
Les Cahiers du GERAD ISSN: 0711–2440

Rotation-based column generation for the
nurse rostering problem

A. Legrain, J. Omer,
S. Rosat

G–2016–77

October 2016
Revised: October 2017

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis à des revues avec comité de révision. Lorsqu’un
document est accepté et publié, le pdf original est retiré si c’est
nécessaire et un lien vers l’article publié est ajouté.

Citation suggérée: Legrain, Antoine; Omer, Jérémy; Rosat, Samuel
(Octobre 2016). Rotation-based column generation for the nurse ros-
tering problem, Rapport technique, Les Cahiers du GERAD G-2016-77,
GERAD, HEC Montréal, Canada.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2016-77) afin de mettre à jour
vos données de référence, s’il a été publié dans une revue scientifique.

The series Les Cahiers du GERAD consists of working papers carried
out by our members. Most of these pre-prints have been submitted to
peer-reviewed journals. When accepted and published, if necessary, the
original pdf is removed and a link to the published article is added.

Suggested citation: Legrain, Antoine; Omer, Jérémy; Rosat, Samuel
(Octobre 2016). Rotation-based column generation for the nurse
rostering problem, Technical report, Les Cahiers du GERAD G-2016-77,
GERAD, HEC Montréal, Canada.

Before citing this technical report, please visit our website (https://
www.gerad.ca/en/papers/G-2016-77) to update your reference data,
if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce au
soutien de HEC Montréal, Polytechnique Montréal, Université McGill,
Université du Québec à Montréal, ainsi que du Fonds de recherche du
Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2017
– Bibliothèque et Archives Canada, 2017

The publication of these research reports is made possible thanks to the
support of HEC Montréal, Polytechnique Montréal, McGill University,
Université du Québec à Montréal, as well as the Fonds de recherche du
Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2017
– Library and Archives Canada, 2017

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2016-77
https://www.gerad.ca/en/papers/G-2016-77
https://www.gerad.ca/en/papers/G-2016-77

Rotation-based column gener-
ation for the nurse rostering
problem

Antoine Legrain a,b

Jérémy Omer c,d

Samuel Rosat b,d

a CIRRELT, Université de Montréal Montréal (Québec),
Canada, H3C 3J7

b Department of Mathematics and Industrial Engineering,
Polytechnique Montréal (Québec) Canada, H3C 3A7

c INSA, 35708 Rennes, France

d GERAD, HEC Montréal, Montréal (Québec), Canada,
H3T 2A7

antoine.legrain@polymtl.ca

jeremy.omer@insa-rennes.fr

samuel.rosat@polymtl.ca

October 2016
Revised: October 2017
Les Cahiers du GERAD
G–2016–77
Copyright c© 2017 GERAD, Legrain, Omer, Rosat

Les textes publiés dans la série des rapports de recherche Les Cahiers du
GERAD n’engagent que la responsabilité de leurs auteurs. Les auteurs
conservent leur droit d’auteur et leurs droits moraux sur leurs publica-
tions et les utilisateurs s’engagent à reconnâıtre et respecter les exigences
légales associées à ces droits. Ainsi, les utilisateurs:
• Peuvent télécharger et imprimer une copie de toute publication

du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une ac-
tivité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publication.
Si vous pensez que ce document enfreint le droit d’auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
l’accès au travail et enquêterons sur votre demande.

The authors are exclusively responsible for the content of their research
papers published in the series Les Cahiers du GERAD. Copyright and
moral rights for the publications are retained by the authors and the users
must commit themselves to recognize and abide the legal requirements
associated with these rights. Thus, users:
• May download and print one copy of any publication from the

public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.

ii G–2016–77 – Revised Les Cahiers du GERAD

Abstract: In this paper, we describe an algorithm for the personalized nurse scheduling problem. We focus
on the deterministic counterpart of the specific problem that has been described in the second international
nurse rostering competition. One specificity of this version of the problem is that most constraints are
soft, meaning that they can be violated at the price of a penalty. The feasible space is thus much larger,
which involves much more difficulty to find the optimal solution. We model the problem as a an integer
program (IP) that we solve using a branch-and-price procedure. This model is, to the best of our knowledge,
comparable to no other from the literature, since each column of the IP corresponds to a rotation, i.e.,
a sequence of consecutive worked days for a nurse, and not to a complete individual roster. We tackle
instances involving up to 120 nurses and 4 shifts over an 8-weeks horizon by embedding the branch-and-price
in a large-neighborhood-search framework. Initial solutions of the large-neighborhood search are found by a
rolling-horizon algorithm, well-suited to the rotation model.

Keywords: Nurse scheduling problem, column-generation, decomposition, branch-and-price, rolling horizon,
large-neighborhood search

Les Cahiers du GERAD G–2016–77 – Revised 1

1 Introduction

1.1 The nurse scheduling problem

For several years, hospitals have been facing increasing shortages in most western countries, either in terms of

finance or resources: beds, nurses, etc. Hence, they are often unable to provide the expected level of service.

These difficulties can be tackled in two different ways: either increase, or make better use of the available

resources. Given the slow increase of the budget allocated to healthcare, hospitals have no other choice than

improving the use of their resources. Among the main challenges is the shortage of nurses.

We tackle here the nurse scheduling problem (NSP), i.e., the design of the schedule of a nursing service so

as to satisfy the needs of the hospital and all operational constraints at minimal cost. In the NSP, the cost

of a schedule is the sum of penalties such as extra-hours, under-coverage, etc. A fair deal of the complexity

of the NSP can be attributed to the personalized aspect of the rosters: the same schedule may indeed have

very different costs if given to one nurse or another, because they have different contracts or preferences on

days off. The NSP has been widely studied for more than two decades. The reader is referred to [6] for a

review on models and solution methods. Among the numerous approaches, we focus here on those based on

integer programming techniques.

In most integer programs (IPs) that model the NSP, the columns of the constraint matrix correspond to

individual rosters, and the linear constraints to global requirements such as minimal staffing levels. Most

constraints are therefore partitioning equalities (or covering inequalities), each of them ensuring that a given

task is performed by a sufficient number of nurses. Due to the length of the planning horizon and the

number of different tasks that may be performed by each nurse, it is impossible to enumerate all columns

beforehand and solve the resulting IP with integer programming algorithms such as branch-and-bound. To

palliate this numerical obstacle, one restricts the number of columns in the problem at first and, at each node

of the branch-and-bound tree, the linear relaxation is solved by column generation; the resulting algorithm is

called branch-and-price. For more details on the implementation of branch-and-price techniques, the reader

is referred to [2]. In scheduling applications, the generation of new columns is usually based on the solution

of a shortest path problem with resource constraints (SPPRC); its solution either yields a new column of

negative reduced cost or asserts that the optimal solution of the restricted linear relaxation is optimal for

the nonrestricted version. The reader can find an overview of column-generation algorithms in [8] and a

comprehensive review on SPPRC in [14].

To the best of our knowledge, the first published attempt to tackle the NSP by means of branch-and-

price dates back to 1998 [15]. The authors develop a generic framework that handles a large variety of

families constraints. New columns are generated by solving a SPPRC that involves up to seven different

constraints. In [1], the authors stress the personalized facet of the problem. New schedules are generated by

a swap heuristic and their feasibility is checked a posteriori (whereas SPPRC generally only produces feasible

schedules). The authors of [16] use a two-phase algorithm for the roster-generation procedure: they only solve

the SPPRC when a heuristic procedure fails to find columns of negative reduced cost. They also undertake a

detailed study of 15+ different branching rules on one or several variables. The pricing subproblem can also

be solved with constraint programming, as in [13]. Finally, in [5], columns are generated by solving a SPPRC

with an innovative heuristic based on dynamic programming (the heuristic part can however be deactivated

for an exact solution). They also stress the importance of dual variables stabilization techniques to reduce

the number of calls to the subproblem. Among other important works is [3] where the authors treat nurse

and surgery scheduling by branch-and-price in an integrated approach.

1.2 Main contributions

In this article we deal with a static version of the NSP described in the second international nurses rostering

competition (INRC–II). The methods we implement are motivated by the following two properties of this

version of the NSP. First, every nurse is different, because he/she has his/her own past planning, preferences

for days off, and work contract. This would make most techniques based on an aggregation of similar nurses

2 G–2016–77 – Revised Les Cahiers du GERAD

inefficient. What is more, there is only a small part of hard constraints. The remaining constraints can all be

violated at the price of a penalty. As a consequence, it is relatively easy to find feasible schedules, but very

difficult to find an optimal one (and prove that it indeed is optimal). We thus developed a solution approach

that takes these specificities into account.

Modeling approach All previously-mentioned works that solve the NSP with branch-and-price algorithms

share the same modeling approach: the pricing subproblem generates complete rosters and decision variables

indicate wether these complete rosters are to be used in the solution. In our work, we do not generate complete

rosters but partial rosters, that are called rotations (this denomination comes from the transportation industry

where similar modelling is commonly used, see [11]). A rotation describes a sequence of worked shifts on

consecutive days that should be preceded and followed by at least one rest day; it does not specify the skill

used by the nurse on each shift. The IP then builds complete schedules for the nurses from the existing

rotations, and allocates the skills that they must perform. Personalized rotations are then generated by

solving a SPPRC for each nurse.

To the best of our knowledge, it is the first attempt to address the NSP with a rotation-based model.

Our motivation for choosing this approach is to counter the effect of soft constraints by reducing the size

of the search space and decrease the complexity of the subproblems. This change of paradigm also led to

the development of new branching rules (Section 4.3) and to structural modifications of the network of the

pricing step (Section 4.2). The separation of the allocations of shifts and skills is independent from the

partial-roster approach. This decomposition, as well as the flow-model that we introduce to solve the skills

allocation problem (Section 3.3) are also part of the methodological contributions of this work.

Large-neighborhood search and rolling horizon In the aim of solving large instances, we embed the branch-

and-price procedure within an adaptive large neighborhood search procedure (ALNS) described in Section 5.

The ALNS is a local search where the neighborhood of a feasible solution is obtained by sequentially destroying

and repairing a part of the solution. The repair phase is classically overdone by solving to optimality a reduced

counterpart of the problem where the non-destroyed part of the solution is fixed. In our implementation of

the ALNS, we either destroy the complete schedules of a limited number of nurses or partial schedules of a

larger number of nurses. Local improvements of the initial solution are then realized by solving the restricted

problem corresponding only to the destroyed schedules with our branch-and-price algorithm.

We also develop several primal heuristics based on our branch-and-price procedure to find the initial

solution of the ALNS. Among them is a rolling-horizon method which sequentially computes weekly schedules

in chronological order until the complete planning horizon is scheduled. One of the key challenges in rolling-

horizon methods is the accurate estimation of the impacts of the decisions on the future. When computing

the schedule of a given week, we thus include the following weeks in the problem but we relax the integrality

constraints of variables corresponding to the future to accelerate the algorithm.

Implementation and numerical results The algorithms described in this article are implemented in C++

and call only free and open third party libraries. The resulting code is publicly shared1 for reproduction of

the results, future comparisons, improvements and extensions.

Our numerical tests are all based on the instances of the INRC–II. These instances consider 30 to 120

nurses whose schedules must be computed over a planning horizon of either four or eight weeks. The demands

relate to up to four different skills and each day is divided into four shifts. We conduct an experimental

comparison of several initialization methods for the LNS, and study the sensitivity of the LNS to the choice

of the search neighborhoods. Although we were not able to prove the optimality of the solutions found for

these instances, we show that a rolling horizon method can be advantageously used to find an initial solution

with an average integrality gap of 19.3%, and the LNS is able to reduce this value to an average 10.9% gap.

1The code implementing the methods described in this article is publicly shared on the Git repository https://github.com/

jeremyomer/StaticNurseScheduler

https://github.com/jeremyomer/StaticNurseScheduler
https://github.com/jeremyomer/StaticNurseScheduler

Les Cahiers du GERAD G–2016–77 – Revised 3

1.3 Organization of the paper

The remainder of this paper is organized as follows. The exact description of the NSP that our method can

solve is given in Section 2. The rotation-based model of the NSP and the resulting formulation (IP) are

described in Section 3. In Section 4, we briefly describe the branch-and-price algorithm and the underlying

decomposition, and we specify the branching strategies and the pricing method we implemented. The LNS

procedure, including the rolling-horizon method to find the initial solution and the choice of the neighborhood,

is expounded in Section 5. In Section 6, we report numerical results that demonstrate the relevance of our

approach. Section 7 provides concluding remarks.

2 Description of the problem and notations

The specific version of the NSP we consider is based on that proposed by Ceschia et al. [7] in the INRC–II.

While the problem is stated as a dynamic one in [7], where only a part of the information is given at each

stage of the solution process, here we consider its static version where all information is available beforehand.

We wish to compute the schedules of a set N of nurses over a planning horizon of M weeks (or K = 7M

days). The nurses can perform different skills and each day is divided into shifts. The sets of all skills and

shifts are respectively denoted Σ and S. For the sake of readability, indices are standardized in the following

way: nurses are denoted as i ∈ N , weeks as m ∈ {1 . . .M} , days as k ∈ {1 . . .K} , shifts as s ∈ S and skills

as σ ∈ Σ. Finally, (k, s) denotes the shift s of day k, and is abusively called “shift (k, s)”. All other data is

summarized in Table 1.

Table 1: Summary of the input data.

Nurses

L−i , L+
i min./max. total number of worked days over the planning horizon for nurse i

CD−i , CD+
i min./max. number of consecutive worked days for nurse i

CR−i , CR+
i min./max. number of consecutive rest days for nurse i

Bi max. number of worked week-ends over the planning horizon for nurse i
βi 1 if nurse i must work zero or both days on week-ends, 0 otherwise
Πi set of shifts (k, s) that nurse i wishes to have off

Shifts
CS−s , CS+

s min./max. number of consecutive assignments on shift s
F̄ set of forbidden shift successions

Demand
Dskσ min. demand in nurses performing skill σ on shift (k, s)
Oskσ optimal demand in nurses performing skill σ on shift (k, s)

Remark 1 (Initial state) For practical reasons, it is necessary that the algorithm can handle an initial state,

e.g., the information on the end of a previously worked time period. For the sake of clarity, we do not

take it into consideration in the description of the method although our software handles it; the incumbent

modifications on the models and the algorithm are straightforward and of no particular interest for the reader.

The exhaustive enumeration of every constraint that can be found in the literature on NSPs would form a

never-ending list that we do not intend to handle. We choose the set of constraints proposed by the organizers

of the INRC–II in [7] for the following main reasons: (1) they all are usual constraints that nursing services

face in practice and (2) they allow us to tackle the benchmark released by the organizers of this competition.

This benchmark contains a huge number of instances (scenarios can be generated at will by combining weeks

together), including large instances (up to 120 nurses) and enough constraints to make the instances close to

industrial ones. Some constraints are hard, i.e., they may never be violated by a feasible solution; others are

soft, i.e., they may be violated at the cost of a penalty. The objective function that we minimize is the sum

of these penalties.

4 G–2016–77 – Revised Les Cahiers du GERAD

The specificity of this benchmark is that most constraints are soft. This eases the search for a feasible

solution, but it makes the pursuit of optimality more difficult. The constraints and their types (hard/soft)

are described in Table 2. The unit weight (i.e. the penalty) associated with a soft constraint SX in the

objective function is denoted as cX . For constraint S2, the unit weights for consecutive working days and

consecutive shift are respectively denoted c2a and c2b.

Table 2: Constraints handled by the software.

Hard constraints
H1 Single assignment per day: A nurse can be assigned at most one shift per day.
H2 Under-staffing: The number of nurses performing skill σ on shift (k, s) must be at least equal to the minimum

demand Dskσ .
H3 Shift type successions: If (s1, s2) ∈ F̄ , a nurse cannot work on shift s1 on one day, and on shift s2 on the next day.
H4 Missing required skill: A nurse can only cover the demand of a skill that he/she can perform.

Soft constraints
S1 Insufficient staffing for optimal coverage: The number of nurses performing skill σ on shift (k, s) must be at

least equal to the optimal demand Oskσ . Each missing nurse is penalized according to the unit weight but extra nurses
above the optimal value are not considered in the cost.

S2 Consecutive assignments: For each nurse i, the number of consecutive assignments should be within [CD−i , CD+
i]

and the number of consecutive assignments to the same shift s should be within [CS−s , CS+
s]. Each extra or missing

assignment is penalized by the unit weight.

S3 Consecutive days off : For each nurse i, the number of consecutive days off should be within [CR−i , CR+
i]. Each

extra or missing day off is penalized by the unit weight.
S4 Preferences: Each assignment of a nurse i to an undesired shift (s, k) ∈ Πi is penalized by the unit weight.
S5 Complete week-end: Every nurse i that has the complete weekend value set to true (βi = 1), must work both days

of the week-end or none of them. If he/she works only one of the two days Saturday or Sunday, it is penalised by the
unit weight.

S6 Total assignments: For each nurse i, the total number of assignments (worked days) must be within [L−i , L+
i]. The

difference (in either direction), multiplied by the unit weight, is added to the objective function.
S7 Total working week-ends: For each nurse i, the number of week-ends with at least one assignement must be less

than or equal to Bi. The number of worked week-ends over that limit multiplied by the unit weight is added to the
objective function.

3 Rotation-based model for the nurse rostering problem

The aim of this section is to describe the NSP as an IP whose main decision variables correspond to the choice

of the rotations performed by each nurse. First, we provide some vocabulary needed in the rotation-based

formulation (Section 3.1). Assuming that the rotations can be enumerated, it is necessary to build a valid
sequence of rotations and rest periods that covers the entire planning horizon for each nurse, and to choose

the specific skill used by each nurse on each worked shift. These two sub-problems are formulated as flow

models in Sections 3.2 and 3.3. The complete model described in Section 3.4 includes these flow constraints

and the soft constraints relative to the complete planning horizon (S6 and S7).

3.1 Rotations: definitions and notations

To formulate our mathematical model for the NSP, we first introduce some notations and vocabulary. The

roster of a nurse is his/her schedule for the planning horizon, i.e., a list of assignments (day, shift and

skill) that the nurse should perform during the planning horizon. A day with no assignment is a rest day

(sometimes denoted as day off). Each individual roster satisfies constraints H1, H3 and H4, and the set of

all rosters satisfies H2. A rotation is a list of shifts (k, s) from the roster that are performed on consecutive

days, and preceded and followed by a rest day. It is important to note that a rotation does not contain any

information about the skills performed on these shifts. A roster is therefore a sequence of rotations, separated

by nonempty rest periods, to which skills are added (see Example 1).

A rotation is feasible if it respects the single assignment and succession constraints H1 and H3. Besides,

the cost of a self-standing rotation can only cover the penalties associated with the soft constraints S2, S4
and S5. Indeed, the penalties associated to the other soft constraints either require the nurse’s schedule over

Les Cahiers du GERAD G–2016–77 – Revised 5

the complete planning horizon (rest periods, total assignments/week-ends), or data about the complete pool

of nurses (staff coverage).

Example 1 Consider the following single-week roster:

Day 0 1 2 3 4 5 6

Shift Early Day Rest Rest Night Night Rest
Skill performed HN HN - - N HN -

,

where N stands for nurse and HN for head nurse. The rotations of this roster, highlighted on the table above,

are ((0, Early), (1, Day)) and ((4, Night), (5, Night)).

For i ∈ N , the set of every feasible rotation for nurse i is denoted Ωi and the cost of rotation j ∈ Ωi is

denoted as cij . Our model for the NSP is based on the computation of feasible rotations for each nurse. In

the rest of the present section, we suppose that we can enumerate the set of all rotations Ωi for every nurse

i ∈ N . In practice, rotations are generated and added to the problem iteratively, as described in Section 4.2.

Furthermore, the type of a nurse i, denoted ti, is the subset of Σ that contains the skills that this nurse

can perform. For any skill σ ∈ Σ, Nσ denotes the set of nurses that are able to perform σ. Similarly, for any

type t ∈ T , Nt denotes the set of nurses with the exact type t. Finally, the set of types that include skill σ

is denoted as T σ.

3.2 A flow model for the creation of individual rosters

In this section, we describe how we build a roster over the complete planning horizon from the set Ωi of

feasible rotations for nurse i ∈ N . We use a directed network over which the problem of building the skill-

less roster of a given nurse i can be modeled as a single-unit flow problem. This network is called rostering

graph of nurse i. By skill-less roster, we mean that it does not specify which skill the nurse performs on the

shifts he/she works.

In essence, a vertex of this weighted graph corresponds to a day and an arc corresponds either to a rotation

or to a rest period. A path from the source to the sink therefore yields a sequence of rotations separated by rest

periods, hence a roster. The detail of the vertices and arcs of the rostering graph of a nurse is given on Table 3.

The flow conservation constraints are given with the complete model in Section 3.4 (constraints (1b)–(1d)).

The cost of a path is the sum of the penalties that can be represented as weights on the arcs. As a consequence,

it aggregates the individual costs of rotations and rest periods (soft constraints S2, S3, S4 and S5), but it
cannot reflect the soft constraints S6 and S7 that deal with the complete planning horizon. Moreover, this

graph deals with one specific nurse, so it does not include the linking staffing constraints. These two remaining

groups must be added to the model on top of the flow constraints (see Section 3.4). An example of rostering

graph is given in Figure 1 for a 7-days planning horizon and CR+
i = 4.

Ri1 Ri2 Ri3 Ri4 Ri5 Ri6 Ri7

Wi1 Wi2 Wi3 Wi4 Wi5 Wi6 Wi7

S
1

T
1

Figure 1: Example of a rostering graph for nurse i ∈ N over an horizon of K = 7 days, where the maximum number of consecutive
rest days is CR+ = 4. The rotation arcs are the plain arrows, the rest arcs are the dotted arcs, and the artificial flow arcs are the
dashed arrows.

6 G–2016–77 – Revised Les Cahiers du GERAD

Table 3: Description of the vertices and arcs of the rostering graph of nurse i ∈ N . The notations indicated between brackets
are the names of the corresponding flow variables used in the model of Section 3.4.

Vertices source, sink One source node, one sink node.
rest nodes For each day k, one rest node Rik.
work nodes For each day k, one work node Wik.

Arcs rotation arcs [xij] For each rotation j ∈ Ωi starting on day ks and ending on day ke, one arc
(Wike , Riks) with cost cij (S2 + S4 + S5) is added. When several rotations
share the same starting and ending days, parallel arcs added.

min. rest arcs [rikl] For each pair of days (k, l) ∈ {1 . . .K} 2 such that k < l and (l−k) ∈
{

1, . . . ,CR+
i

}
,

one arc (Rik,Wil) is added with cost c
i(l−k)
3 = max{0, c3

(
CR−i − (l − k)

)
} (min.

consecutive days off penalty associated with S3).

max.rest arcs [rik] For each day k ∈
{

CR−i , . . . , (K − 1)
}

, one arc (Wik,Wi(k+1)) with cost c3 is

added. These arcs are only used when the maximum consecutive number of rest
days CR+

i is exceeded.

artificial flow arcs Arcs from the source to Ri1 and Wi1, and arcs from RiK and WiK to the source
are added at no cost.

3.3 A flow model for the allocation of the skills

The rostering graph does not determine the skill a nurse uses on a given worked shift. Rather than allocating

them individually, for each shift (k, s) and skill σ, we determine the number nsktσ of nurses of type t that

perform skill σ on shift (k, s), for all t ∈ T . This information is sufficient, because the nurses with the same

type that work on the same shift are locally equivalent (i.e., equivalent on this particular shift) since they

can perform exactly the same skills – by definition of a type.

Recall that T σ denotes the set of types including skill σ. Introducing zskσ ≥ 0 as the number of missing

nurses to reach the optimal demand Oskσ (0 if this optimal demand is satisfied), the skill-related constraints

can thus be written as follows:

H2
∑
t∈T σ n

sk
tσ ≥ Dsk

σ , ∀s, k, σ, [under-staffing]

H4
∑
i∈Nσ,j a

sk
ij xij −

∑
σ∈ΣT t n

sk
tσ = 0, ∀s, k, t, [missing required skill]

S1
∑
t∈T σ n

sk
tσ + zskσ ≥ Oskσ , ∀s, k, σ, [optimal staffing]

where askij = 1 if the rotation j ∈ Ωi of nurse i covers shift (k, s) and 0 otherwise. The penalty associated

with constraint S1 is thus c1
∑
s,k,σ z

sk
σ .

Proposition 1 Assume that all xij take integral values. Then, any extreme solution nsktσ of the set of linear

constraints above (H2, H4, S1) is also integral.

Proof. From the integer programming theory, we know that all extreme solutions to a min-cost flow problem

with integral inputs/outputs are integral. We show here that the allocation of skills can be described by

a min-cost flow problem in a bipartite graph with integral inputs/outputs. The two sets of vertices of this

bipartite graph are T and Σ. For a type t and a skill σ, (t, σ) is an arc of the graph if and only if σ ∈ t.
The incoming flow at node t is

∑
i∈Nσ,j a

sk
ij xij , and the flow exiting node σ must be greater or equal to Dsk

σ .

Since these terms are integral, the proposition holds. An example of such a graph is given in Figure 2.

3.4 Integer Programming formulation

In this section, we summarize our IP for the NSP, based on the rotations previously defined. The complete

model is given by the equations (1a)–(1l). Unless stated otherwise, the indices belong to the following sets:

Les Cahiers du GERAD G–2016–77 – Revised 7

t1 =
{HN, N}

t2 =
{N, C}

t3 =
{C}

HN

N

C

=
∑

i∈Nt1 ,j
askij xij

=
∑

i∈Nt2 ,j
askij xij

=
∑

i∈Nt3 ,j
askij xij

nskt1,HN

nskt1,N

nskt2,N

nskt2,C

nskt3,C

≥ Dsk
HN

≥ Dsk
N

≥ Dsk
C

Figure 2: Example of a graph for the skill allocation problem. Here, the set of skills is Σ = {Head Nurse (HN), Nurse (N),
Caretaker (C)}, and the three possible types are t1 = {Head Nurse, Nurse}, t2 = {Nurse, Caretaker}, and t3 = {Caretaker}.
Dashed arcs show the flow constraints that must be satisfied (H4 on the left, and H2 on the right of the figure).

i ∈ N , k, l ∈ {1 . . .K} , s ∈ S, t ∈ T , σ ∈ Σ, and for each nurse i, j ∈ Ωi. The greek letters indicated

between brackets (α, β, γ and δ) denote the dual variables associated with these constraints. Only the

dual variables associated with constraints where xij variables appear are needed in the rotation-generation

procedure, therefore, we only provide notations for those. It includes the aformentioned flow constraints from

the rostering graph of Section 3.2, and the allocation constraints of Section 3.3.

Parameters and variables All the parameters and variables used in the IP are described in Table 4. The

complete list of parameters should also include the input data given in Table 1.

Table 4: Parameters and variables of the IP (Formulation 1).

Parameters
cij sum of the soft penalties S2, S4 and S5 associated with rotation j of nurse i
cikl3 soft penalty S3 associated with the rest arc (Wik,Wil)
askij = 1 if nurse i works on day k, shift s in rotation j, 0 otherwise

akij = 1 if nurse i works on day k in rotation j, 0 otherwise (i.e., =
∑
s a

sk
ij)

bmij = 1 if weekend m is worked in rotation j of nurse i, 0 otherwise (i.e., = max(a7m−1
ij , a7mij))

f−ij , f
+
ij first and last worked days of rotation j of nurse i

Variables
xij ∈ {0, 1} = 1 if and only if rotation j is part of the schedule of nurse i

rik ∈ {0, 1} = 1 if and only if nurse i rests on day k and has already rested for at least CR+
i consecutive days

before k (cost: c3)

rikl ∈ {0, 1} = 1 if and only if nurse i has a rest period from day k to l − 1 including at most CR+
i consecutive

days (cost: cikl3)

w+
i (w−i) ∈ N number of days worked above (below) L+

i (L−i) by nurse i
vi ∈ N number of weekends worked above Bi by nurse i
nskσ ∈ N number of nurses performing skill σ on shift (k, s)
nsktσ ∈ N number of nurses of type t performing skill σ on shift (k, s)
zskσ ∈ N number of missing nurses performing skill σ on shift (k, s)

Objective and constraints The objective function (1a) is the sum of 5 terms: the cost of the chosen rotations

in terms of consecutive assignments and preferences (S2, S4, S5), the minimum and maximum consecutive

rest days violations (S3), the total number of assignments violation (S6), the total number of worked week-

ends violation (S7), and the insufficient staff for optimal coverage (S1). Constraints (1b)–(1d) are the flow

constraints of the rostering graph of each nurse i ∈ N . Constraints (1e) and (1f) measure the distance between

the number of worked days and the authorized number of assignments: the nonnegative variables w+
i and

w−i respectively represent the number of missing days when the minimum number of worked days L−i is not

reached and the number of worked days over the maximum allowed when the total number of days worked

8 G–2016–77 – Revised Les Cahiers du GERAD

exceeds the maximum L+
i . Constraints (1g) measure the number of worked weekends exceeding the maximum

Bi (corresponding variable: vi ≥ 0). Constraints (1h)–(1j) ensure a valid allocation of the skills among nurses

of a same type for each day and shift and have already been presented in Section 3.3. Constraints (1k) and (1l)

ensure the integrality and the nonnegativity of the decision variables. From constraint (1i), we know that

the zskσ are integer whenever the nsktσ are. Furthermore, from Proposition 1, we know that the integrality of

the nsktσ is a consequence from that of the xij . Therefore, xij ∈ N and zskσ , n
sk
tσ ∈ R is sufficient to ensure the

integrality of all these variables.

min
∑
i,j

cijxij︸ ︷︷ ︸
S2,S4,S5

+
∑
i,k

(
c3rik +

∑
l

cikl3 rikl

)
︸ ︷︷ ︸

S3

+ c6
∑
i

(w+
i + w−i)︸ ︷︷ ︸

S6

+ c7
∑
i

vi︸ ︷︷ ︸
S7

+ c1
∑
s,k,σ

zskσ︸ ︷︷ ︸
S1

(1a)

subject to:

[H1,H3]

max(K+1,k+Ri)∑
l=k+1

rikl −
∑

j:f+
ij=k−1

xij = 0, ∀i,∀k [αRik] (1b)

[H1,H3] rik − ri(k−1) +
∑

j:f−ij=k

xij −
k−1∑

l=max(1,k−Ri)

rilk = 0, ∀i,∀k [αWik] (1c)

[H1,H3]

K∑
l=1,K+1−Ri

rilK + riK +
∑

j:f+
ij=K

xij = 1, ∀i [αi(K+1)] (1d)

[S6]
∑
j,k

akijxij + w−i ≥ L
−
κi , ∀i [β−i] (1e)

[S6]
∑
j,k

akijxij − w+
i ≤ L

+
κi , ∀i [β+

i] (1f)

[S7]
∑
j,m

bmijxij − vi ≤ Bκi , ∀i [γi] (1g)

[H2]
∑
t∈T σ

nsktσ ≥ Dsk
σ , ∀s, k, σ (1h)

[S1]
∑
t∈T σ

nsktσ + zskσ ≥ Oskσ , ∀s, k, σ (1i)

[H4]
∑
i∈Nt,j

askij xij −
∑

σ∈ΣT t

nsktσ = 0, ∀s, k, t [δskt] (1j)

xij ∈ N, zskσ , nsktσ ∈ R, ∀i, j, s, k, t, σ (1k)

rikl, rik, w
+
i , w

−
i , vi ≥ 0, ∀i, k, l (1l)

4 Solution of the integer program by branch and price

A branch-and-price algorithm embeds a column generation within a classical branch-and-bound scheme to

solve linear programs with integrality constraints. In this framework, every linear relaxation that occurs in

the branching tree is solved by column generation and specific branching rules are designed. The reader

looking for more details on both column generation and branch and price is referred to the textbook of

Les Cahiers du GERAD G–2016–77 – Revised 9

Desaulniers et al. [8]. In Section 4.1, we describe the overall column generation scheme that we implemented

to solve the linear relaxation of Formulation (1a)–(1l). In Section 4.2, we describe our model for the pricing

subproblem. In Section 4.3, we detail the branching rules implemented in the branch-and-price algorithm.

4.1 Description of the column generation procedure

Suppose that for each nurse i ∈ N , a restricted number of rotations Ri ⊆ Ωi has already been generated.

The restricted master problem (RMP) is equal to the IP of Formulation (1a)–(1l) where Ωi is replaced by

Ri for all nurses i ∈ N . For the sake of simplicity, we assume that the linear relaxation of RMP, RMPLR,

is feasible – a feasible solution can always be obtained by adding artificial variables at prohibitive cost. Let

xLR be an optimal solution of RMPLR. The subproblem described in the following sections is then solved

to search for rotations of Ωi \ Ri with negative reduced costs. If at least one rotation of negative reduced

cost is generated for at least one nurse i, it is added to the restricted formulation; if none is found, xLR is

then proved to be optimal for the linear relaxation of Formulation (1a)–(1l).

The resulting decomposition of the constraints corresponding to our IP is summarized on Table 5. The

subproblems generate new rotations, while the master problem implements Formulation (1a)–(1l). The only

constraint that appears on both ends of the decomposition is the single-assignment-per-day constraint H1: in

the master problem, no pair of rotations with an assignment on the same day should be selected for the same

nurse, and in the subproblem, no rotation with two assignments on the same day should be constructed.

Table 5: Decomposition of the constraints in the master and sub-problem.

Master Problem Subproblem

H1 Single assignment per day H1 Single assigmnent per day
H2 Under-staffing H3 Shift type succession
H4 Missing required skill S2 Consecutive assignments
S1 Optimal coverage S4 Preferences
S3 Consecutive days off S5 Complete week-end
S6 Total assignments
S7 Total working week-ends

4.2 Pricing subproblem

The pricing subproblem for the generation of rotations with negative reduced costs is modeled as an SPPRC

whose description is given below. The hard constraints of the subproblem are enforced by the structure of

the network, whereas the master problem’s dual costs and the penalties associated with the preference and

complete-week-end soft constraints define the arcs costs, as described in Section 4.2.1. As for the consecutive

assignments constraints they both correspond to the consumption of resources (consecutive assignments)

along the path defining a rotation. Due to the presence of upper and lower bounds and to the possibility of

violating these at the cost of a penalty, the soft constraints S2 require a special treatment to be considered

in an SPPRC. The corresponding modification we apply to the network are described in Section 4.2.2,

and we assess the resulting complexity of the best existing labeling algorithms on the resulting network in

Section 4.2.3.

4.2.1 Overview of the pricing problem network

We lay here the foundations of the pricing problem and present a basic version of the network of the SPPRC.

The graph that we describe here is very similar to many others met in scheduling applications. For shift (k, s),

a node Wks is created and each path from source to sink that goes through Wks involves working on (k, s).

The vertices and arcs of the network are detailed in Table 6 and a small example is given in Figure 3.

By construction of the network of Figure 3, any path from the source to the sink corresponds to a

feasible rotation. To prove that an optimal solution of RMPLR, xLR, is optimal for the linear relaxation of

Formulation (1a)–(1l), it must be shown that no rotation, wether involved in RMPLR or not, is of negative

10 G–2016–77 – Revised Les Cahiers du GERAD

Table 6: Description of the vertices and arcs of the basic version of the pricing network.

Vertices [source], [sink] One source node, one sink node.
[shift nodes] For each day k and shift s, one node Wks.

Arcs [starting arcs] For each shift (k, s), one arc from source to Wks.
[successions] For each day k ≥ 1 and allowed shift succession (s1, s2) /∈ F̄ , one arc

(
W(k−1)s1 ,Wks2

)
.

[ending arcs] For each shift (k, s), one arc from Wks to sink.

day 1

EARLY

LATE

NIGHT

day 2 day 3 day 4 day 5 day 6 day 7

SOURCE

SINK

to all
nodes

from all
nodes

Figure 3: Example of a network of the subproblem where S2 is not considered. Here, K = 7, S = {EARLY, LATE,NIGHT} and
the forbidden successions are F̄ = {(LATE,EARLY) , (NIGHT,EARLY) , (NIGHT, LATE)}.

reduced cost at xLR. The idea is to compute the reduced cost of a rotation by simply adding up the costs

of its arcs in the network of the subproblem (Figure 3). A feasible rotation of lowest reduced cost is then a

shortest path from the sink to the source.

Proposition 2 Let j ∈ Ωi be a feasible rotation for nurse i ∈ N , ((kb, skb) , (kb + 1, skb+1) , . . . , (ke, se)) be the

sequence of worked shifts in the rotation, and N j
we be the number of week-ends with at least one assignment

in the rotation. The reduced cost of rotation j is

c̄ij = cij︸︷︷︸
S2,S4,S5

+αWikb + αRike︸ ︷︷ ︸
(1b)−(1d)

+
(
β+
i + β−i

)
(ke − kb + 1)︸ ︷︷ ︸

(1e)−(1f)

+ γiN
j
we︸ ︷︷ ︸

(1g)

+

ke∑
k=kb

δskki︸ ︷︷ ︸
(1j)

, (2)

where the variables α, β, γ and δ are dual variables of Formulation (1a)–(1l).

Proof. The variable that corresponds to the rotation j ∈ Ωi in Formulation (1a)–(1l) is xij . It is then

sufficient to observe that the first term of (2) is the cost of the rotation and the remaining terms are the

sums of the dual variables associated with the constraints of (1a)–(1l) where xij appears weighted by the

coefficients of xij in these constraints.

Among the terms that define c̄ij (Equation (2)), the soft penalties S4, S5 and all dual costs can be added

directly as arc costs to the network presented before. The costs associated with the nonrespect of the nurse’s

preferences S4 result in the addition of a penalty c4 on all arcs whose endpoint is an undesired shift. The

penalty associated to the complete week-end constraint S5 is paid only if the rotation starts on a Sunday or

ends on a Saturday, hence a cost c5 is added to every arc from the source to Sunday shifts and from Saturday

shifts to the sink. Now, for the dual costs, (β+
i + β−i) must be paid for each assignment, and δskki is paid for

an assignment to shift (k, s), so we add (β+
i +β−i)+δskki to the cost of the arc with endpoint Wks for all (k, s).

Then, αWikb and αRike correspond to the starting and ending shift of the rotation so they are respectively added

to every outgoing arc from the source and every incoming arc to the sink. Finally, to penalize the number

of week-ends with at least one assignment, we add γi to every incoming arc to a Saturday shift and to every

arc from the source to any week-end shift.

Les Cahiers du GERAD G–2016–77 – Revised 11

Contrary to the above costs, the penalties associated with the constraints on consecutive assignments S2
cannot be attributed to one specific shift. Instead, they require to count the total number of shifts in the

rotation and the number of consecutive assignments to the same type of shift, and then penalize the possible

violations of lower and upper bounds on these values.

4.2.2 Modifications of the pricing network for consecutive assignments constraints

The classical method for “counting” a value over a path (e.g., the number of days) is to add a resource that

measures this value on the arcs; the aggregate value is then the sum of the values of the resource on the

arcs of this path [14]. The standard version of the SPPRC deals with acyclic digraphs where the resources

are weighted with positive integer values, and the aggregate value must remain below a given upper bound.

Lower bounds are usually associated with the start of time windows in delivery problems, but the vehicles

are allowed to wait for the beginning of the time window, which does not correspond to any reality in our

application. Instead, we need to deal with both lower and upper bounded soft constraints.

Upper and lower bounded soft constraints have already been considered in an SPPRC to solve variants

of the vehicle routing problem where it is forbidden to “wait” at a node. Dumas et al. [9] include soft time

windows to schedule deliveries in a network where the paths are already fixed. Braekers and Janssens [4]

modify a labeling algorithm to be able to apply dominance rules with soft time windows, and they apply

their algorithm to small toy instances. Qurashi et al. [19] solve the same variant of the SPPRC using several

heuristics without any guarantee of optimality and the same authors solve an IP to find an exact solution of

the problem [20]. The limit is that they fail in solving problems routing problems with more than 7 vehicles

and 25 customers.

Overall, the algorithmic impact of considering upper and lower bounded soft constraints is twofold. First,

the complexity for the standard SPPRC is O
(
A
∏
r∈RMr

)
, where A is the number of arcs in the network, R

is the set of resources, and Mr is the upper bound on resource r ∈ R [12]. This result relies on the

infeasibility of paths with resource values larger than the upper bound in the standard SPPRC. In our case,

though, soft constraints mean that the values of the resources can take higher values than the upper bounds.

Second, the labeling algorithms that efficiently solve the standard SPPRC rely on dominance rule to converge

quickly. Since the consecutive assignments are both upper and lower bounded, one can never conclude on the

dominance of one path towards another based on the value of a resource: a smaller number of assignments

is better with respect to the maximum, but worse with respect to the minimum, and the inverse is true for

a larger number of assignments.

For the above-mentioned reasons, we had rather modify the pricing network to reduce subproblems to a

standard SPPRC in a larger graph.

We describe here the modifications of the network that allow us to handle the penalties on the min/max

of consecutive days worked on the same shift (addition of network layers and arcs) and the min/max of

consecutive days worked (enumeration of short rotations and addition of a resource). The nodes and arcs of

the resulting network are described in Table 7. We then assess the complexity of the solution algorithm for

the subproblems in Section 4.2.3.

Remark 2 The above-mentioned difficulties with lower and upper bounded soft constraints also influenced our

choice not to generate full rosters but only rotations: each of the consecutive worked days/shifts/rest days soft

constraints require the addition of two resources (or additional network layers). In the rotation-based model,

rest days are set in the RMP, thus sparing the additional complexity in the solution of the subproblem.

Consecutive assignments to the same shift The penalty for N consecutive assignments to a given shift s

is c2b
(
CS−s −N

)
if N < CS−s , 0 if CS−s ≤ N ≤ CS+

s , and c2b
(
N − CS+

s

)
if N > CS+

s . Instead of adding one

resource to penalize N when it is below CS−s and another when it is above CS+
s , we model this constraint

by adding network layers and arcs as follows. We duplicate each work node (Wks,∀(k, s)) CS+
s times; the

duplicates are denoted as Wn
ks, n = 1, . . . ,CS+

s . A path going through node Wn
ks will then correspond to

12 G–2016–77 – Revised Les Cahiers du GERAD

a rotation in which (k, s) is assigned and is either the n-th consecutive shift s, or at least the n-th one

when n = CS+
s .

For each type of shift s, the work nodes form a block Ws. We draw an example focussing on a specific

block on Figure 4. The arcs entering the block Ws denote the beginning of a sequence of assignments to the

shift s, and the arcs exiting from the block denote the end of this sequence. The first CS+
s − 1 assignments

to the shift s are associated with the plain arcs (Wn
ks,W

n+1
(k+1)s), and the subsequent assignments correspond

to the dotted horizontal arcs (W
CS+

s

ks ,W
CS+

s

(k+1)s). A cost c2b is then added to the horizontal arcs because they

are used only when more than CS+
s consecutive assignments of the shift have occurred, whereas the costs

of the plain and diagonal arcs takes no penalty due to S2. Notice that the arcs exiting from the block only

leave from vertices W
CS+

s

ks , k ∈ {1, . . . ,K}. To end a sequence of assignments to s before CS+
s consecutive

assignments, the path must then borrow a vertical dashed arc, which allows us to model the penalty incurred

if the number of consecutive shifts is too small (≤ CS−s).

W 1
1

W 2
1

W 3
1

W 4
1

W 1
2

W 2
2

W 3
2

W 4
2

W 1
3

W 2
3

W 3
3

W 4
3

W 1
4

W 2
4

W 3
4

W 4
4

W 1
5

W 2
5

W 3
5

W 4
5

W 1
6

W 2
6

W 3
6

W 4
6

W 1
7

W 2
7

W 3
7

W 4
7

SOURCE

SINK

OTHER SHIFTS (day k − 1)

OTHER SHIFTS (day k + 1)

Figure 4: Example of a network of the subproblem of nurse i for a single shift s where S2 is considered. Parameters: K = 7,
CS+

s = 4, and CD−i = 2.

Consecutive worked days For nurse i ∈ N , the consecutive-worked-days penalty associated with a rotation

of length L is c2a
(
CD−i − L

)
if L < CD−i , 0 if CD−i ≤ L ≤ CD+

i , and c2a
(
L− CD+

i

)
if L > CD+

i . Given

that CD−i is small in practice (2 or 3), we handle the lower bound by enumerating the rotations of length

L < CD−i by dynamic programming. The reduced cost of these short rotations (L < CD−i) is thus computed

as a preprocessing, and we modify the pricing network so that the arcs outgoing from the source correspond

to a sequence of CD−i consecutive worked days (called starting arcs in Table 7). No path in the network

represents a short rotation anymore and, therefore, there is no need to check the lower bound CD−i in the

network. We study the resulting complexity of this approach in Section 4.2.3.

To handle the upper bound, we then add a resource that counts (a lower bound on) the length of the

rotation. The value of this resource is CD−i on the starting arcs, 1 on the arcs that represent a worked day,

and 0 on the others (i.e., the vertical dashed arcs of Figure 4 and the arcs to the sink). If the aggregate value

of this resource at the end of the path exceeds CD+
i , the corresponding penalty is added to the cost of the

Les Cahiers du GERAD G–2016–77 – Revised 13

rotation. The vertices and the arcs of the subnetwork associated with one specific shift s, as well as the cost

associated with the consecutive assignment constraints are summarized in Table 7.

Table 7: Description of the vertices and arcs of a single-shift subnetwork of the pricing problem for shift s ∈ S and nurse i ∈ N .
Arc costs correspond only to those attributable to consecutive assignments constraints, and they are indicated only when they
are nonzero.

Vertices [artificial nodes] One source, one sink.
[shift nodes] For each day k and all 1 ≤ n ≤ CS+

s , a node Wn
ks.

[penalty nodes] For n = CD+
i , . . . ,K, a node CDn.

Arcs [starting arcs] For each possible sequence of exactly CD−i days ending with exactly n consecutive occurrences

of shift s, for all days k ≥ CD−i , an arc from the source to Wn
ks. This arc corresponds to a

rotation beginning on day k − (CD−i − 1) that reaches day k with an ongoing capital of n
consecutive days worked on shift s.
Cost: Consecutive cost attributable to shifts prior to the n consecutive ones + all other costs
attributable to shifts in the CD−i days.

[repeat s] For all k ≥ CD−i + 1, for all 2 ≤ n ≤ CS+
s , one arc (Wn−1

(k−1)s
,Wn

ks) corresponds to the nurse

working on shifts (k, s) when already working on (k − 1, s).

[exceed s] For all k ≥ CD−i + 1, one arc (W
CS+
s

(k−1)s
,W

CS+
s

ks). These are similar to the previous ones, but

only apply when the nurse has already worked at least CS+
s consecutive days on shift s.

Cost: c2b (the nurse has already exceeded CS+
s consecutive shifts s).

[end s] For all k ≥ CD−i , for all 0 ≤ n ≤ CS+
s − 1, one arc (Wn

ks,W
CS+
s

ks). These arcs contain the

cost of working less than CS−s consecutive days on shift s (or 0 if CS−s ≤ n ≤ CS+
s − 1).

Cost: c2b ×max
{

0, n− CS−s
}

.

[change shift] For all k ≥ CD−i + 1, and all shifts s′ such that (s, s′) is not a forbidden succession, one arc

(W
CS+
s

(k−1)s
,W 1

ks′).

[ending arcs] For all k ≥ CD−i , one arc from W
CS+
s

ks to the sink.

4.2.3 Assessment of the complexity of the SPPRC in the network of the subproblem

For an assessment of the complexity of the subproblem, we first need to count the number of arcs in the

pricing network. The total number of starting arcs is given in Lemma 1.

Lemma 1 The number of starting arcs ξi in the network of the subproblem of nurse i satisfies

ξi ≤ |S|
(
K − CD−i + 1

)
CD−i (3)

Proof. The starting arcs all correspond to a sequence of CD−i assignments so they are all equivalent with

respect to the resource on consecutive assignments. As a consequence, it is only necessary to keep the starting

with minimum cost among those that income to a given work node Wn
ks. What is more, for a given shift s,

no more than CD−i consecutive assignments to s can be done in the sequence represented by a starting arc,

so there is no starting arc incoming to a work node Wn
ks for n > CD−i . For each shift s ∈ S, and each day

k ∈
{

CD−i , . . . ,K
}

, we thus have at most 1 starting arc incoming to Wn
ks for n ≤ CD−i and none to the other

vertices of the network. The enumeration of the vertices with at most one incoming arc give the result.

Note that Equation (3) is indeed an inequality (and not an equality in general) because some of the

starting arcs enumerated above may not exist. For example, if a shift EARLY can only be performed after

another shift EARLY, then no short rotation of 2 days can end with a single EARLY task, and W 1
k,EARLY is never

reached by a starting arc. Therefore, Equation (3) cannot be written as an equality.

Lemma 2 The number of arcs in the pricing network of nurse i satisfies

|Ai| = O
(
K × |S| × (|S|+ CD−i + 2 max

s∈S
{CS+

s })
)

(4)

14 G–2016–77 – Revised Les Cahiers du GERAD

Proof. The total number of arcs in the pricing network is exactly

|Ai| =ξi + |S| (K − CD−i) (5a)

+
∑
s∈S

(K − CD−i)× (CS+
s − 1) (5b)

+
∑
s∈S

(K − CS+
s) (5c)

+
∑
s∈S

(K − CD−i)× (CS+
s − 1) (5d)

+ (|F| − |S|)× (K − CD−i − 1), (5e)

where F is the set of allowed shift successions (i.e. the complement of F in S2). The term (5a) stands for

starting arcs and arcs incoming to the sink, (5b) counts the working arcs, (5c) is the number of horizontal

dotted arcs on Figure 4, (5d) is the number of vertical dashed arcs on Figure 4, and (5e) is the number of

arcs between different shift blocks. We get the result of the lemma by keeping only the positive terms and

observing that there is at most |S| × (|S|+ 1) shift successions allowed.

The complexity of the dynamic programming algorithms for an SPPRC in an acyclic network with non-

negative integer weights is O
(
A
∏
r∈RMr

)
, where A is the number of arcs in the network, R is the set of

resources, and Mr is the upper bound on resource r ∈ R [12]. We can thus infer the complexity of dynamic

programming for the column generation subproblem.

Theorem 1 Consider a nurse i ∈ N . Then a minimum reduced cost rotation for i can be computed by a

dynamic programming algorithm with a complexity in

O
(
K2 × |S| ×

(
|S|+ CD−i + 2 max

s∈S
{CS+

s }
))

(6)

Proof. It is sufficient to state that a rotation with minimum reduced cost can be computed by solving an

SPPRC in an acyclic network with nonnegative integer weights including |Ai| arcs and one resource. The

upper bound on the resource is indeed K (and not CD+
i), because the corresponding constraint is soft.

Therefore, a rotation can include at most K worked days.

Remark 3 For a given application, the values of |S|, CD−i and CS+
s will not vary much, so an asymptotical

study of the complexity should only consider K as variable. What is more, the penalty for working more than

CD+
i consecutive days is among the highest penalties in the instances of our benchmark, so the rotations with

a large number of extra consecutive assignments will generally be dominated in the dynamic programming

algorithm. Hence, the complexity is most likely to be an asymptotical

O
(
K × CD+

i × |S| × (|S|+ CD−i + 2 max
s∈S
{CS+

s })
)
.

Typical contractual values are |S| = 4,CD−i = 3,CD+
i = 5 and CS+

s = 3, so the execution of the subproblems

is in practice in O (310K) .

4.3 Branching rules

In this section, we describe the two branching rules implemented in our branch-and-price algorithm. We

then detail how the branching rule is chosen at each node of the branch-and-bound tree. Finally, we present

a heuristic used for the determination of feasible (integral) solutions. In the descriptions of the branching

rules, we consider a specific node N of the branch-and-bound tree and denote xLRN the optimal solution of

the linear relaxation at node N .

Les Cahiers du GERAD G–2016–77 – Revised 15

4.3.1 Branching on days

For every nurse i and day k, denote as

gik =
∑

(l1,l2):≤k<l2

ril1l2 + rik

the value indicating whether the nurse i is resting on day k (gik = 1), or not (gik = 0). Assume that xLRN
is such that the value of gik is fractional for some nurse i and day k. We create two branches from node N

to ensure that gik is integer. In the first one (the work branch), nurse i is compelled to work on day k, and

in the other one (the rest branch), he/she is compelled to rest. The corresponding constraints added to the

master problem are, respectively,

gik = 0 (7)

and

gik = 1. (8)

In the rest branch, no more rotation should be generated that makes nurse i work on day k; this is

easily handled by removing all arcs concerning day k in the subproblem of nurse i, and it even accelerates

the solution of the subproblem since the network becomes smaller. In the work branch, the subproblem

remains unchanged.

Remark 4 The rotation-based model is particularly well-fitted to this branching rule. In the rest branch, one

only discards rotations that include day k, but all other rotations remain in the problem. That is, none of the

efforts made in the previous column-generation iterations that aimed at generating good patterns for the other

days are wasted (e.g., rotations that cover the end of the schedule if k is in the beginning of the horizon).

4.3.2 Branching on shifts

The value of gik can be integer for all nurses i and days k while still having fractional variables in xLRN .

For an exhaustive enumeration of the feasible schedules, we thus implement a branching rule, similar to the

previous one, that affects working shifts. For all nurses i, days k and shifts s, denote as Ωiks ⊆ Ωi the subset

of the rotations for nurse i for which the nurse works on shift (k, s), and as hiks =
∑
j∈Ωiks

xij the value

indicating whether nurse i works on shift (k, s) (hiks = 1) or not (hiks = 0).

If nurse i works partially on shift (k, s), i.e., if hiks is fractional, we create one branch where he/she works

on (k, s), and another where he/she does not. The corresponding constraints added to the master problem

are, respectively,

hiks = 0 (9)

and

hiks = 1. (10)

This branching rule is very similar to the previous one: the work shifts play the role of the rest shifts in

the previous rule. The consequences on the master and subproblems are very similar to those described in

the previous section.

4.3.3 Choice of the branching strategy

The nodes of the branch-and-price tree are explored in the following order: if children are created, explore

one of them, otherwise, go back to the highest non-explored node of the tree. The sequence of exploration

that starts from the highest nonexplored node and ends at a leaf (never going back to a higher node) is called

a dive. At each node of the tree, the choice of the branching rule is done as follows:

• Priority is always given to branching on days over branching on shifts.

16 G–2016–77 – Revised Les Cahiers du GERAD

• When branching on days, we choose the most balanced fractional value. That is, the pair nurse-day

(i, k) that satisfies

(i, k) = arg min
(i,k)∈N×{1...K}

fik, (11)

where fik = ‖gik − 0.5‖ if k is a week day, and fik = ‖gik − 0.5‖−0.1 if k is a weekend day. This correc-

tive term gives a slight advantage to weekend days because they are involved in more soft constraints

and therefore have more influence on the objective value.

• When branching on shifts, the same selection method is used (replace fik by fiks = ‖hiks − 0.5‖ if k is

a weekday and hiks = ‖giks − 0.5‖ − 0.1 if k is a weekend day).

• The order in which the two children branching nodes are inserted is random.

4.3.4 Primal heuristic based on variable fixing to obtain feasible solutions

The solutions of the linear relaxations solved at the nodes of the branching tree are often fractional, so it

is important to regularly run heuristics to determine integer solutions that improve the upper bound. Such

heuristics are usually called primal heuristics. Our heuristic performs the following steps:

(i) For some threshold C ∈]0, 1[, for all i ∈ N choose a set of rotations Θi that do not overlap (i.e., contain

no assignment on the same day) and are all separated by at least one rest day, such that∑
i∈N

∑
j∈Θksi

(1− xLRij) ≤ C, for all shifts(k, s), (12)

where Θks
i ⊆ Θi is the set of rotations in Θi that involve working on shift (k, s) (Θks

i is either empty,

or a singleton).

(ii) For all i ∈ N and all j ∈ Θi, fix xij = 1.

(iii) Solve the problem with fixed variables (using column generation). If it is infeasible, the heuristic failed

to find a solution. If it is feasible and the optimal solution is integer, return this solution. If it is feasible

and the optimal solution is fractional, go to step (i).

The condition (12) is useful to fix only a small number of rotations that involve working on the same shift (k, s)

and thus reduce the risk that the problem becomes infeasible.

The primal heuristic is run in the following two cases: 1) after the initial solution of the root node and

2) from the highest nonexplored node after each 2q-th dive (q integer).

5 An adaptive large neighborhood search for large instances

Although the branch-and-price procedure presented in the previous sections allows the optimal solution of

small problems, as such it is not best-suited for large instances. When the number of integer variables is

too high, the size of the branching tree explodes and evaluating every node turns out to be extremely time-

consuming. Therefore, we embed this branch and price in an adaptive LNS (ALNS) procedure based on the

solution of smaller IPs, or equivalently, on the successive fixing and release of some of the variables (see [17]

for a recent review on LNS).

An LNS algorithm is an iterative process that destroys a part of the current solution at each iteration and

reconstructs it in the hope for an improvement. In the destruction phase, a subset of the variables are freed,

while the rest is fixed to its current value; the choice of the fixed/free variables defines a neighborhood. In our

implementation, the repair phase uses the branch-and-price method presented in the previous sections at the

sole exception that only a subset of the variables are free to change value, the others being fixed. Typically,

for the NSP, one can destroy the schedule of a subset of the nurses (freeing the corresponding rotations).

Then, without changing the other nurses’ schedules, the subset of destroyed schedules can be optimized by

branch and price. This results in the solution of much smaller problems, involving a subset of the variables

Les Cahiers du GERAD G–2016–77 – Revised 17

only (less nurses, less days, etc.), rather than the whole problem. The algorithm is therefore based on the

repetition of the following two steps, until a stopping criterion is reached (time, number of iterations, number

of iterations without improvement, . . .):

1. Destroy: Use a destruction operator to determine a set (called FREE) of variables to free
and fix the others (set FIXED) at their value in the current solution;

2. Repair: Solve the NSP by branch and price where all variables in FIXED are fixed to their
value in the current solution. If the solution is improved, store it as the new current solution.

Using branch and price as the repair function is a double-edged sword: on the one hand, we benefit from

the guarantees of an exact method, well suited for smaller problems, but on the other hand, the destruction

operator must be compatible with the column-generation procedure. In practice, if the generation of new

columns is made impossible by the structure of the destruction operator, the method is obviously doomed to

failure. Interestingly, our model based on rotations yields a wider range of choices of neighbourhoods than a

classical roster-based modelling.

In Section 5.1, we propose several different destruction operators (i.e., different neighborhoods) that

adapt to the generation of rotations. What is more, we take advantage of the definition of several destruction

operators by choosing the operator randomly at each iteration with probabilities that depend on their previous

successes/failures. The corresponding roulette wheel procedure is described in Section 5.2. In Section 5.3,

we describe a rolling-horizon procedure that we use to determine the initial solution fed to the ALNS.

5.1 Destruction operators

For the process of destructing the current solution, we propose two main strategies: destroy the schedule of

a small set of nurses, or destroy the schedules of a larger set of nurses over a restricted time period. For

both strategies, the nurses whose schedules are partially or completeley destroyed are called free nurses, and

the others are called fixed nurses. In terms of implementation, if the schedule of a free nurse is completely

destroyed, the variables associated with the rotations of the free nurse, and all the allocation and covering

variables are set free. In contrast, the variables associated with the rotations of the fixed nurses are fixed to

their current value.

Remark 5 (Allocation variables) One should note the following: the aforementionned problem is not equiva-

lent to solving a smaller problem for a restricted nursing service because allocation variables remain free and

they concern all nurses. Therefore, there is a certain degree of flexibility in the allocation that one assigns to

the free nurses, and two different re-optimized schedules for the free nurses may in practice satisfy a different

partial demands. This difference is compensated by a change in the allocation of the fixed nurses, because

only their rotations are fixed, but not their skill allocations.

Thanks to the rotation-based model, the partial destruction of schedules can also be handled easily,

because the rotations are much shorter than complete schedules. Given a starting and an ending date

k1 < k2, the partial schedules from k1 to k2 are destroyed by freeing every rotation starting on any day k

satisfying k1 ≤ k ≤ k2, as well as the corresponding allocation and covering variables, and all workload-

related variables (resp., n, z, v, and w). To repair the solution, we adapt the branch-and-price algorithm by

generating rotations that can start only between days k1 and k2. In practice, we modify the subproblem’s

network by deleting the starting arcs corresponding to rotations that start before k1 or after k2.

For a unified presentation of the destructors, we denote as NW the number of schedule weeks destroyed

per free nurse, and NN the number of free nurses. Preliminary tests showed that there is no benefit in

partial destruction of only one week in the schedule: with the rest of the schedules fixed, the problem is too

constrained to make any improvement during the repair step. As a consequence, for a simpler implementation,

we pick NW in {2, 4, 8} for an eight-weeks horizon and in {2, 4} for a four-weeks horizon. The number of

nurses is then chosen to get a constant total number of destroyed schedule weeks (NN ×NW). The product

NN ×NW is a parameter of the ALNS, whose influence is studied in Section 6.2.3.

18 G–2016–77 – Revised Les Cahiers du GERAD

As for the choice of the free nurses, we propose the following destruction strategies that depend on the

number of free nurses, NN .

i. D Random(NN): NN nurses are randomly selected among all the nurses;

ii. D Type(NN,T): NN nurses are randomly selected among those of the nurses with type T ;

iii. D Contract(NN,C): NN schedules are randomly selected among the nurses that share the same

contract C. The contract of a nurse i is defined by the values of(
L−i , L

+
i ,CD−i ,CD+

i ,CR−i ,CR+
i , Bi, βi

)
.

5.2 Choice of the destruction operator: roulette-wheel procedure

To select the destruction strategy of the nurses, and the number of weeks destroyed per nurse, we call the

roulette-wheel procedure introduced in [18] twice at each iteration of the ALNS. To choose between D Random,

D Type and D Contract for instance, each destruction operator d is assigned a value πd that starts at 5. Every

time the operator d is selected and yields an improvement, πd is incremented by 1. At the beginning of each

ALNS iteration, the destruction operator is selected randomly, where each operator d having a probability

πd/ (
∑
d′ πd′) of being selected. The number of weeks NW is then selected likewise, and so are the type T

and the contract C when D Type or D Contract are selected.

In contrast, the sampling probability of the free nurses is not adjusted according to a roulette wheel

procedure inside a given distribution operator (D Random/D Type/D Contract). Nevertheless, the probability

distribution for the nurses random selection is not uniform and is adjusted dynamically. A bias is added to

increase the likelyhood to draw schedules where the number of assignments is not within a small margin from

the average number of assignments per nurse. The motivation is to increase the possibility of obtaining a

better workload repartition and decreasing the under/over workload and worked week-ends penalties.

5.3 Improving the initialization: rolling-horizon algorithm

The initial solution of the ALNS is found by running a rolling-horizon method over the planning horizon.

Rolling-horizon methods come from the control theory area (Model Predictive Control) and are originally

meant to solve problems where future data is uncertain (wether unknown, noisy or depending on external

forces) [21]. In our implementation of this method, the planning horizon is chronologically partitioned into

three time windows: past, control horizon (present and near future) and prediction horizon (further future)

(see Figure 5). The variables that refer to past days are fixed, those of the control horizon are set to be integer,

and those of the prediction horizon are relaxed, i.e., they are allowed to be fractional. The control horizon

is the time period that we are actually scheduling, whereas the prediction horizon gives us an estimation of

the impact and influence of the decisions taken for the control horizon on the future. After this problem has

been solved, the windows are shifted towards the future by a chosen step called sampling horizon, until the

algorithm reaches the end of the complete planning horizon.

planning horizon

Step 1 control (ILP) predictive (LP)

Step 2 past (fixed) control (ILP) predictive (LP)

Step 3 past (fixed) control (ILP) predictive (LP)

...

Step n past (fixed) control (ILP)

Figure 5: Rolling-horizon procedure. Variables corresponding to rotations starting in the past, control, and predictive horizon are
respectively fixed, integer, and relaxed (i.e., may be fractionnal).

Les Cahiers du GERAD G–2016–77 – Revised 19

The same kind of idea has been successfully implemented to tackle large aircrew pairing problems in [22]

and led to substantial improvements. In the presence of uncertainty, rolling horizon performs best when the

dynamics of the problem are slow. Here, the demand does not change between each step of the process and

we can say that there is no external dynamics, hence the algorithm should perform efficiently. As a matter of

facts, the only dynamics generated is that of the influence of the history (the last days of the past horizon)

over the beginning of the control horizon.

6 Experimentations

6.1 Instances and benchmark

Instances We test our algorithm on the instances of the INRC–II competition.2 The size of the service

ranges from 30 to 120 nurses that can perform up to 4 different skills. The length of the planing horizon is

either 4 or 8 weeks and each day is divided in up to 4 shifts. The data of each instance is not contained in a

single file, but as follows: one file describes the available staff (number of nurses |N |, contracts, etc.), another

one contains the working status of the nurses at the begining of the horizon (history), and M files that each

contains the demand for one of the weeks (recall that M is the number of weeks in the horizon). For each

size of staff and horizon length, a single staff file, three different history files and 10 different week-demand

files are available. This allows a huge number of combinations and the potential generation of thousands

of instances. Each instance is named by the same pattern that completely describes the files defining it:

n[|N |]w[M] [history] [demand files]. As an example, the instance n030w4 1 6-2-9-1 describes a 30-nurses

instance, over a 4-weeks planing horizon, with history file number 1, and week-demand files 6, 2, 9, and 1.

Benchmark We consider a benchmark of 40 instances: for each staff size

|N | ∈ {30, 35, 40, 50, 60, 70, 80, 100, 110, 120} ,

we consider two instances of four weeks, and two instances of eight weeks. More precisely, we use a subset

of the instances that were created for the evaluation of the competing teams of the INRC–II competition

(see [7]). All the instances are listed in Table 8 alongside with the best results found by our algorithm.

Under the label “instance” are the names of the instances, “LB*” and “UB*” respectively denote the best

lower and upper bound that we found, and “Gap” is the corresponding integrality gap, i.e., the value of

(UB* − LB*)/LB*.

6.2 Numerical results

The tests were all performed on a single thread of an Intel(R) Core(TM)i7-3770 CPU @ 3.40GHz processor.

Our implementation calls only free third-party softwares (not only free for academics, but also for potential

industrial users). We use the branch-and-price framework BCP in which the chosen linear solver is CLP,3

and the subproblems are solved with the resource constrained shortest path from the Boost library.4 We

also conducted comparative tests using other linear solvers (e.g., CPLEX or Gurobi) but none of them was

significantly better, which gives another motivation for the choice of the open-source option. The source

code of the software, and the parameter files corresponding to the tests described below are shared on the

git repository https://github.com/jeremyomer/StaticNurseScheduler under an open licence.

The figures reproduced in this section represent the repartitions of integrality gaps and computational

times using Tukey boxplots: the bottom and top of a box are the first and fourth quartile, the band inside a box

is the median and the ends of the whiskers are the highest (lowest) values within 1.5 interquartile from the top

(bottom) of the box (see [10] for a more detailed description). In Figures 6 and 7, Gap0 = (UB0−LB*)/LB*

2All these instances are available online at http://mobiz.vives.be/inrc2/
3BCP and CLP are part of the COIN-OR project. They are available, respectively, at http://www.coin-or.org/projects/

Bcp.xml and http://www.coin-or.org/Clp/
4The boost graph library is available at http://www.boost.org/doc/libs/1_61_0/libs/graph/doc/index.html

https://github.com/jeremyomer/StaticNurseScheduler
http://mobiz.vives.be/inrc2/
http://www.coin-or.org/projects/Bcp.xml
http://www.coin-or.org/projects/Bcp.xml
http://www.coin-or.org/Clp/
http://www.boost.org/doc/libs/1_61_0/libs/graph/doc/index.html

20 G–2016–77 – Revised Les Cahiers du GERAD

Table 8: Best results obtained on the benchmark.

|N | M = 4 M = 8

instance LB* UB* Gap (%) instance LB* UB* Gap (%)

30
n030w4 1 6-2-9-1 1615 1685 4.3 n030w8 1 2-7-0-9-3-6-0-6 1920 2070 7.8
n030w4 1 6-7-5-3 1740 1840 5.7 n030w8 1 6-7-5-3-5-6-2-9 1620 1735 7.1

35
n035w4 0 1-7-1-8 1250 1415 13.2 n035w8 0 6-2-9-8-7-7-9-8 2330 2555 9.7
n035w4 2 8-8-7-5 1045 1145 9.6 n035w8 1 0-8-1-6-1-7-2-0 2180 2305 5.7

40
n040w4 0 2-0-6-1 1335 1640 22.8 n040w8 0 0-6-8-9-2-6-6-4 2340 2620 12.0
n040w4 2 6-1-0-6 1570 1865 18.8 n040w8 2 5-0-4-8-7-1-7-2 2205 2420 9.8

50
n050w4 0 0-4-8-7 1195 1445 20.9 n050w8 1 1-7-8-5-7-4-1-8 4625 4900 5.9
n050w4 0 7-2-7-2 1200 1405 17.1 n050w8 1 9-7-5-3-8-8-3-1 4530 4925 8.7

60
n060w4 1 6-1-1-5 2380 2465 3.6 n060w8 0 6-2-9-9-0-8-1-3 1970 2345 19.0
n060w4 1 9-6-3-8 2615 2730 4.4 n060w8 2 1-0-3-4-0-3-9-1 2260 2590 14.6

70
n070w4 0 3-6-5-1 2280 2430 6.6 n070w8 0 3-3-9-2-3-7-5-2 4400 4595 4.4
n070w4 0 4-9-6-7 1990 2125 6.8 n070w8 0 9-3-0-7-2-1-1-0 4540 4760 4.8

80
n080w4 2 4-3-3-3 3140 3320 5.7 n080w8 1 4-4-9-9-3-6-0-5 3775 4180 10.7
n080w4 2 6-0-4-8 3045 3240 6.4 n080w8 2 0-4-0-9-1-9-6-2 4125 4450 7.9

100
n100w4 0 1-1-0-8 1055 1230 16.6 n100w8 0 0-1-7-8-9-1-5-4 2005 2125 6.0
n100w4 2 0-6-4-6 1470 1855 26.2 n100w8 1 2-4-7-9-3-9-2-8 2125 2210 4.0

110
n110w4 0 1-4-2-8 2210 2390 8.1 n110w8 0 2-1-1-7-2-6-4-7 3870 4010 3.6
n110w4 0 1-9-3-5 2255 2525 12.0 n110w8 0 3-2-4-9-4-1-3-7 3375 3560 5.5

120
n120w4 1 4-6-2-6 1790 2165 20.9 n120w8 0 0-9-9-4-5-1-0-3 2295 2600 13.3
n120w4 1 5-6-9-8 1820 2220 22.0 n120w8 1 7-2-6-4-5-2-0-2 2535 3095 22.1

Average 4 weeks 12.6 Average 8 weeks 9.1

designates the gap of the initial solution, where UB0 is the best upper bound at the end of the initialization.

Similarly, Gap = (UB − LB*)/LB* designates the gap of the best solution obtained after the LNS has

been run. We refer as Imp to the improvement obtained by applying the LNS to the initial solution, i.e.,

Imp = (Gap0 −Gap)/Gap0 = (UB0 −UB)/(UB0 − LB*).

For a better evaluation of the ALNS, it is necessary to have some time left after the initialization, so

we set a time limit higher than that of the INRC–II. We also use a formula that depends on the number

of nurses and weeks to compute the time limit, but we settled for M × [60 + 6 |N |] seconds instead of the

M × [10 + 3 (|N | − 20)] seconds suggested in the INRC–II. Finally, under label tinit is the percentage of the

allowed time spent in the initialization procedure; the rest of the time is dedicated to the improvement of

the initial solution by the ALNS.

Besides the numerous tests presented in the following sections, we also run the branch-and-price without

any heuristic improvement (e.g., no ALNS nor rolling horizon) with a much larger time limit (24 hours). We

did that to see if the branch-and-price itself was able to reach optimality with sufficient time. The best lower

bounds reported in Table 8 (under “LB*”) were all obtained from these 24 hours executions, but it never

produced the best upper bound (“UB*”). Overall, optimality could be proved only for smaller test instances

with up to 21 nurses and a four weeks planning.

6.2.1 Influence of the control period on the rolling horizon initialization

In Figure 6, we study the influence of the length of the control horizon on the performance of the algorithm.

We ran the software for all possible values, i.e., one to four weeks for the 4-weeks instances, and one to eight

weeks for the 8-weeks instances. At each iteration of the rolling horizon procedure, the problem is solved

with branch and price until optimality is reached or until two successive executions of the primal heuristic

of Section 4.3.4 provide no improvement in the upper bound. The sampling horizon is equal to one week in

all our tests.

First, from Figures 6a and 6b, one sees that short control horizons do not yield good initial solutions.

This can be explained as follows. When the control horizon is short, only a few variables are constrained

to be integer during each solution step. Therefore, when the horizons are shifted towards the future, the

Les Cahiers du GERAD G–2016–77 – Revised 21

variables that were relaxed and become integer may take very different values from the (fractional) ones they

had in the previous step. This may induce a loss of quality that reflects a bad anticipation when the control

horizon is too short. This is particularly true because of the succession constraints H3. From Figures 6c

and 6d, one sees that the best results are obtained with rolling horizons of 3 and 8 weeks for 4-weeks and

8-weeks instances, respectively. Figures 6e and 6f show that the longer the control horizon, the more time is

spent in the initialization. This meets expectations since many more variables are constrained to be integer

when the length of the control period increases, thus making these problems harder to solve.

0

0.2

0.4

0.6

G
a
p

0

1 week 2 weeks 3 weeks 4 weeks

(a) 4-weeks instances.

0

0.2

0.4

G
a
p

0

1 week 2 weeks 3 weeks 4 weeks
5 week 6 weeks 7 weeks 8 weeks

(b) 8-weeks instances.

−0.1

0

0.1

0.2

0.3

G
a
p

1 week 2 weeks 3 weeks 4 weeks

(c) 4-weeks instances.

−0.1

0

0.1

0.2

0.3

G
a
p

1 week 2 weeks 3 weeks 4 weeks
5 week 6 weeks 7 weeks 8 weeks

(d) 8-weeks instances.

−0.1

0

0.1

0.2

0.3

t i
n
it
/t

m
a
x

1 week 2 weeks 3 weeks 4 weeks

(e) 4-weeks instances.

0

0.2

0.4

0.6

t i
n
it
/
t m

a
x

1 week 2 weeks 3 weeks 4 weeks
5 week 6 weeks 7 weeks 8 weeks

(f) 8-weeks instances.

Figure 6: Impact of the size of the control horizon on the rolling-horizon initialization.

22 G–2016–77 – Revised Les Cahiers du GERAD

6.2.2 Performance of the initialization method

In Figure 7, we study the impact of the initialization method. We consider four methods for obtaining an

initial solution. In Feasible, 2-Dives and Repeat, the initial solution is obtained by running the branch-

and-price procedure and stopping it, respectively, after the first feasible solution is obtained, after the primal

heuristic of Section 4.3.4 has been run twice, and after two successive executions of the primal heuristic of

Section 4.3.4 provide no improvement in the upper bound. In the Rolling strategy, the rolling-horizon

procedure is applied with the control horizon length that gave the best results in the previous section. The

ALNS is then run with these initial solutions.

In Figures 7a–7d, we observe that the best method is the rolling horizon method, both in terms of quality

of the initial solution (Gap0), and of the solution obtained after the ALNS is run (Gap).

From figures 7e and 7f, one sees that much more time is spent in the initialization for the Repeat and

Rolling strategies, particularly on the 8-weeks instances. Given the quality of the corresponding solutions,

the larger time spent for a good initialization is obviously worth the loss of time spent in the ALNS.

6.2.3 Influence of the destruction operator on the LNS

In this Section, we compare the destruction operators of the ALNS that are presented in Section 5.1. The

results are displayed in Figures 8a–8d, where we focus on the best upper bound found by the solution

algorithm.

On Figures 8a–8b, we study the impact of the total number of schedule weeks destroyed (NN ×NW) at

each iteration of the ALNS. For this, we compare five values evenly spread from 32 to 96 weeks. We do not

observe a significant impact of the total number of weeks destroyed. In all the other tests (in this section

and in the previous ones), we set NN × NW = 48, which seems to be the best if we consider both 4-weeks

and 8-weeks instances.

On Figures 8c–8d, we report the comparison of the following ALNS strategies:

• only partial schedules are destroyed (label: “no partial”),

• only complete schedules are destroyed (label: “only partial”),

• selected nurses always have the same type (label: “D Type”),

• selected nurses always have the same contract (label: “D Contract”),

• selected nurses are always picked randomly among all the nurses (label: “D Random”).

In the first two strategies, every destruction operator is allowed for the nurse selection, and in the last three

strategies the schedules can either be completely or partially destroyed. As a reference, we also represent

the integral gap of the ALNS where every destruction operator is used in the roulette-whell procedure(label:

”48 weeks”). The results first show that there is a significant loss in performance if the partial destruction of

schedules is not allowed, whereas the opposite is not true if schedules are only partially destroyed. Second,

we observe that the performance is even more sensitive to the selection strategy of the free nurses. Overall,

there is a benefit in considering the three strategies in the ALNS, but the random choice over all the nurses

is significantly better than the other two “smarter” strategies. This is not an original observation in the field

of metaheuristics, where randomness is sometimes the best tool towards unexpected improvements.

6.2.4 Comparison with the results of the dynamic version of the problem

To conclude the tests, we compare the results described above with the results published at the end of the

INRC–II, which are the only other published results for these instances. These results are for the dynamic

version of the problem, where the weeks are scheduled sequentially without any information on the demand of

future weeks. This comparison is summarized in Table 9. The values indicated for the dynamic problem are

the best results over all the teams and all the random seeds input by the organizers. For the static version,

we provide the best integer solution we found in all our tests and the solutions found by the ALNS initialized

Les Cahiers du GERAD G–2016–77 – Revised 23

0

0.2

0.4

0.6

0.8
G
a
p

0

Feasible 2-Dives Repeat Rolling

(a) 4-weeks instances.

−0.1

0

0.1

0.2

0.3

0.4

G
a
p

0

Feasible 2-Dives Repeat Rolling

(b) 8-weeks instances.

−0.1

0

0.1

0.2

0.3

G
a
p

Feasible 2-Dives Repeat Rolling

(c) 4-weeks instances.

−0.1

0

0.1

0.2

G
a
p

Feasible 2-Dives Repeat Rolling

(d) 8-weeks instances.

−0.1

0

0.1

0.2

0.3

t i
n
it
/t

to
ta

l

Feasible 2-Dives Repeat Rolling

(e) 4-weeks instances.

0

0.2

0.4

0.6

0.8

t i
n
it
/t

to
ta

l

Feasible 2-Dives Repeat Rolling

(f) 8-weeks instances.

Figure 7: Comparison of the initialization methods.

with the rolling horizon and NN × NW = 48 weeks destroyed at each iteration. In every case, we provide

the value of the best integer solution (UB*), and for each static result, we give the relative improvement

of the solution value when considering the static instead of the stochastic version of the problem (Imp).

The best relative improvement can be seen as an estimation of the relative value of perfect information for

these instances.

24 G–2016–77 – Revised Les Cahiers du GERAD

−0.1

0

0.1

0.2

0.3

0.4

G
a
p

32 weeks 48 weeks 64 weeks
80 weeks 96 weeks

(a) 4-weeks instances.

−0.1

0

0.1

0.2

G
a
p

32 weeks 48 weeks 64 weeks
80 weeks 96 weeks

(b) 8-weeks instances.

−0.1

0

0.1

0.2

0.3

0.4

G
a
p

48 weeks no partial only partial
D Contract D Type D Random

(c) 4-weeks instances.

−0.1

0

0.1

0.2

0.3

G
a
p

48 weeks no partial only partial
D Contract D Type D Random

(d) 8-weeks instances.

Figure 8: Performance of the ALNS depending on the destruction operator (diagrams for instances of 4 and 8 weeks).

It is comforting to observe that our best solution of the static version of the problem achieve an overall

15.2% relative improvement with respect to the best solution found in the dynamic version of the problem.
The results show that the largest improvements are obtained for the 8 weeks instances, which was expected.

In the dynamic version, the schedule of the first week is planned without information about future demand.

It is thus logical that the largest errors due to uncertainty are made for the largest planning horizon. Finally,

we still observe that for three small instances (n040w4 2 6-1-0-6, n050w4 0 0-4-8-7 and n050w4 0 7-2-7-2),

the ALNS does not achieve to improve the best dynamic solution. The reason might be that these instances

were part of the first phase of the competition where the participants could choose the random seeds that

provided the best results among all their tests. As a consequence, these results are the best over thousands

of runs of stochastic algorithms. In contrast, the results of the ALNS reflect only one specific execution of

the algorithm.

Les Cahiers du GERAD G–2016–77 – Revised 25

Table 9: Best results obtained on the benchmark.

dynamic static: best static: ALNS

instance UB* UB* Imp(%) UB* Imp(%)

n030w4 1 6-2-9-1 1755 1685 4.2% 1695 3.5%
n030w4 1 6-7-5-3 1935 1840 5.2% 1890 2.4%
n035w4 0 1-7-1-8 1630 1415 15.2% 1425 14.4%
n035w4 2 8-8-7-5 1255 1145 9.6% 1155 8.7%
n040w4 0 2-0-6-1 1730 1640 5.5% 1685 2.7%
n040w4 2 6-1-0-6 1880 1865 0.8% 1890 -0.5%
n050w4 0 0-4-8-7 1490 1445 3.1% 1505 -1.0%
n050w4 0 7-2-7-2 1480 1405 5.3% 1500 -1.3%
n060w4 1 6-1-1-5 2815 2465 14.2% 2505 12.4%
n060w4 1 9-6-3-8 2950 2730 8.1% 2750 7.3%
n070w4 0 3-6-5-1 2700 2430 11.1% 2435 10.9%
n070w4 0 4-9-6-7 2430 2125 14.4% 2175 11.7%
n080w4 2 4-3-3-3 3535 3320 6.5% 3340 5.8%
n080w4 2 6-0-4-8 3570 3240 10.2% 3260 9.5%
n100w4 0 1-1-0-8 1445 1230 17.5% 1245 16.1%
n100w4 2 0-6-4-6 2100 1855 13.2% 1950 7.7%
n110w4 0 1-4-2-8 2710 2390 13.4% 2440 11.1%
n110w4 0 1-9-3-5 2920 2525 15.6% 2560 14.1%
n120w4 1 4-6-2-6 2435 2165 12.5% 2170 12.2%
n120w4 1 5-6-9-8 2485 2220 11.9% 2220 11.9%

Average 4 weeks 9.9% 8.0%

n030w8 1 2-7-0-9-3-6-0-6 2340 2070 13.0% 2070 13.0%
n030w8 1 6-7-5-3-5-6-2-9 1900 1735 9.5% 1735 9.5%
n035w8 0 6-2-9-8-7-7-9-8 3020 2555 18.2% 2555 18.2%
n035w8 1 0-8-1-6-1-7-2-0 2770 2305 20.2% 2305 20.2%
n040w8 0 0-6-8-9-2-6-6-4 3310 2620 26.3% 2620 26.3%
n040w8 2 5-0-4-8-7-1-7-2 2700 2420 11.6% 2420 11.6%
n050w8 1 1-7-8-5-7-4-1-8 5410 4900 10.4% 4900 10.4%
n050w8 1 9-7-5-3-8-8-3-1 5435 4925 10.4% 4925 10.4%
n060w8 0 6-2-9-9-0-8-1-3 2765 2345 17.9% 2345 17.9%
n060w8 2 1-0-3-4-0-3-9-1 3065 2590 18.3% 2590 18.3%
n070w8 0 3-3-9-2-3-7-5-2 5115 4595 11.3% 4595 11.3%
n070w8 0 9-3-0-7-2-1-1-0 5390 4760 13.2% 4760 13.2%
n080w8 1 4-4-9-9-3-6-0-5 4995 4180 19.5% 4180 19.5%
n080w8 2 0-4-0-9-1-9-6-2 5030 4450 13.0% 4450 13.0%
n100w8 0 0-1-7-8-9-1-5-4 3080 2125 44.9% 2125 44.9%
n100w8 1 2-4-7-9-3-9-2-8 3055 2210 38.2% 2210 38.2%
n110w8 0 2-1-1-7-2-6-4-7 5155 4010 28.6% 4010 28.6%
n110w8 0 3-2-4-9-4-1-3-7 4805 3560 35.0% 3560 35.0%
n120w8 0 0-9-9-4-5-1-0-3 3615 2600 39.0% 2600 39.0%
n120w8 1 7-2-6-4-5-2-0-2 3510 3095 13.4% 3095 13.4%

Average 8 weeks 19.3% 20.6%

Average overall 15.2% 13.6%

7 Conclusions

This article deals with the nurse scheduling problem as described in the context of the international compe-

tition INRC–II. Our first contribution is the description of a branch-and-price algorithm procedure based on

rotations, i.e., a sequence of working days preceded and followed by at least one day off. This decomposition,

adapted from aircrew planning, allows to significantly reduce the complexity of the subproblems and the

memory space occupied by the generated columns. We modeled the assignments of days-off and skills as

flow problems which are handled in the master problem. This allows to avoid the individual assignment

of skills and relax the integrality of the skill assignment variables. What is more, a strong effort has been

done to accelerate the solution of the subproblems where negative reduced cost rotations are generated. The

subproblems are finally modeled as shortest path problems with one resource constraint corresponding to the

total number of worked days in the rotation. Based on a theoretical study of the size of the graph, we could

26 G–2016–77 – Revised Les Cahiers du GERAD

thus infer that in practice, each subproblem (one per nurse) should be executed in linear time with respect

to the length of the planning horizon if a classical labeling algorithm is used.

To achieve good results on large instances, we then described how an ALNS search could be implemented

as primal heuristic in interaction with the branch-and-price. The ALNS uses several destruction operators

that consider different strategies for the choice of the nurses whose schedules are destroyed and for the number

of schedule weeks destroyed. We then describe several primal heuristics to initialize the ALNS, including a

rolling-horizon procedure, where the weekly schedules are computed sequentially in chronological order.

Finally, the experimental tests focus on a benchmark of forty instances published in the INRC–II. The

instances describe the constraints for the schedule of 30 to 120 nurses over 4 and 8-weeks horizons. The

results highlight that the best initialization method is the rolling horizon procedure, even though it takes a

greater fraction of the total computational time. We also carried out a sensitivity analysis of the ALNS to

the choice of the destruction operators. The main conclusion being that there is indeed a benefit in using an

adaptive strategy, even though a random selection of the nurses whose schedules are destroyed also achieves

good results. Finally, we showed that algorithm achieves an average 15.2% improvement with respect to the

best results reported during the INRC–II for the dynamic version of the problem.

Future research should aim at finding optimal solutions of instances with 30 and more nurses. For this,

we think that other decompositions could be considered in the branch-and-price procedure to lower the

integrality gap. One option is the classical decomposition where complete individual schedules are generated,

but other more refined rotation-based decompositions could also be developed. For instance, additional layers

could be added in the master problem flow network to reduce the gap due to the overwork on week-ends.

Another direction of research is the adaptation of the rotation model to other constraints described in the

literature.

References

[1] Bard, J. F., and Purnomo, H. W. Preference scheduling for nurses using column generation. European Journal
of Operational Research 164, 2 (2005), 510–534.

[2] Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., and Vance, P. H. Branch-and-price:
Column generation for solving huge integer programs. Operations Research 46, 3 (1998), 316–329.

[3] Beliën, J., and Demeulemeester, E. A branch-and-price approach for integrating nurse and surgery scheduling.
European Journal of Operational Research 189, 3 (2008), 652–668.

[4] Braekers, K., and Janssens, G. K. Shortest route problem with soft time windows. In The Europeand Simulation
and Modelling Conference (2013), S. Onggo and A. Kavicka, Eds., pp. 279–283.

[5] Burke, E. K., and Curtois, T. New approaches to nurse rostering benchmark instances. European Journal of
Operational Research 237, 1 (2014), 71–81.

[6] Burke, E. K., De Causmaecker, P., Berghe, G. V., and Van Landeghem, H. The state of the art of nurse rostering.
Journal of Scheduling 7, 6 (2004), 441–499.

[7] Ceschia, S., Dang, N. T. T., De Causmaecker, P., Haspeslagh, S., and Schaerf, A. The second international nurse
rostering competition. In PATAT 2014: Proceedings of the 10th International Conference of the Practice and
Theory of Automated Timetabling (2014), pp. 554–556.

[8] Desaulniers, G., Desrosiers, J., and Solomon, M. M. Column generation, vol. 5. Springer Science & Business
Media, 2006.

[9] Dumas, Y., Soumis, F., and Desrosiers, J. Optimizing the schedule for a fixed vehicle path with a convex
inconvenience costs. Transportation Science 24, 2 (1990), 145–152.

[10] Frigge, M., Hoaglin, D. C., and Iglewicz, B. Some implementations of the boxplot. The American Statistician
43, 1 (1989), 50–54.

[11] Gamache, M., and Soumis, F. A method for optimally solving the rostering problem. In Operations Research in
the Airline Industry, G. Yu, Ed., vol. 9 of International Series in Operations Research and Management Science.
Springer US, New York, 1998, ch. 5, pp. 124–157.

[12] Garcia, R. Resource constrained shortest paths and extensions. ProQuest, 2009.

Les Cahiers du GERAD G–2016–77 – Revised 27

[13] He, F., and Qu, R. A constraint programming based column generation approach to nurse rostering problems.
Computers & Operations Research 39, 12 (2012), 3331–3343.

[14] Irnich, S., Desaulniers, G., et al. Shortest path problems with resource constraints. Column generation 6730,
33–65.

[15] Jaumard, B., Semet, F., and Vovor, T. A generalized linear programming model for nurse scheduling. European
Journal of Operational Research 107, 1 (1998), 1–18.

[16] Maenhout, B., and Vanhoucke, M. Branching strategies in a branch-and-price approach for a multiple objective
nurse scheduling problem. Journal of Scheduling 13, 1 (2010), 77–93.

[17] Pisinger, D., and Ropke, S. Handbook of Metaheuristics. Springer US, Boston, MA, 2010, ch. Large Neighbor-
hood Search, pp. 399–419.

[18] Prescott-Gagnon, E., Desaulniers, G., and Rousseau, L.-M. A branch-and-price-based large neighborhood search
algorithm for the vehicle routing problem with time windows. Networks 54, 4 (2009), 190–204.

[19] Qurashi, A. G., Taniguchi, E., and Yamada, T. Column generation-based heuristics for vehicle routing problem
with soft time windows. Journal of the Eastern Asia Society for Transportation Studies 8 (2010).

[20] Qurashi, A. G., Taniguchi, E., and Yamada, T. Exact solution for vehicle routing problem with soft time windows
and dynamic travel time. Asian Transport Studies 2, 1 (2012), 48–63.

[21] Richalet, J., Rault, A., Testud, J., and Papon, J. Model predictive heuristic control: applications to industrial
processes. Automatica 14, 5 (1978), 413–428.

[22] Saddoune, M., Desaulniers, G., and Soumis, F. Aircrew pairings with possible repetitions of the same flight
number. Computers & Operations Research 40, 3 (2013), 805–814. Transport Scheduling.

	Introduction
	The nurse scheduling problem
	Main contributions
	Organization of the paper

	Description of the problem and notations
	Rotation-based model for the nurse rostering problem
	Rotations: definitions and notations
	A flow model for the creation of individual rosters
	A flow model for the allocation of the skills
	Integer Programming formulation

	Solution of the integer program by branch and price
	Description of the column generation procedure
	Pricing subproblem
	Overview of the pricing problem network
	Modifications of the pricing network for consecutive assignments constraints
	Assessment of the complexity of the SPPRC in the network of the subproblem

	Branching rules
	Branching on days
	Branching on shifts
	Choice of the branching strategy
	Primal heuristic based on variable fixing to obtain feasible solutions

	An adaptive large neighborhood search for large instances
	Destruction operators
	Choice of the destruction operator: roulette-wheel procedure
	Improving the initialization: rolling-horizon algorithm

	Experimentations
	Instances and benchmark
	Numerical results
	Influence of the control period on the rolling horizon initialization
	Performance of the initialization method
	Influence of the destruction operator on the LNS
	Comparison with the results of the dynamic version of the problem

	Conclusions

