffing for optimal coverage: The number of nurses performing a skill on a shift must be at least
equal to an optimal demand. Each missing nurse is penalized according to a unit weight but extra nurses above the
optimal value are not considered in the cost.

S2  Consecutive assignments: For each nurse, the number of consecutive assignments should be within a certain range
and the number of consecutive assignments to the same shift should also be within another certain range. Each extra
or missing assignment is penalized by a unit weight.

S3  Consecutive resting days: For each nurse, the number of consecutive resting days should be within a certain range.
Each extra or missing resting day is penalized by a unit weight.

S4  Preferences: Each assignment of a nurse to an undesired shift is penalized by a unit weight.

S5 Complete week-end: A given subset of nurses must work both days of the week-end or none of them. If he/she
works only one of the two days Saturday or Sunday, it is penalized by a unit weight.

S6 Total assignments: For each nurse, the total number of assignments (worked days) must be within a given range.
The difference (in either direction), multiplied by a unit weight, is added to the objective function.

S7 Total working week-ends: For each nurse, the number of week-ends with at least one assignment must be less than
or equal to a given limit. The number of worked week-ends over that limit multiplied by a unit weight is added to the
objective function.

We describe the four hard and the seven soft constraints in Table 1. The hard constraints are typical
for workforce scheduling problems (especially the first two). These are the minimum sets of constraints that
one must consider solving a scheduling problem: ensuring one assignment by day to each worker, fulfilling a
given demand in terms of number of employees, forbidding some shift successions that cannot be performed
by an employee for health and security reasons, and ensuring a required level of qualification of the workers.
Moreover, several soft constraints should also be respected as much as possible to maximize the quality of
service and retain the nurses within the unit. This last part is especially important in the current context
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where most developed countries are facing important shortages in terms of nurses. The quality of the
schedules (alternation of work and rest periods, numbers of worked days and weekends, respect of nurses’
preferences) are primordial in order to keep the most qualified employees. These specificities make the NSP
one of the most difficult workforce scheduling problem in the literature, because a personalized roster needs
to be computed for each nurse. Furthermore, the main feature of this benchmark is that most constraints
are soft. This eases the search for a feasible solution but it makes the pursuit of optimality more difficult.

The goal of the dynamic NSP is to sequentially build weekly schedules so as to minimize the total cost
of the schedule and ensure its feasibility over the complete planning horizon. The main difficulty is to reach
a feasible (i.e., managing the global hard constraints H3) and near-optimal (i.e., managing the global soft
constraints S6 — S7 as well as consecutive constraints S2 — S3) schedule without knowing the future demands
and nurses’ preferences. Indeed, the hard constraints H1, H2, and H4 deal with local features that do not
impact the following days. Each of these constraints concern either only one day (i.e., one assignment per
day H1) or even one shift (i.e., the demand for a shift H2 and the requirement that a nurse must possess the
required skill H4). In the same way, soft constraints S1, and S4 — S5 are included in the objective with local
costs that either depend on one shift, day or weekend. To summarize, the proposed algorithm must handle
global requirements and the border effects between weeks that are induced by the dynamic process. These
effects are propagated to the following week/stage through either the initial state or the number of worked
days and weekends of the current stage.

3 The static nurse scheduling problem

The solution of this problem is not the focus of the paper as we will build upon the rotation-based algorithm
that we describe in [14] for the computation of offline nurses’ schedules over a given time horizon. This
software solves the NSP with a branch-and-price algorithm [8]. The main idea is to generate a roster for each
nurse, i.e., a sequence of work and rest periods covering the planning horizon. Each individual roster satisfies
constraints H1, H3 and H4, and the rosters of all the nurses satisfy H2. A rotation is a list of shifts from
the roster that are performed on consecutive days, and preceded and followed by a resting day. Moreover, a
rotation does not contain any information about the skills performed on its shifts. A rotation is called feasible
(or legal) if it respects the single assignment and succession constraints H1 and H3. A roster is therefore a
sequence of rotations, separated by nonempty rest periods, to which skills are added (see Example 1).

Example 1 Consider the following single-week roster:

Day 0 1 2 3 4 5 6
Shift =~ Night Night Rest Rest FEarly Day  Rest
Skill N N - - HN N -

where N stands for nurse and HN for head nurse. The rotations of that roster, highlighted on the table above,
are {(0, Night), (1, Night)} and {(4, Early), (5, Day)}.

The static model presented in [14] is based on the enumeration of possible rotations by column generation.
As is standard for column generation algorithms, a restricted master problem is solved to find the best
fractional roster using a small set of rotations, and a subproblem allows to find rotations that could be added
to improve the current solution or prove optimality. These subproblems are shortest path problems with
resource constraints whose networks are described in detail in [14]. To get an integer solution, this process
is embedded within a branch-and-bound procedure. The rest of the section focuses on the master problem,
because its description will be useful for the presentation of the online algorithm. As a consequence, we will
assume that every rotation of every nurse is available, which conceals the role of the subproblem. It is also
worth mentioning that the software is based only on open-source libraries from the COIN-OR project: the
BCP framework for branch-cut and price and the linear solver CLP.

We consider a set N of nurses over a planning horizon of M weeks (or K = 7M days). The sets of all
shifts and skills are respectively denoted ¥ and S. The nurse’s type corresponds to the set of skills he or she
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can use. For instance, most head nurses can fill head nurses demands, but they can also fill nurses demands
in most cases. All the nurses of type ¢t € T (e.g., Nurse or Head nurse) are gathered within the subset Nj.
For the sake of readability, indices are standardized in the following way: nurses are denoted as i € N, weeks
asm € {l...M}, days as k € {1... K}, shifts as s € S and skills as 0 € £. We use (k,s) to denote the
shift s of day k. All other data is summarized in Table 2.

Table 2: Summary of the input data.

Nurses

L, Lj min/max total number of worked days over the planning horizon for nurse ¢
CR;, CR;" min/max number of consecutive days-off for nurse &

B; max number of worked week-ends over the planning horizon for nurse 4
Demand

Dsk min demand in nurses performing skill o on shift (k, s)

O3k optimal demand in nurses performing skill o on shift (k, s)

Initial state
cDY initial number of ongoing consecutive worked days for nurse ¢

CS? initial number of ongoing consecutive worked days on the same shift for nurse 4
g shift worked on the last day before the planning horizon for nurse 4
C’R? initial number of ongoing consecutive resting days for nurse %

Remark 1 (Initial state) Obviously, if CRY > 0, then CDY = CS? = 0, and vice-versa, because the nurse
was either working or resting on the last day before the planning horizon. Moreover, s) only matters if the
nurse was working on that day. The total number of worked days and worked week-ends of a nurse is set at
zero (0) at the beginning of the planning horizon.

The master problem (1) must assign a subset of rotations to each nurse while ensuring at the same time
that the rotations are compatible and the demand is filled. The cost function is shaped by the penalties of
the soft constraints as no other cost is taken into account in the problem proposed by the competition. For
any soft constraint SX, its associated unit weight in the objective function is denoted as cx.

Let R; be the set of all feasible rotations for nurse ¢. The rotation j of nurse ¢ has a cost ¢;; (i.e., the sum
of the soft penalties S2, S4 and S5) and is described by the following parameters: aff, afj, and b} which are
equal to 1 if nurse ¢ works respectively on shift (k,s), on day k, and weekend m, and 0 otherwise. Finally,
fi; and ;Jr- represent the first and last worked days of this rotation.

Let z;; be a binary decision variable which is equals to 1 if rotation j is part of the schedule of nurse i. The
binary variables 7;;; and 7;; measure if constraint S3 is violated: they are respectively equal to 1 if nurse 4
has a rest period from day k to [ — 1 including at most CR;" consecutive days (cost: ci!), and if nurse i rests
on day k and has already rested for at least CR;" consecutive days before k. The integer variables wj and
w; count the number of days worked respectively above L;r and below L; by nurse i¢. The integer variable v;
also counts the number of weekends worked above B; by nurse 4. Finally, the integer variables n*, n$* and
25F measures respectively the number of nurses performing skill o, the number of nurses of type ¢ performing

skill o, and the number of missing nurses performing skill o on shift (k, s).

CR} min(K+1,k+CR])
min E E CijLij + E Cc3Tik + E Cékl’l’ikl + ¢ (wj + wl_) + crv;
: ; —_——— =
ieN LjeR; k=1 I=k+1 S6 S7
S2,54,S5 S3
K
+c1 E E E ng (1a)
k=1se€Socex

S1
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subject to:

min(K+1,k+CR})

[H1,H3] : > rm— >, wx;=0, VieNVk=2...K (1b)
I=k+1 JER: i =k—1
k—1
H1,H3]:  ri—rig-n + Y Tij— > rae =0, VieNVk=2...K (1c)
JER:f; =k l=max(1,k—CR})
K
[Hl,H3] : Z TiK +Tik + Z x5 =1, Vie N (1d)
l:max(l,KJrlfC'Rj) j:f;;:K
K
[S6] : SN dbmitw; =L, VieN (1e)
JER; k=1
K
[S6] : Z Z afjxij —wi <L}, Vie N (1f)
JER; k=1
M
JER; m=1
[H2] : > nik > D, VseS,ke{l...K}, 0¥ (1h)
teT o«
[S1]: > onpk 4k > 05, VseS ke{l...K}, 0¥ (1i)
teT »
[H4] : > afu;— > mikb=0, VseSke{l..K}oex (1j)
7;6./\/’1,7j o€,
zi; € N, 25F nih e R, VieN,jeER,seS kec{l... K}, tcT,0e% (1k)

Tikls Tiks Wy W, v; > 0, VieN,ke{l...K},l=k+1..min(K+1,k+CR) (11

where ¥; is the set of skills mastered by a nurse of type ¢ (e.g., head nurses have the skills head nurse and
nurse), and T, is the set of nurse type that masters skill o (e.g., head nurse skill can be only provided
by head nurses).

The objective function (1la) is composed of 5 parts: the cost of the chosen rotations in terms of con-
secutive assignments and preferences (S2, S4, S5), the minimum and maximum consecutive resting days
violations (S3), the total number of working days violation (S6), the total number of worked week-ends vio-
lation (S7), and the insufficient staff for optimal coverage (S1). Constraints (1b)—(1d) are the flow constraints
of the rostering graph (presented in Figure 1) of each nurse ¢ € /. Constraints (1e) and (1f) measure the
distance between the number of worked days and the authorized number of assignments: the variable w;"
represents the number of missing days when the minimum number of assignments, L; , is not reached, and w;
is the number of assignments over the maximum allowed when the total number of assignments exceeds Lj.
Constraints (1g) measure the number of weekends worked exceeding the maximum B;. Constraints (1h)
ensure that enough nurses with the right skill are working on each shift to meet the minimal demand. Con-
straints (1i) measure the number of missing nurses to reach the optimal demand. Constraints (1j) ensure a
valid allocation of the skills among nurses of a same type for each shift. Constraints (1k) and (11) ensure the
integrality and the nonnegativity of the decision variables.

A valid sequence of rotations and rest periods can also be represented in a rostering graph whose arcs
correspond to rotations and rest periods and whose vertices correspond to the starting days of these rotations
and rest periods. Figure 1 shows an illustration of a rostering graph for some nurse 4, and highlights the
border effects. Nurse 7 has been resting for one day in her/his initial state, so the binary variable r;14 has a
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Figure 1: Example of a rostering graph for nurse i € N over a horizon of K = 7 days, where the minimum and maximum
number of consecutive resting days are respectively CR; = 2 and C'Rzr = 3, and the initial number of consecutive resting days
is CR? = 1. The rotation arcs (z;;) are the plain arrows, the rest arcs (r;5; and r;;) are the dotted arcs, and the artificial flow
arcs are the dashed arrows. The bold rest arcs have a cost c3 of and the others are free.

cost c3 instead of zero, but the binary variable r;47 has a zero cost, because nurse ¢ could continue to rest on
the first days of the following week. If variable 7;67 is set to one, nurse 7 will then start the following with one
resting day as initial state. Finally, if nurse ¢ was working in her/his initial state, the penalties associated to
this border effect would be included in the cost of either the first rotation if the nurse continues to work, or
the first resting arcs ;1 if the nurse starts to rest.

4 Handling the uncertain demand

The main purpose of this section is to present the dynamic model used for the NSP, and then show how we can
design an efficient algorithm to compute near-optimal schedules in a very limited amount of computational
time. We propose a dynamic math-heuristic based on a primal-dual algorithm [4] and wrapped into a
sample average approximation (SAA) [11]. As previously stated, the dynamic algorithm should especially
take into account the global hard (i.e. H3) and soft (i.e. S6 and S7) constraints to reach a feasible and
near-optimal global solution.

4.1 The dynamic NSP

As the proposed dynamic algorithm must handle the border effects between weeks, we propose to reformulate
Formulation (1) to gather decisions of the same week, abstract most of the individual constraints, and
highlight these challenges. The resulting weekly Formulation (2) clusters together all the local constraints
for all nurses in a weekly schedule j for each week, enumerates all the possible schedules, and models only
the border effects. This formulation is not solved in practice, but we use it to present and build the proposed
online stochastic algorithm.

The binary variable y7* equals 1 if schedule j is chosen for week m. As in a rotation, a global weekly
schedule j € R is described by a weekly cost c; and the parameters a;; and b;; that respectively count
the number of days and weekends worked by nurse i. The variables wj, w; , and v; are defined as in
Formulation (1).

M
minz Z ¢iyj + o Z(wj +wi_)+c7zvi (2a)

JER m=1 iEN 1EN
——
S1-S5 s6 ST
subject to:
[H1-H4,81-85]: > y'=1, Vme{l...M} [a™] (2b)

JER
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[H3,82,83]: > yit' >y, VieNm=1..M-1 [67] (2¢)
J'€C;

M

86]: > > aiyl+w; =L, VieN [6;7] (2d)
JER m=1
M

[S6] : Z Z agy]' —w <L, VieN 18] (2e)
JjER m=1
M

[S7] : Z Z bijyjm —v; < B;, Vie N [’Yi] <2f)
jER m=1

y;r€1{0,1}, VieR,me{l...M} (2g)

wi wy v >0, YieN (2h)

The objective (2a) is decomposed into a weekly cost for the schedule and global penalties. Constraints (2b)
ensure that exactly one schedule is chosen for each week. Constraints (2¢) hide the succession constraints
by summarizing them into a filtering constraint between consecutive schedules. These constraints simplify
the resulting formulation, but will not be used in practice as their number is not tractable (see below).
Constraints (2d)—(2f) measure the penalties associated with the number of worked days and weekends. Con-
straints (2g)—(2h) are respectively integrality and nonnegativity constraints. The greek letters indicated
between brackets («, 8, d and ) denote the dual variables associated with these constraints.

Constraints (2c) model the sequential aspect of the problem. Indeed, this formulation is solved stage by
stage in practice, and thus the solution of stage m is fixed when solving the next stage m + 1. This means
that when computing the schedule of week m + 1, the binary variables y" are all null except one y;" that
corresponds to the schedule chosen for week m. All the constraints (2c) corresponding to yi" = 0 can be
removed, and only one is kept: > jec;, y??“ > 1. In this constraint, the set C;,, contains all the schedules
compatible with j,,, i.e., the schedules that are feasible and correctly priced when schedule j,, is used for
setting the initial state of stage m + 1. To summarize, constraints (2c) can be seen as filtering constraints

that hide the difficulties associated to the border effects induced by the constraints H3, S2, and S3.

The main challenge of the dynamic NSP is to correctly handle Constraints (2¢)—(2h) to maximize the
chance of building a feasible and near-optimal solution at the end of the horizon. The proposed dynamic
procedure for generating and evaluating the computed schedules at each stage draws inspiration from the SAA.
Algorithm 1 summarizes the whole iterative process over all the stages. Each generated schedule is evaluated

Algorithm 1: A sample average approximation based algorithm

for each stage m=1...M — 1 do
Initialize the set of candidate schedules of stage m: S™ = ()
Initialize the generation algorithm with the chosen schedule jn,,—1 of the previous stage m — 1 (i.e., set the initial state)
Sample a set Q™ of future demands for the evaluation
while there is enough computational time do
Generate a weekly schedule j for stage m
Initialize the evaluation algorithm with schedule j (i.e., set the initial state)
for each scenario w € Q™ do
Evaluate schedule j over scenario w
end for
Store the schedule (S™ := S™ U {j}) and its score (e.g., its average evaluation cost)
end while
Choose the schedule j,, € S™ with the best score
end for
Compute the best schedule for the last stage M with the given computational time

before generating another new one, because a schedule without evaluation is worthless. This generation-
evaluation step is repeated until the time limit is reached. Note that the last stage M is solved by an offline
algorithm (e.g., the software presented in Section 3), because the demand is totally known at this time.
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The two following subsections describe each one of the main steps:

1. The generation of a schedule with an offline procedure that takes into account a rough approximation
of the uncertainty;

2. The evaluation of a schedule for a demand scenario that measures the impact on the remaining weeks.
(This step also computes an evaluation score of a schedule based on the sampled scenarios.)

4.2 Generating a candidate schedule

In a first attempt to generate a schedule, a primal-dual algorithm inspired from [4] is proposed. However,
this procedure doesn’t handle all the correlations between the weekly schedules (i.e., Constraints (2¢)). The
proposed primal-dual algorithm is then adapted to better take into account the border effects between the
weeks, and make use of every available insight on the following weeks.

4.2.1 A primal-dual algorithm

Primal-dual algorithms for online optimization aim at building pairs of primal and dual solutions dynamically.
At each stage, some primal decisions are irrevocably made and the dual solution needs to be updated so as
to remain feasible. The current dual solution drives the algorithm to better primal decisions by using those
dual values as multipliers in a Lagrangian relaxation. The goal is to obtain a pair of feasible primal and dual
solutions that satisfy the complementary slackness property at the end of the process.

We use a similar primal-dual algorithm to solve the online problem associated to Formulation (2). In this
dynamic process, we wish to sequentially solve a restriction of Formulation (2) to week m for all stages m €
{1,..., M} with a view to reaching an optimal solution of the complete formulation. This process raises an
issue though: how can we take into account the constraints (4c)—(4e) in a restriction to a single week? To do
this, the primal-dual algorithm uses dual information from stage m to compute the schedule of stage m + 1
by solving the following Lagrangian relaxation of Formulation (2):

min Z[ \CJ// + Z(B:— - Az‘ Jai; + Z% ij1Y m+1 (3a)

JER g1 s2.835485 NV N

N—_——
S6 ST
sto [H1-H3]: Yyt =1 (3b)
JECJWL
yt e {01}, VjeR (3c)

~

where ﬁ; ,Bj ,%: > 0 are multipliers respectively associated with Constraints (2d)—(2f), and both Con-
straints (2b) and (2¢) that guarantee the feasibility of the weekly schedules are aggregated under Con-
straint (3b). More specifically, any new assignment for nurse ¢ will be penalized with BZ_ — B:r and worked
week-ends will cost an additional 4;. It is thus essential to set these multipliers to values that will drive the
computation of weekly schedules towards efficient schedules over the complete horizon. For this, we consider
the dual of the linear relaxation of Formulation (2):

Z a™+ Z - — LB — Bivi) (4a)

ieN
s. to o™+ Z (ai; B aijﬁ;r —bijvi) — 07" + Z 5;7’771 <g¢j, VieR,VYm [y;"] (4b)
iEN j’ECJ_l
B <co VieN Wil (o)
B <ce, VieN [w;] (4d)
vi<er, VieN [v;] (de)
L B87,7,0 >0, VieR,me{l...M} Vie N (4f)
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where set C;~ ! contains all the schedules with which schedule j is compatible. The dual variables o™, o, Bi s ,B;F

and +; are respectively associated with Constraints (2b), (2c), (2d), (2¢), and (2f), the variables 7 are set to
zero to get a unified formulation. The variables in brackets denote the primal variables associated to these
dual constraints. At each stage, the primal-dual algorithm sets the values of the multipliers so that they
correspond to a feasible and locally optimal dual solution, and uses this solution as Lagrangian multipliers in
Formulation (2). Another point of view is to consider the current primal solution at stage m as a basis of the
simplex algorithm for the linear relaxation of Formulation (2). The resolution of stage m + 1 corresponds to
the creation of a new basis: Formulation (3) seeks a candidate pivot with a minimum reduced cost according
to the associated dual solution.

In choosing the dual variables, a second goal (after seeking a feasible dual solution) is to satisfy com-
plementary conditions between the current primal solution at stage m and the dual solution computed for
stage m + 1. In the computation of a dual solution, the variables o™ and 67" do not need to be explicitly
considered, because they will not be used in Formulation (3). What is more, focusing on stage m, the only
dual constraints that involve o™ and 07" (4b), can be satisfied for any value of f3;, B and 4; by setting
67 =0,Vj € R, and

a™ =min{c; — > (a8 —aiBf —biA:)}-
JER ‘
1EN
Observe that the expression of the objective function of Formulation (2) ensures that the only schedule variable
satisfying y7" > 0 will be such that j,, € argmin;cr {c; — > ;(a:i;8; — ai; B — bijvi)}, so complementarity
is achieved.

To set the values of B{ , Bf and 4;, we first observe that complementary conditions are satisfied if
B»_ = ce if Zj’m aijy}” < L; B+ _ cg if Zj,m aijy;" > L:r Ao cy if Zj,m bijyjm > B;
g 0 otherwise ¢ 0 otherwise v 0 otherwise

Since the history of the nurses are initialized with zero assignment and week-end worked, we initially set
B; = cs and BZT" = 4; = 0 to satisfy complementarity. We then perform linear updates at each stage m, using
the characteristics of the schedule j,, chosen for the corresponding week:

a™ a™ pm
A— A— 1Jm At . A+ Jm A . 2 1Jm
B; = max (0731- - CGL) , B =min <667Bi + 06L+> , % = min (07,% + ¢y B ) .
i i i

These updates do not maintain complementarity at each stage but allow for a more balanced penalization
of the number of assignments and worked week-ends. What is more, the variations of 5; , 6;" and #4; ensure
that constraints (2b) remain feasible for the previous stage, even though complementarity may be lost.

In most theoretical descriptions of the online primal-dual algorithm, the authors use non-linear updates
to be able to derive a competitive-ratio. However, no competitive-ratio is sought by this approach and linear
updates are easier to design. Non-linear updates could be investigated in the future.

Algorithm 2 summarizes the primal-dual algorithm. It estimates the impact of a chosen schedule on
the global soft constraints through their dual variables. As it is, it gives poor results in practice though.
The reason is that the information obtained through the dual variables does not describe precisely the real
problem. At the beginning of the algorithm, the value of the dual variables pushes the nurses to work as much
as possible. Consequently, the nurses work too much at the beginning and cannot cover all the necessary
shifts at the end of the horizon. Furthermore, the expected impact of the filtering Constraints (2c) are totally
ignored for the moment. Especially, the shift type succession constraints H3 imply many feasibility issues
at the border between two weeks as Formulation (2) is solved sequentially with this primal-dual algorithm.
The following two sections describe how this initial implementation was adapted to cope with these issues.

4.2.2 Sampling a second week demand for feasibility issues

Preliminary results have shown that Algorithm 2 has some feasibility issues due to constraints H3 on forbidden
shift successions between the last day of one week and the first day of the following one. In other words,
there should be some way to capture border effects during the computation of a weekly schedule.
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Algorithm 2: Primal-dual algorithm

B =c6, B =4 =0VieN
for each stage m do

Solve Formulation (3) with a deterministic algorithm
m

A ~ a™
Update 3; = max (D, B, — ce%) Vie N

Update B:r = min (c@-,BAi+ + c6 ag%) VieN

i
m

b 4
Update 5 = min (cr. 3 + cr g ) Vi €

i

end for

Instead of solving each stage over one week, we solve Formulation (3) over two weeks and keep only the
first week as a solution of the current stage. The compatibility constraints (2c) between the two weeks are
now included in this two-weeks model. In this approach, the data about the first week is available since
it corresponds to the week that must be scheduled at this stage, but there is no data about any future
week. The demand relative to the second week is thus sampled as described in Section 4.4. By providing a
scenario for a potential future demand, the second week schedule ensures that the first week schedule ends
with assignments that are at least compatible in this scenario, thus increasing the probability of building a
feasible schedule over the complete horizon.

What is more, for two different samples of the second week demand, the two-weeks version of Formula-
tion (3) should lead to two different solutions for the first week. As a consequence, we can solve the model
several times to generate different candidate schedules for the week under consideration. As described in
Algorithm 1, we use this property to generate new candidates until time limit is reached.

4.2.3 Global bounds to reduce staff shortages

Preliminary results have also shown that Algorithm 2 creates many staff shortages in the last weeks. Our
intent is thus to bound the number of assignment and worked weekends in the early stages to avoid the later
shortages. The naive approach is to resize constraints (2d)—(2f) proportionally to the length of the demand
considered in Formulation (3) (i.e., two weeks in our case). However, it can be desirable to allow for important
variations in the number of assignments to a given nurse from one week to another, and even from one pair
of weeks to another. Stated otherwise, it is not optimal to build a schedule that can only draw one or two
weeks-long patterns as would be the case for less constrained environments. A simple illustration arises by
considering the constraints on the maximum number of worked weekends. To comply with these constraints,
there cannot be some nurses that always work on weekends and others that never do. Coupled with the other
constraints, this results necessarily in complex and irregular schedules. Consequently, bounding the number
of assignments individually would forbid valuable schedules.

Instead, we propose to bound the number of assignments and worked weekends for sets of similar nurses
in order to both stabilize the total number of worked days within this set and allow irregularities in the
individual schedules. We choose to cluster the nurses with the same contract, because they have the same
minimum and maximum bounds for their soft constraints. Hence, for each stage m, we add one set of
constraints similar to (2d)—(2f) for each contract. In the constraints associated with contract € T, the left
hand-sides are resized proportionally to the number of nurses with contract x and the number of weeks in
the demand horizon. Let L™, L™% and B™ be respectively the minimum and maximum total number of
assignments, and the maximum total number of worked weekends over the two-weeks demand horizon for
the nurses with contract k. We define these global bounds as:

’

m— __ 2 - m <m oom/
o L' =Tx M—m+1 Zi:ﬁizfi max((), Lm Zm/=1 j AijY;j )7

m+ _ 2 + _ xm/<m Cam’
o LT =T g 2w max(0, LT — 320 20 >0 aizys™ ),

’

m 2 m'<m Cam’

¢ BW - M—-—m+1 Zi:m:n maX(O’BHi - Zm’:l Z_j bl]yj )7

where x; is the contract of a nurse 3.
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Finally, the objective (3a) is modified to take into account the new slack variables w ™, w™* v™ associ-
ated to the new soft constraints. The costs of these slack variables is set to make sure that violations of the
soft constraints are not penalized more than once for an individual nurse. For instance, instead of counting
the full cost cg for variable w™*, we compute its cost as (cg — rnax“m:,ﬁ(ﬂi+ )). This guarantees that an extra
assignment is never penalized with more than cg for any individual nurse. The cost of the variables w™*

and v} have been modified in the same way for analogous reasons.

Formulation (5) summarizes the final model used for the generation of the schedules. We recall that the
variables y7" are now selecting a schedule j which covers a two weeks demand, and that this formulation is
in fact solved by a branch-and-price algorithm that selects rotations instead of weekly schedules.

min Z |:Cj + Z ((ﬁj =B )aij + %bznjlﬂ yj'

JER iEN

+2 [(06 — max (B7)wy” + (g — max (B7))wi™) + (er — max (y/"))vl") | (5a)

op=r K=K LR =K 1K{=K
st [H1,H2,H3, H3|: doyr=1, (5b)
JER
[S6] : Z Z aiy;t +wiT > LY, Vkel (5¢)
itki=K JER
[S6] : S ayl +wit <L, VeeTl (5d)
itki=K JER
[S7] : Z Z bijyt —v < BY', VeeT (5e)
iki=K JER
yj €{0,1}, VieR (5f)
w wht ™ >0, Vel (5g)

To conclude, Formulation (5) allows to control the impact of a schedule on the future through two
mechanisms: the problem is solved over two weeks to diminish the border effects that may lead to infeasibility,
and the costs are modified to globally limit the penalties due to constraints S6 and S7. Furthermore, this
formulation can generate different schedules fort the first week by considering different samples for the second
week demand.

4.3 Evaluating candidate schedules

In the spirit of the SAA, the first-week schedules generated by Formulation (5) are evaluated to be ranked.
The evaluation should measure the expected impact of each schedule on the global solution (i.e. over M
weeks). This impact can be measured by solving a NSP several times over different sampled demands for the
remaining weeks.

Let Q™ be the set of scenarios of future demands for weeks m + 1... M, and assume that a schedule j
has been computed for week m. To evaluate schedule j, we wish to solve the NSP for each demand w € Q™
by using j to set the initial history of the NSP. Denoting V7 the value of the solution, we can infer that
the future cost Cles of schedule j in scenario w is equal to ¢; + Vit the actual cost of the schedule plus
the resulting cost for scenario w. Then, a score that takes into account all the future costs (¢}, )wecam of a
given schedule j is computed. Several functions have been tested and preliminary results have shown that
the expected value was producing the best results. Finally, the schedule j,, with the best score (i.e., the
expected future cost) is retained.

However, computing the value V7 raises two main issues. First, the NSP is an integer program for which it
can be too time-consuming to even find a feasible solution. We thus use the linear relaxation of this problem
to compute an estimation of the future cost. This simplification decreases drastically the computational
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time, and it can also detect feasibility issues at the border between weeks m and m + 1. The second issue
is that over a long time horizon, even the linear relaxation of the NSP cannot be solved in sufficiently small
computational time. We thus restrict the evaluation to scenarios of future demands that are at most two
weeks long. More specifically, the scenarios are one week-long for the stage M — 1 and two weeks long for the
previous stages. We observed that this restriction allows to keep the solution time in a reasonable interval
while giving a good measure of the impact of the schedule j on the future.

To summarize, the value V7 is computed by solving the linear relaxation of Formulation (1) for a two-
week demand w, and the initial state is set by using the schedule j. Finally, the parameters L; , Lj, and B;
are proportionally resized over two weeks, as follows.

o L™V = 7 52 max(0,L7 — S0 Y el yr )

m

o L™V = [T 12 max(0, L — S Sl v );

o B = [ 2 max(0,B; — Yoy 3, 00y )]

As already stated, the number of evaluation scenario included in 2™ is kept low (e.g., || = 5) to meet the
requirements in computational time. These scenarios are sampled as described in the next section.

4.4 Sampling of the scenarios

The competition data does not provide any knowledge about past demands, potential probability distributions
of the demand, nor any other type of information that could help for sampling scenarios of demand. It is thus
impossible to build complex and accurate prediction models for the future demand. At a given stage m, the
algorithm has absolutely no knowledge about the future realizations of the demand, so the sampling can only
be based on the current and past observations of the weekly demands on stages 1, ..., m. To build scenarios
of future demand, we simply perturb these observations with some noise that is uniformly distributed within
a small range (typically one or two nurses) and mix randomly these observations (e.g., pick the Monday of
one observation and the Tuesday from another one). The future preferences are not sampled in the scenarios,
because they cannot lead to an infeasible solution, they do not induce border effects, and they have small
costs when compared to the other soft constraints. The goal of the sampling method is only to obtain some
diversity in the scenarios used to generate different candidate schedules and in those used to evaluate the
candidate schedules. Assuming that the demands will not change dramatically from one week to another,
this allows for additional robustness and efficiency in many situations.

4.5 Summary of the primal-dual-based sample average approximation

Algorithm 3 provides a detailed description of the overall algorithm we submitted to the INRC-II. It generates
several schedules with a primal-dual algorithm and evaluates them over a set ™ of future demands. The
evaluation step increases the probability of selecting a globally feasible schedule, that has already been feasible
for several resolutions of the linear relaxation of Formulation (1). The performances of this algorithm are
discussed in Section 5.

5 Experimentations

This section presents the results obtained at the INRC-II. The competition was organized in two rounds.
In the selection round, each team had to submit their best results on a benchmark of 28 instances that
were available to the participants before submitting the codes. The organizers then retained the best eight
teams for the final round where they tested the algorithms against a new set of 60 instances. The algorithm
described above ranked second in both rounds.

The instances used during each round are summarized in Tables 3 and 4. They mix relatively small
instances (35 nurses over 4 weeks) to really big instances (120 nurses over 8 weeks) that are very difficult to
solve even in a static setting [14]. The algorithms of the participants all had the same limited computational
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Algorithm 3: A primal-dual-based sample average approximation

By =ce, B =i =0YieN
for each stage m=1...M — 1 do
Initialize the set of candidate schedules of stage m: S™ = ()
Initialize the generation model using the chosen schedule of the previous stage m — 1 (i.e., set the initial state)
Sample a set Q™ of future demands for the evaluation
while there is enough computational time do
Sample a second week demand for the generation
Solve Formulation (5) with a deterministic algorithm to build a two-weeks schedule (5!, 52)
Store the schedule of the first week: S™ := S™ U {j'}
Initialize the evaluation model with schedule j! (i.e., set the initial state)
for each demand w € Q™ do
Compute the value V™ as the optimal value of the linear relaxation of Formulation (1) over two weeks if
m < M — 1, and one week otherwise
end for
end while
Choose the schedule j,, with the best average evaluation cost
Update the dual variables as in Algorithm 2
end for
Compute the best schedule for the last stage M with the given computational time

time to solve each stage (depending on the number of nurses and on the computer used for the tests). The
solution obtained at each week was used as an initial state for the schedule of the following week. If an
algorithm reached an infeasible schedule, the iterative process was stopped. The final rank of each team was
computed as the average rank over all the instances.

Table 3: Instances used for the selection

Number of nurses
30 40 50 60 80 100 120

4 2 2 2 2 2 2 2
8 2 2 2 2 2 2 2

Computational time per week (s) 35 60 90 120 150 240 300

Number of weeks

Table 4: Instances used for the final

Number of nurses
35 70 110

4 10 10 10
Number of weeks 8 10 10 10
Computational time per week (s) 45 150 270

In this section, we will focus our discussion on the quality of the results obtained with our algorithm.
More details about the competition and the final results can be found on the competition website: http:
//mobiz.vives.be/inrc2/.

5.1 Algorithm implementation

Algorithm 3 depends on how future demands are sampled, on the number of scenarios used for the evaluation,
and last but not least, on the scheduling software.

The algorithm uses only five scenarios of future demands for the evaluation. Indeed, the algorithm must
divide its short available computational time between the generation and the evaluation of the schedules. The
first step aims at computing the best schedule according to the current demand while the second step seeks
a robust planning that yields promising results for the following stages (high probability to remain feasible
and near-optimal). In order to generate several schedules (at least two) in the granted computational time,
the number of demand scenarios must remain small. Moreover, since the demand scenarios we generate are
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not based on accurate data, but only on a learned distribution, there is no guarantee that a larger number
of scenarios would provide a better evaluation. In fact, we tested different configurations (3 to 10 scenarios
used for the evaluation), and they all gave approximately the same results (the best results were obtained
for 4 to 6 scenarios).

The code is publicly shared on the Git repository [13]. The scheduling software is implemented in C++
and is based on the branch-cut-and-price framework of the COIN-OR project: BCP. The choice of this
framework has been motivated by the competition requirement of using free and open-source libraries in the
competition. The pricing problems are modeled by a shortest path with resource constraints and solved with
the Boost library. The solution algorithm is not parallelized and it uses the branching strategy ‘two dives’
described in [14]. This strategy ‘dives’ two times in the branching tree and keeps the best feasible solution.
If no solution is found after two dives (which was never the case), the algorithm continues until it reaches
either the time limit or a feasible solution.

5.2 Selection instances

Figure 2 shows the results of the best three finalist teams on the 28 instances used for the selection. These
results are presented as a cumulative distribution of their respective relative gap from the best solutions
(e.g., a zero gap means that the algorithm has produced the best solution). The first team has obtained the
best results by far: they outperform all the others teams, and have either the first or second position on all
the instances (excepting one third position). Their algorithm is also based on a mixed integer programming
approach that computes weekly schedules, but they directly model the problem using a large flow network
where a state-expansion is used to consider the soft constraints. For the time being, only a brief description
of the algorithm is available in [21]. Algorithm 3 obtains a fair second position and competes with the best
algorithm, since it also ranks first or second on every instance but two, for which it ranks third. Finally,
the third team is significantly behind the first two. As highlighted by Figure 2, the solutions found by their
algorithms exhibit at least a 9% relative gap with respect to the best solution.

120%

60% = -

— 15t

P e 2nd (Ours)

| - = 3rd

Cumulative distribution
]
]

Relative gap

Figure 2: Cumulative distribution of the relative gap on the selection instances.

It is also important to note that these algorithms are randomized, because they are all based on random
sampling of future demands. For the first phase of the competition, the participants had to provide the
random seeds they used to obtain their results. During the second phase, the organizers executed the code
of each team ten times with different arbitrary random seeds on each instance.

Figure 3 shows the distribution of the objective value for 180 observations of the solution of an instance
with 80 nurses over 8 weeks using Algorithm 3. The values of the solution are within a [—6%, +7%] range.
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Because of these variations, we run the algorithm many times on each of the instances used for the selection
to submit only the best ones and increase our chance of qualification. Most teams must have used the same
technique, since the ranking between the selection and the final rounds did not really change.
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Figure 3: Distribution of the objective value for the selection instances.

5.3 Final instances

The final results respect the same ranking as the one obtained after the selection. However, these comparisons
are more fair, since the results were computed by the organizers, so that the teams were not able to select
the solutions they submitted. This configuration evaluates in a better way the proposed algorithms, and
especially their robustness. The organizers have even run 10 times the algorithms on each of the 60 final
instances, and have thus compared the proposed software over 600 tests.

Figure 4 presents the relative gaps obtained on the final instances. The two first teams are really close
and their algorithms highlight two distinct features of the competition. The winning team’s algorithm builds
the best schedules for about 65% of the instances, but our algorithm appears to be more robust. Indeed, our
algorithm was able to produce a feasible schedule in every test but one while the winning algorithm could
not build a feasible schedule in 5% of the tests (i.e., 34 tests). This comparison also highlights the balance
that needs to be found between the time spent in the generation of the best possible schedules and their
evaluation, since this second phase provides a measure of their robustness to future demands.

Figure 5 shows the cumulative distribution of the relative gap of the winning team solutions from ours as a
function of the number of nurses. It is clear that once the instances exceed a certain size (i.e., 110 nurses), the
quality of the solution of the winning team decreases. Indeed, in [21], the winning team comments that their
algorithms was simply unable to find feasible integer solutions for some week demands of these instances,
showing that the method experiments difficulties in scaling up. Furthermore, this algorithm was also not
able to find feasible solutions for an important number of the small instances (i.e., 35 nurses). As a possible
explanation, we have observed that it is more difficult to find feasible solutions for these instances, because
they leave less flexibility for creating the schedules. Stated otherwise, the proportion of feasible schedules
that meet the minimum demand is much smaller for the smallest instances used in the competition.
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Figure 5: Cumulative distribution of the relative gap as a function of the number of nurses.

6 Conclusions

This article deals with the nurse scheduling problem as described in the context of the international com-
petition INRC-II. The objective is to sequentially build, week by week, the schedule of a set of nurses over
a planning horizon of several weeks. In this dynamic process, the schedule computed for a given week is
irrevocably fixed before the demand and the preferences for the next week are revealed. The main difficulty
is to correctly handle the border effects between weeks and the global soft constraints to compute a feasible
and near-optimal schedule for the whole horizon.

Our main contribution is in the design of a robust online stochastic algorithm that performs very well for
a wide range of instances (from 30 to 120 nurses over a four or eight weeks horizon). The proposed algorithm
embeds a primal-dual algorithm within a sample average approximation. The primal-dual procedure generates
candidates schedules for the current week, and the sample average approximation allows to evaluate each of
them and retain the best one. The resulting implementation is shared on a public repository [13] and builds
upon an open source static nurse scheduling software.



18

G-2016-78 — Revised Les Cahiers du GERAD

The designed algorithm has been awarded the second prize of the INRC-II competition. The results show

that, even if this procedure did not compute the best schedules for a majority of instance, it was the most
robust one. Indeed, it has obtained feasible solutions for almost every instance of the competition while
providing high-quality schedules.

Despite the limits of this algorithm, our intent with this article was to present the exact implementation

that has been submitted to the competition. There is place for improvements that could be developed in the
future. For instance, the primal-dual algorithm could be enhanced with non-linear updates, the new features
developed in the static nurse scheduling software could be tested, or the bounding constraints added in the
primal-dual algorithm could be refined.
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