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Québec – Nature et technologies.
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Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

http://dx.doi.org/10.1002/nem.1957




Fast failure detection and
recovery in SDN with state-
ful data plane

Carmelo Cascone a,b

Davide Sanvito a

Luca Pollini c

Antonio Capone a

Brunilde Sans b,d

a Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Italy

b Department of Mathematics and Industrial Engineering,
Polytechnique Montréal (Québec) Canada
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Abstract: When dealing with node or link failures in Software Defined Networking (SDN), the network
capability to establish an alternative path depends on controller reachability and on the round-trip times
(RTTs) between controller and involved switches. Moreover, current SDN data plane abstractions for failure
detection (e.g. OpenFlow “Fast-failover”) do not allow programmers to tweak switches’ detection mecha-
nism, thus leaving SDN operators relying on proprietary management interfaces (when available) to achieve
guaranteed detection and recovery delays. We propose SPIDER, an OpenFlow-like pipeline design that pro-
vides i) a detection mechanism based on switches’ periodic link probing and ii) fast reroute of traffic flows
even in the case of distant failures, regardless of controller availability. SPIDER is based on stateful data
plane abstractions such as OpenState or P4, and it offers guaranteed short (few milliseconds or less) failure
detection and recovery delays, with a configurable trade off between overhead and failover responsiveness.
We present here the SPIDER pipeline design, behavioral model, and analysis on flow tables’ memory impact.
We also implemented and experimentally validated SPIDER using OpenState (an OpenFlow 1.3 extension
for stateful packet processing) and P4, showing numerical results on its performance in terms of recovery
latency and packet losses.

Software Defined Networking, stateful data plane, fault-tolerance
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1 Introduction

The longly anticipated paradigm shift of Software Defined Networking (SDN) is radically transforming the

network architecture [1]. SDN technologies provide programmable data planes that can be controlled from

a remote controller platform. This control and data planes separation creates new opportunities to imple-

ment much more efficient traffic engineering policies than classical distributed protocols, since the logically

centralized controller can take decisions on routing optimization exploiting a global view of the network and

a flow level programmatic interface at data plane. Fault resilience mechanisms are among the most crucial

traffic engineering instruments in operator networks since they insure quick reaction to connectivity failures

with traffic rerouting.

So far, traffic engineering applications for SDN, and failure recovery solutions in particular, have received

relatively little attention from the research community and networking industry which has focused mainly

on other important areas related to security, load balancing, network slicing and service chaining. Not

surprisingly, while SDN is becoming widely used in data centers where these applications are crucial, its

adoption in operator networks is still rather limited. The support in current SDN implementations of features

for failure recovery is currently rather weak and traditional technologies, e.g. Multi-Protocol Label Switching

(MPLS) Fast Reroute, are commonly considered for carrier networks more reliable.

The main reason for this gap in SDN solutions is that some traffic engineering applications, such as failure

recovery, challenge the limits of the data plane abstraction that is the key element of any SDN architecture.

OpenFlow is largely the most adopted abstraction for the data plane with its match-action rules in flow

tables [2]. Current OpenFlow abstraction presents some fundamental drawbacks that can prevent an efficient

and performing implementation of traffic rerouting schemes. As a matter of fact, in OpenFlow adaptation

and reconfiguration of forwarding rules (i.e. entries in the flow tables) in the data plane pipeline can only

be performed by the remote controller, posing limitations on the granularity of the desired monitoring and

traffic control due to the overhead and latency required.

For the case of failures, OpenFlow Fast-failover group works only when a local alternative path is available

from the switch that detected the failure. Unfortunately, such an alternative path may not be available, in

which case the intervention of a controller, which reachability is not guaranteed, is required in order to

establish a rerouting at another point in the network. We believe that failure detection and recovery can be

better handled locally in the fast data path assuming different sets of forwarding rules that can be applied

according to the observed network state. We argue that this can be done retaining the logically centralized

approach of SDN to programmability if we fully expose to application developers in the controller both the
state detection mechanism (i.e. link/node availability) and the sets of rules for the different states. The

extension of the OpenFlow abstraction to stateful data planes has recently attracted the interest of the SDN

research community: OpenState [3] (proposed by some of the authors), FAST [4], and the “learn” action of

Open vSwitch [5] are the main examples. On the other hand, domain-specific languages such as P4 [6] allow

the specification of stateful behaviors for programmable data plane targets.

In this paper we propose SPIDER,1 a stateful SDN pipeline design that allows the implementation of

failure recovery policies with fully programmable detection and recovery mechanisms in the switches. SPIDER

is inspired by well-known legacy technologies such as Bidirectional Forwarding Detection (BFD) [7] and MPLS

Fast Reroute (FRR) [8], it provides guaranteed short failure detection and recovery delays, with a configurable

trade off between overhead and failover responsiveness. We present an implementation of SPIDER based

on OpenState prototype switch and controller [9], and its performance evaluation on some example network

topologies. We also provide a SPIDER implementation based on P4.

The paper is organized as follows. In Section 2 we discuss related work, while in Section 3 we review the

characteristics of stateful data planes for SDN. In Section 4 we introduce SPIDER approach, we outline its

pipeline design and prototype implementation in Section 5, and provide experimental results in Section 6.

1Stateful Programmable faIlure DEtection and Recovery
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In Section 7 we discuss SPIDER w.r.t. legacy technologies and current SDN platforms. Section 8 concludes

the paper with our final remarks.

2 Related work

The concern of quickly recovering from failures in SDN has been already explored by the research community

with the general goal of making SDN more reliable by reducing the need of switches to rely on the external

controller to establish an alternative path. Sharma et al. in [10] shows how hard it is to obtain carrier grade

recovery times (<50ms) when relying on a controller-based restoration approach in large OpenFlow networks.

To overcome to such an issue, the authors propose also a proactive protection scheme based on a BFD daemon

running in the switch and integrated with the OpenFlow Fast-failover group type, obtaining recovery times

within 50ms. Similarly, Van Adrichem et al. shows in [11] how by carefully configuring the BFD process

already compiled in Open vSwitch, it is possible to obtain recovery times of few ms. The case of protection

switching is also explored by Kempf et al. in [12], here the authors propose an end-to-end protection scheme

based on an extended version of OpenFlow 1.1 to implement a specialized monitoring function to reduce

processing load at the controller. Sgambelluri et al. proposed in [13] a segment-protection approach based

on pre-installed backup paths. Also in this case, OpenFlow is extended in order to enable switches to locally

react to failures by auto-rejecting flow entries of the failed interface. The concern of reducing load at the

controller is also addressed by Lee at al. in [14]. A controller-based monitoring scheme and optimization

model is proposed in order to reduce the number of monitoring iterations that the controller must perform

to check all links. A completely different and more theoretical approach based on graph search algorithms

is proposed by Borokhovich et al. in [15]. In this case the backup paths are not known in advance, but a

solution based on the OpenFlow fast-failover scheme is proposed along an algorithm to randomly try new

ports to reach traffic demands’ destination.

Our work extends two earlier conference papers [16, 17] were we first describe an OpenState-based behav-

ioral model to perform fast reroute and to provide programmable failure detection, including results on flow

entries analysis, packet loss and heartbeat overhead. In addition to that, we describe here a P4 implemen-

tation of SPIDER, compare SPIDER with legacy technologies such as BFD and MPLS Fast Reroute, and

discuss about the relation with data plane reconciliation schemes applied by current SDN platforms. Finally,

to the best of our knowledge, we are unaware of other prior work towards the use of programmable stateful

data plane abstractions to implement both failure detection and recovery schemes in the fast path.

3 Stateful data plane abstractions

OpenFlow describes a stateless data plane abstraction for packet forwarding. Following the spirit of SDNs

control and data plane separation, network state is maintained only at the controller, which in turn, based

on a reactive approach, updates the devices’ flow table as a consequence of events such as the arrival of new

flows, topology changes, or monitoring-based events triggered by the periodic polling of flow table statistics.

We argue that improved scalability and responsiveness of network applications could be offered by adopting a

stateful proactive abstraction, where switches are pre-provisioned with different sets of forwarding behaviors,

i.e. flow entries, dynamically activated or deactived as a consequence of packet-level events and timers, and

based on per-flow state maintained by the switch itself. OpenState [3], FAST [4], OVS [5] and P4 [6] are

example of such an abstraction supporting stateful forwarding. OpenState and FAST offer explicit support to

programming data plane state machines by defining dedicated structures such as state tables and primitives

for state transition. OVS in turn, provides implicit support to stateful forwarding thanks to a special “learn”

action (not currently supported in the OpenFlow specification) that allows the creation at run-time of new

flow entries as a consequence of a packets matching existing ones.2 Moreover, we note how the research

community already started the investigation of a stateful fast path in OVS [19]. Finally, the current version

2For a detailed description of OVS’s stateful primitives, and an example on how to program stateful applications such a MAC
learning switch, please refer to [18].
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of the P4 language [20] allows to define behaviors based on stateful memories that can be used when processing

a packet.

We choose to base our design and main implementation on OpenState for two reasons. First because,

in our belief, OpenState offers a simple stateful forwarding abstraction that better serves the purpose of

describing the behavioral model implemented by SPIDER in the form of Finite State Machines (FSMs) that

operate on per-flow states. Indeed, while OVS’s “learn” action could be used in principle to equivalently

compile SPIDER features at data plane, it would require a less trivial effort in describing its design. Regarding

FAST, although it provides a very similar abstraction to OpenState, unfortunately, as of today there is no

publicly available implementation that we can use to implement and test SPIDER. Our second reason is that

SPIDER is built on the assumption that updates of the forwarding state are possible at wire-speed, directly

handled on the fast data path. The OpenState abstraction is also based on this assumption and its hardware

experimental proof on a TCAM-based architecture was already addressed in [21]. Finally, P4 can be used to

specify a forwarding abstraction equivalent to OpenState.

3.1 OpenState

Before proceeding with the introduction of SPIDER, we consider it necessary to briefly summarize OpenState

features, which are essential to define SPIDER in the rest of the paper.3 Figure 1 depicts the different elements

of the OpenState pipeline. The legacy OpenFlow’s flow table is preceded by a state table used to store “flow

states”. Each time a new packet is processed by the flow table, it is first matched against the state table.

The matching is performed exactly (i.e. non-wildcard) on a flow key obtained using the fields defined by

a “lookup-scope” (i.e. a list of OpenFlow’s header fields identifier). The state table returns a “default”

state if no state entry is matched by a given flow key, otherwise a different state is returned. The packet

is then processed by the flow table, here flow entries can be defined to match on the state value returned

by the state table. Moreover, a new “set-state” action is defined to insert/update entries in any state table

of the pipeline. During a set-state action the state table is updated using a flow key optionally different

from the one used in the lookup phase and defined by the “update-scope” (necessary when dealing with

bidirectional flows). Finally, idle and hard state timeouts can be defined and are equivalent to those used

in OpenFlow flow entries. A “rollback state” is associated to each timeout, and its value is used to update

the state entry after the timeout expiration. Idle timeouts expires after a given entry is not matched by any

packet for a given interval, while hard timeouts are expired counting from the instant the state entry has

been inserted/updated. After configuring the lookup-scope, update-scope and the flow table, the state table

is initially empty. It is then filled and updated based on the set-state actions defined in the flow table and

executed as a consequence of packets matching flow entries in the flow table.

4 Approach sketch

SPIDER provides mechanisms to perform failure detection and instant rerouting of traffic demands using

a stateful proactive approach, without requiring the intervention of the controller. Interaction with the

controller is needed only at boot time to provision switches’ state tables and to fill flow tables with the different

3The features presented here are based on the most updated version of the OpenState v1.0 specification available at [9].

any n/adefault
………
………

TimeoutsStateKey

.. ……
………
………

TimeoutsActionsMatch

Key extractor
(update-scope)

pkt
+ state

set_state(new_state, timeouts)

Key extractor
(lookup-scope)

pkt
pkt
+ actions

State table Flow table

Figure 1: Architecture of a stage of the OpenState pipeline
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forwarding behaviors. No distributed protocols are required, instead the different forwarding behaviors

are handled at data plane level by labeling packets with special tags and by using the stateful primitives

introduced before. The features implemented by SPIDER are inspired by well-known legacy protocols such

as BFD and MPLS FRR, in Section 7 we discuss more about the design of SPIDER w.r.t. these legacy

technologies.

Backup path pre-planning. SPIDER does not distinguish between node or link failures, instead we

define with Fi a particular failure state of the network for which node i is unreachable. Given another node j,

we refer to the case of a “local” failure, when j is directly connected (1 hop) to i, while we refer to a “remote”

failure when node i is not directly connected to j. In our design the controller must be provided with the

topology of the network and a set of primary paths and backup paths for each demand. Backup paths must

be provided for each possible Fi affecting the primary path of a given demand. A backup path for state Fi

can share some of the primary path, but it is required to offer a detour (w.r.t primary path) around node i.

In other words, even in the case of a link failure making i unreachable from j, and even other links to j might

exist, we require that backup paths for Fi cannot use any of the links belonging to i. The reason of such

a requirement is that, to guarantee very short (< 1ms) failover delays, a characterization of the failure, i.e.

understanding if it is a node or a link failure, is not possible without the active involvement of the controller

or other type of slow signaling. For this reason SPIDER assumes always the worst case where node i is down,

hence it should be completely avoided. An example of problem formulation that can be used to compute

an optimal set of such backup paths has been presented in [22]. Finally, if all backup paths are provided,

SPIDER guarantees instantaneous protection from every single-failure Fi scenario, without requiring the

controller to compute an alternative routing or to update flow tables. However, the unfortunate case of a

second or multiple failures happening sequentially can be supported through the reactive intervention of the

controller.

Failure detection. SPIDER uses tags carried in an arbitrary header field (e.g. MPLS label or VLAN ID)

to distinguish between different forwarding behaviors and to perform failure detection and switch-to-switch

failure signaling. Figure 2 depicts the different forwarding scenarios supported by SPIDER. When in normal

conditions (i.e. no failures), packets entering the network are labeled with tag=0 and routed through their

primary path (Figure 2a). To detect failures, SPIDER does not rely on any switch-dependent feature such

OpenFlow’s Fast-failover, instead it provides a simple detection scheme based on the exchange of bidirectional

“heartbeat” packets. We assume that as long as packet are received from a given port, that port can be also

used to reliably transmit other packets. When no packets are received for a given interval, a node can request

its neighbor to send an heartbeat. As shown in Figure 2d, heartbeat can be requested by labeling any data

packet with tag=HB req. A node receiving such a packet will perform 2 operations: i) set back tag=0 and

transmit the packet towards the next hop and ii) create a copy with tag=HB reply and send it back on the

same input. In this way, the node that requested the heartbeat will know that its neighbor is still reachable.

Heartbeat are requested only when the received packet rate drops below a given threshold. If no packets

1 2 3

5 detour

tag=0
4

 
 

(a) Normal (no failures)

1 2 3

5

//

tag=F3

4

Failover on detour
OR backward Local failure

w.r.t. node 2

tag=0

(b) Local failover

1 2 3

5

//

Detour enabled by 
bounced packets

tag=F4
4

Remote failure 
w.r.t node 2

tag=0

(c) Remote failover

1 2 3

tag=0

4

tag=HB_req
Drop

tag=HB_reply

5   

(d) Heartbeat request/reply

1 2 3 4

5

tag=0
Drop

tag=P4

tag=F4
  

(e) Path probing

Figure 2: Example of the different forwarding behaviors implemented by SPIDER
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(either data or heartbeat) are received for more than a given timeout, the port is declared DOWN. The state

of the port will be set back to UP as soon as packets will be received again on that port.

Fast reroute. When a port is declared DOWN, meaning a local failure situation towards a neighbor node

i, incoming packets are labeled with tag=Fi and sent to an alternative port (Figure 2b), this could be a

secondary port belonging to a detour or the same input port where the packet was received. In the last case

we refer to a “bounced” packet. Bounced packets are used by SPIDER to signal a remote failure situation.

Indeed, they are forwarded back along their primary path until they reach a node able to forward them

along a detour. In Figure 2c, when node 2 receives a bounced packet with tag=F4, it updates the state of

that demand to F4 and forwards the packet along a detour. Given the stateful nature of SPIDER, state F4

is maintained by node 2, meaning that all future packets of that demand with tag=0, will be labeled with

tag=F4 and transmitted directly on the detour. In the example, we refer to node 2 as the “reroute” node

of a given demand in state F4, while the portion of the path comprised between the node that detected the

failure and the reroute node is called the “bounce path”.

Path probing. Failures are temporary, for this reason SPIDER provides also a probe mechanism to

establish the original forwarding as soon as the failure is resolved. When in state Fi the reroute nodes

periodically generate probe packets to check the reachability of node i. As for heartbeat packets, probe

packets are not forged by switches or the controller, instead, they are generated simply duplicating and

labeling the same data packets processed by a reroute node. In Figure 2e, node 2 duplicates a tag=0 packet.

One copy is sent on the detour with tag=F4, while the other is labeled with tag=Pi and sent on the original

primary path. If node i becomes reachable again, it will bounce the probe packet towards the reroute node.

The reception of a probe packet Pi from a node with a demand in state Fi will cause a state transition that

will re-enable the normal forwarding on the primary path.

Flowlet-aware failover. SPIDER also addresses the issue of packet reordering that might occur during

the remote failover. Indeed, in the example of Figure 2c, while new tag=0 packets arrive at the reroute

node, one or more (older) packets may be traveling backward on the bounce path. Such a situation might

cause packets to be delivered out-of-order at the receiver, with the consequence of unnecessary throughput

degradation for transport layer protocols such as TCP. For this reason SPIDER implements the “Flowlet-

aware” forwarding scheme first introduced in [23]. While SPIDER is already aware of the failure, the same

forwarding decision is maintained for packets belonging to the same burst; in other words, packets are still

forwarded (and bounced) on the primary path until a given idle timeout (i.e. interval between bursts) is

expired. Such a timeout can be evaluated by the controller at boot time and should be set as the maximum

RTT measured over the bounce path of a given reroute node for state Fi. Effectively waiting for such an

amount of time before enabling the detour, maximizes the probability that no more packets are traveling

back on the bounce path, thus minimizing the risk of mis-ordered packet at the receiver.

5 Implementation

In this following section we present the design of the pipeline and the configuration of the flow tables necessary

to implement SPIDER. The pipeline (Figure 3) is based on 4 different flow tables. An incoming packet is

first processed by table 0 and 1. These two blocks perform only stateless forwarding (i.e. legacy OpenFlow),

which features will be described later. The packet is then processed by stateful tables 2 and 3. These tables

Packets
State updates

Legend:

Table 0 Table 1 Table 2
RF FSM

Table 3
LF FSM Output port(s)

Figure 3: SPIDER pipeline architecture
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implement respectively the Remote Failover (RF) FSM, and the Local Failover (LF) FSM described later.

Packets are always processed by table 2 which is responsible for rerouting packets when the primary path of

a given demand is affected by a remote failure. If no remote failure has been signaled to table 2, packets are

submitted to table 3 which handles the failover in the case of local failures (i.e. directly seen on local ports).

State updates in table 2 are triggered by bounced packets, while table 3 implements the heartbeat-based

detection mechanisms introduced in Section 4. Although table 1 is stateless and for this reason doesn’t need

to maintain any state, it is responsible for triggering state updates on tables 2 and 3.

Table 0. It performs the following stateless processing before submitting packets to table 1:

• For packets received from an edge port (i.e. directly connected to a host): push an initial MPLS label

to store the tag.

• For packets received from a transport port (i.e. connected to another switch): write the input port in

the metadata field (used later to trigger state updates from table 1).

Table 1. It handles the processing of those packets which requires only stateless forwarding, i.e. which

forwarding behavior doesn’t depend on states:

• Data packets received at a edge port: set tag=0, then submit it to the next table.

• Data packets received at the last node of the primary path: pop the MPLS label, then directly trans-

mitted on the corresponding output port (where the destination host is located).

• Packets with tag=Fi: directly transmitted on the detour port (unique for each demand and value of

Fi); set tag=0 on the last node of the detour before re-entering the primary path. An exception is

made for the reroute node of demand in state Fi, in this case the routing decision for these packets is

stored in table 2.

• Heartbeat requests (tag=HB req): packets are duplicated, one copy is set with tag=HB reply and

transmitted through the input port, the other is set with tag=0 and then submitted to the next table.

• Heartbeat replies (tag=HB reply): dropped (used only to update the state on table 3).

• Probe packets (tag=Pi): directly transmitted on the corresponding output port belonging to the probe

path (i.e. the primary path, unique for each demand and value of Pi) (e.g. Figure 2e).

Finally, table 1 performs the following state updates on table 2 and 3:

• For all packets: a state update is performed on table 3 so to declare the port on which the packet has

been received as UP.

• Only for probe packets: a state update is performed on table 2 to transition a flow state from Fi to

Normal.

Table 2 (Remote Failover FSM). Figure 4 shows a simplified version of the FSM. A state is maintained

for each different traffic demand served by the switch. As outlined by the lookup and update scopes, in this

case the origin-destination demands are identified by the tuple of Ethernet source and destination address,

a programmer might specify different aggregation fields to describe the demands (e.g. IP source/destination

tuple, or the 4-tuple transport layer protocol). Given the support for only single-failure scenarios, transitions

Normal 
(default)

F1

Fn

…

lookup-scope=[eth_src, eth_dst]
update-scope=[eth_src, eth_dst]

Figure 4: Macro states of the Remote Failover FSM
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between macro states Fi are not allowed (state must be set to Normal before transitioning to another state Fi).

Figure 5 depicts a detailed version of the Remote Failover FSM with macro state Fi exploded. At boot time

the state of each demand is set to the default value Normal. Upon reception of a bounced packet with tag=Fi,

the latter is forwarded on the detour and state set to Fault signaled. The flowlet-aware routing scheme

presented before, is here implemented by means of state timeouts. When in state Fault signaled, packets

arriving with tag=0 (i.e. from the source node) are still forwarded on the primary path.This behavior is

maintained until the expiration of the idle timeout δ1, i.e. after no packets of that demand have been

received for a δ1 interval, which should be set equal to the RTT measured on the bounce path.4 To avoid a

situation where the demand remains locked in state Fault signaled, an hard timeout δ2 > δ1 is set so that

the next state Detour ready is always reached after at most a δ2 interval. When in state Detour enabled,

packets are set with tag=Fi and transmitted directly on the detour. In this state an hard timeout δ5 assures

the periodic transmission of probe packets on the primary path. The first packet matched when in state Need

probe is duplicated: one copy is sent on the detour towards its destination, another copy is set with tag=Pi

and sent to node i through the original primary path of the demand. If node i becomes reachable again, it

responds to the probe by bouncing the packet (tag=Pi is maintained) to the reroute node that originated

it. The match of the probe packet at table 1 of the reroute node will trigger a reset of the Remote Failure

FSM to state Fault resolved. When in state Fault resolved, the same flowlet-aware routing scheme of

state Fault signaled is applied. In this case an idle and hard timeout are set in order to maintain the

alternative routing until the end of the current burst of packets. In this case δ3 must be set to the maximum

delay difference between the primary and backup path. After the expiration of δ3 or δ4, the state is set back

to Normal, hence the transmission on the detour stops and packets are submitted to table 3 to be forwarded

on their primary port.

Table 3 (Local Failover FSM). Figure 6 depicts the FSM implemented by this table. Here flows are

aggregated per output port (encoded in the metadata field),5 meaning that all packets destined to the same

port will share the state. This FSM has two macro states, namely UP and DOWN. When in state DOWN,

packets are forwarded to an alternative port (belonging to a detour or to the input port in case of bounced

packets, according to the pre-planned backup strategy). At boot time all flows are in default state UP: need

heartbeat, meaning that an heartbeat packet must be generated and a reply received, so that the port keeps

being declared UP. Indeed, the first packet matched in this state will be sent with tag=HB req and the state

updated to UP: heartbeat requested. While in this state, packets will be transmitted on the primary

4Such a feature requires the support for very short timeouts. OpenState v1.0 currently define state timeouts with microseconds
resolution.

5In our current implementation based on OpenFlow 1.3 matching on the outport is not supported, for this reason we use the
metadata field to carry this information across tables.

Fi

Fault  
signaled

Normal
(default)

Detour
enabled

Need 
probe

Fault 
resolved

tag=Fi
<fwd(detour)>

idle_to=δ1 or
hard_to=δ2

tag=0
<fwd(primary)>

tag=Fi
<fwd(detour)>

tag=0
<fwd(primary)>

hard_to=δ5

tag=0
<set_tag(Fi), fwd(detour)>

tag=0
<set_tag(Fi), fwd(detour)>
<set_tag(Pi), fwd(primary)>

tag=0
<set_tag(Fi), fwd(detour)>

idle_to=δ3 or
hard_to=δ4

“Probe packet
coming back” 

Table 1

Figure 5: Detail of the macro state Fi for the Remote Failover FSM
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UP: need 
heartbeat
(default)

UP: 
heartbeat 
requested

UP: Wait

DOWN: 
need probe

DOWN: 
probe sent

any packet
<set_tag(HB), fwd(outport)>

lookup-scope=[metadata]
update-scope=[metadata]

hard_timeout=δ7

any packet
<set_tag(Fi), fwd(detour or inport)>

<set_tag(Pi), fwd(outport)>

any packet
<set_tag(Fi), fwd(detour or inport)>

hard_timeout=δ6
any packet

<fwd(outport)>

hard_timeout=δ5

“Any packet 
arriving at outport” 

any packet
<fwd(outport)>

Table 1

Figure 6: Mealy machine implemented by the LF table

output port, until an hard timeout δ7 expires, in which case the port will be declared DOWN. The timeout δ7
represents the maximum interval admitted between the generation of the heartbeat request and the reception

of the corresponding reply. Every time a packet (either a data, probe or heartbeat) is received at table 1

the state of that port is reset to UP: wait. The Local Failover FSM will stay in this state for an interval

δ6 (hard timeout), after which the state will be set back to UP: need heartbeat. Hence, δ6 represents the

inverse of the minimum received packet rate required for a given port to avoid the generation of heartbeats.

If the timeout δ7 expires, the port is declared DOWN. Here, packets will be tagged with Fi (where i is the node

directly connected through the port) and forwarded on an alternative port. Similarly to the Remote Failover

FSM, an hard timeout δ5 assures that probe packets will be generated even when the port is declared DOWN.

In conclusion, Table 1 summarizes the different timeouts used in SPIDER. We emphasize how, by tweaking

these values, a programmer can explicitly control and impose i) a precise detection delay for a given port

(δ6 + δ7), ii) the level of traffic overhead caused by probe packets of a given demand (δ5 and δ6), the risk of

packets reordering in the case of a remote failover (δ1, δ2, δ3, and δ4). Experimental results based on these

parameters are presented in the following section.

Table 1: Summary of the configurable timeouts of the SPIDER pipeline

Timeout Type Description Value

δ1 Idle Flowlet idle timeout before switching packets
from the primary path to the detour

Maximum RTT measured on the bounce
path for a specific demand and Fi

δ2 Hard Maximum interval admitted for the previous
case before enabling the detour

> δ1

δ3 Idle Flowlet idle timeout before switching packets
from the detour to the primary path

Maximum end-to-end delay difference be-
tween the backup path and the primary path

δ4 Hard Maximum interval admitted for the previous
case before re-enabling the primary path

> δ3

δ5 Hard Probe generation timeout Arbitrary interval between each periodic
check of the primary path in case of remote
failure

δ6 Hard Heartbeat requests generation timeout Inverse of the minimum rx rate for a given
port before the generation of heartbeat re-
quests and the corresponding replies

δ7 Hard Heartbeat reply timeout before the port is
declared down

Maximum RTT for heartbeat re-
quests/replies between two specific nodes (1
hop)
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OpenState-based prototype

We implemented SPIDER using a modified version of the OpenFlow Ryu controller [24] extended to support

OpenState [9]. SPIDER source code is available at [25]. For the experimental performance evaluation we

used Mininet [26] with a version of the CPqD OpenFlow 1.3 softswitch [27] as well extended with OpenState

support.

P4-based prototype

In order to prove the feasibility of the SPIDER pipeline design, we also provide an implementation of it in

P4. This implementation can be found at [28] and is based on openstate.p4, a library that can be re-used

by other P4 programs to easily express stateful packet processing using an table-based abstraction equivalent

to OpenState. In other words, openstate.p4 allows to express forwarding behaviors based on per-flow states

that can be updated as a consequence of packet match events or timeouts.

We tested our P4 based implementation of SPIDER with the reference P4 software switch BMv2 [29]. In

the following we discuss some concerns related to the feasibility of SPIDER and openstate.p4 on a P4-based

programmable target:

• State table: it is needed in order to maintain per-flow states, indexed according to a flow key that

is extracted from each packet according to a given lookup-scope or update-scope, depending on the

type of access performed (read or write). We implemented the state table using P4’s stateful register

arrays and used hash functions to efficiently map flow keys to the limited number of memory cells.

Obviously, when using hash functions the main concern is related to collisions, where multiple flows

can end up sharing the same memory cell. In the case of SPIDER, collisions should be properly handled

to avoid the situation of a flow being forwarded according to a failure state set by another flow. Such

an issue can be solved either by defining a collision handling mechanism in P4 or by delegating such

a function to an “extern” object. The latter is a mechanism introduced in the more recent versions

of the P4 language that allows a programmer to reference target-specific structure, for example, a

dictionary which uniquely maps flow keys to state values, transparently handling collisions. Instead,

openstate.p4 provides native support for a trivial collision handling scheme by implementing an hash

table with chaining that allows a fixed number of key-value couples to share the same index. We do

not provide any insight about the performances of the approach, rather we use it to prove to feasibility

of SPIDER for a P4 target.

• State timeouts: the ability of SPIDER to detect failures depends on timeout events (e.g. no packets
received for on a given port for δ7 time). State timeouts in openstate.p4 are implemented compar-

ing the timestamp of incoming packets with the idle or hard timeout value stored in the state table.

However, packets timestamping is not a feature supported by the P4 specification. In our implemen-

tation, we rely on the ability of the BMv2 target to add a timestamp metadata to incoming packets.

Moreover, the failure detection delay depends on timestamp granularity, for example a target offering

seconds granularity will not be able to detect failures in less than a second.

6 Performance evaluation

6.1 Flow entries analysis

While detection and recovery times are guaranteed and topology-independent, a potential barrier for the

applicability of the solution is represented by the number of flow entries, which can be limited by the switch

memory and depends on the network topology. We evaluate here the resources required by a switch to

implement SPIDER in terms of flow table entries and memory required for flow states. We start by defining

as D the maximum number of demands served by a switch, F the maximum number of failures that can

affect a demand (i.e. length of the longest primary path), and P the maximum number of ports of a switch.

We can easily model the number of flow entries required by means of Big-O notation as O(D × F ). Indeed,
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for table 0 the number of entries is equal to P ; for table 1 in the worst case we have one entry per demand

per fault (D × F ); for table 2 we always have exactly 7 ×D × F , and for table 3 exactly P × (3 + 2 ×D).

In total, we have a number of entries order of P + D × F + D × F + D × P and then of D × F + D × P .

Assuming F >> P we can conclude that the number of entries is O(D × F ).

If we want to evaluate the complexity according to network size, we can observe that in the worst case

F = N = E + C, where N is the number of nodes, E edge nodes and C core nodes. Assuming a path

protection scheme, which is the most demanding in terms of rules since all the Fi states are managed by the

ingress edge nodes, and a full traffic matrix, we have D = E(E− 1) ≈ E2. In the worst case we have a single

node managing all faults of all demands, where the primary path of each demand is the longest possible, thus

F = N . In this case the number of entries will be O(E2 ×N).

In Table 2 we report the values for grid networks n× n where edge nodes are the outer ones of the grid

and there is a traffic demand for each pair of edge nodes. In addition to the O(E2 ×N) values, we include in

the table the values per node (min, max, average) calculated for the case of end to end protection where the

primary path is the shortest one (number of hops) and the backup path is the shortest node disjoint from the

primary. The number of rules is generated according to the SPIDER implementation described in Section

V and available at [25]. We can observe that even the max value is always much smaller than the values

estimated by the complexity analysis, moreover, we can safely say that these are reasonable numbers for a

carrier grade router of a service provider, and well below the capabilities of data center switches. Obviously,

for more efficient protection schemes based on a distributed handling of states Fi (e.g. segment protection),

we expect an even lower number of rules per node.

As far as the state table is concerned, table 2 for node n needs Dn entries, where Dn is the number of

demands for which n is a reroute node. For the width of the table we need to consider the total number

of possible states that is 1 + 4Fn, where Fn is the number of remote failures managed by n. Similarly, for

stage 3 we have only 5 possible states and a number of entries equal to P .

6.2 Detection mechanism

To evaluate the effectiveness of the SPIDER heartbeat-based detection mechanism, we have considered a

simple experimental scenario of two nodes and a link with traffic of 1000 pkt/sec sent in one direction only.

In Figure 7 we show the number of packets lost after a link failure versus δ6 (heartbeat interval) and δ7
(heartbeat timeout). As expected, the number of losses decreases as the heartbeat interval and timeout

decreases. In general, the number of dropped packets depends on the precise instant the failure occurs w.r.t.

δ6 and δ7. The curves reported are obtained averaging the results of 10 different tries with failures reproduced

at random instants.

Table 2: Number of flow entries per node

Net D E C min avg max E2 ×N

5x5 240 16 9 443 775 968 6400

6x6 380 20 16 532 1115 1603 14400

7x7 552 24 25 795 1670 2404 28224

8x8 756 28 36 1069 2232 3726 50176

9x9 992 32 49 1368 2884 4509 82944

10x10 1260 36 64 1188 3584 6153 129600

11x11 1560 40 81 1409 4249 7558 193600

12x12 1892 44 100 1185 5124 9697 278784

13x13 2256 48 121 2062 6218 11025 389376

14x14 2652 52 144 1467 7151 15436 529984

15x15 3080 56 169 3715 8461 16347 705600
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Figure 7: Packet loss (data rate 1000 pkt/sec)

6.3 Overhead

Obviously, the price to pay for a small number of losses is the overhead due to heartbeat packets. However,

SPIDER exploits the traffic in the reverse direction for failure detection, and this reduces the amount of

heartbeat packets. For the same two nodes scenario in the previous section, we have evaluated the overhead

caused when generating a decreasing traffic profile of 200 to 0 pkt/sec, with different values of δ6. Results

are reported in Figure 8.

We can see that, as long as the reverse traffic rate is higher than the heartbeat request rate (1/δ6), zero

or low signaling overhead is observed. When the traffic rate decreases, the overhead due to heartbeats tends

to compensate for the missing packets up to the threshold. However, this overhead does not really affect the

network performance since it is generated only when reverse traffic is low.
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Figure 8: Heartbeat overhead with decreasing data traffic 200-0 pkt/sec and heartbeat request rates (inverse of δ6) of 10, 40,
70, and 100 pkt/sec
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6.4 Comparison with a reactive OpenFlow approach

We now compare a SPIDER based solution with a strawman implementation corresponding to a reactive

OpenFlow (OF) application able to modify the flow entries only when the failure is detected and notified to

the controller. We have considered the network shown in Figure 9a. For the primary and backup paths, as

well as the link failure indicated in the figure, we have considered an increasing number of demands with a

fixed packet rate of 100 pkt/sec each one. For the OF case, we used the detection mechanism of the Fast-

failover (FF) group type implemented by the CPqD softswitch, and different RTTs between the switch that

detects the failure and the controller. For SPIDER we used a heartbeat interval (δ6) of 2 ms and timeout (δ7)

of 1 ms. For all the considered flows, no local backup path is available: in the SPIDER case the network

is able to autonomously recover from the failure by bouncing packets on the primary path, while in the OF

case the controller intervention is needed to restore connectivity.

The results obtained are shown in Figure 9b. We can see that the losses with SPIDER are always lower

than OF. Note that, even if the heartbeat interval used is small, this is not actually an issue for the network

since in the presence of reverse traffic the overhead is proportionally reduced so that it never affects the link

available capacity. The value of the timeout actually depends on the maximum delay for heartbeat replies

to be delivered, which in high speed links mainly depends on propagation and can be set to low values by

assigning maximum priority to heartbeat replies. In the case of OF, the number of losses increases as the

switch-controller RTT increases. Obviously, losses also increase with the number of demands since the total

number of packets received before the controller installs the new rules increases as well.

7 Discussion

7.1 Comparison with BFD

BFD [7] is a widely-spread protocol to provide fast failure detection that is independent from the underlying

medium and data protocol. When using BFD, two systems, i.e. forwarding entities, establish a session where

control packets are exchanged to check the liveness of the session itself. In the common case the session to be

monitored represents a bidirectional link, but it could also be multi-hop path. The main of mode of detecting

failures in BFD is called Asynchronous Mode, where a session endpoint sends BFD packets at a fixed rate.

A path is assumed to have failed if one system stops receiving those packets for a given detection timeout.

Both packets send rate and detection timeout can be enforced by a network administrator to produce fast

(in the order of µs6) guaranteed detection delays. Optionally, an endpoint can explicitly request the other

to activate/deactivate transmission of control packets using the so called Demand Mode. In both modes, the

ability of party to detect a failure depends on the ability of the device-local control plane to keep track of the

6The BFD specification at [7] defines timestamps with µs granularity
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Figure 9: Comparison with OpenFlow: (a) test topology used in experiments and (b) packet loss
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elapsed time between the received control packets, and hence on the liveness of the control plane itself. For

this reason, a third way of operation, namely the Echo Function is defined in order to test the forwarding

plane of a device. When using this function, special Echo packets are emitted at arbitrary intervals by

the control plane of one of the two parties, with the expectation to have these packets looped-back by the

forwarding plane of the other endpoint.

In the context of SDN, the devices’ control plane is separated and logically centralized at a remote,

geographical distant location. Current SDN platforms [30, 31] already provide means of detecting failures

that are similar to BFD’s Asynchronous Mode, where specially forged packets are requested to be emitted

by the remote controller from a specific device port (via OpenFlow PacketOut) and expected to be received

(via OpenFlow PacketIn) by the adjacent node in a given interval. However due to the latency and overhead

of the SDN control channel it is hard to guarantee the same short detection delays as in BFD.

SPIDER improves SDN by providing ways to detect failure without relying on the slow control channel.

Indeed, in SPIDER, which mode of operation based on heartbeats resembles the BFD’s Echo Function,

detection delays can be enforced by appropriately setting timeouts δ6 and δ7, which are unique for a given

switch and port. Moreover, we believe SPIDER represents an improvement over BFD. Indeed, SPIDER

operations are performed solely on the fast-path, i.e. at TCAM speed, differently from a BFD implementation

based on the slower, device-local control plane. For this reason, to some extent, the minimum detection delay

of a target implementing SPIDER depends for the most part on the timestamp granularity provided by the

target and the propagation delay between two devices. The other general advantage of SPIDER over BFD is

that it does not require the definition of a separate control protocol, rather the same data packets are re-used

to piggy-back heartbeats using an arbitrary header field (a MPLS label in our prototype implementation).

Some disadvantages of SPIDER over BFD are:

• Security: BFD defines means to authenticate a session to avoid the possibility of a system to interact

with an attacker falsely reporting session states. In other words, all control and echo packets that

cannot be validated as coming from a safe source are discarded. On the contrary, SPIDER does not

use any mechanism to check for the the validity of the tag carried by data packets. For this reason

SPIDER tags should be used only inside the same authoritative domain, dropping any incoming packet

at the edge carrying any unexpected header and controlling physical access to the network to prevent

the intrusion of an attacker.

• False positives: BFD allows to prevent false positives (i.e. erroneously declaring a session down) by

setting a minimum number of consecutive dropped packets before declaring the session down. In fact,

in presence of transmission errors, some control packets might be unrecognized and echo packets not
looped-back. On the contrary, in SPIDER failure state for a port is triggered after the first missed

heartbeat request, that could be caused by a corrupted heartbeat request, thus causing unnecessary

fluctuation between the backup and primary path (due to the probe mechanism). For this reason,

SPIDER should be preferred with reliable communication channels (e.g. wired medium rather than

wireless). Nevertheless, heartbeat packets are smartly requested only when input traffic is low and since

we expect, most of the time, traffic flowing in both direction of a link, the transmission of heartbeat

packets itself is a quite rare event.

• Administrative down: BFD allows a network operator to administratively report a link as down, e.g.

for maintenance, thus triggering a fast reaction of the device. On the contrary, the implementation of

SPIDER presented here, allows down state only as a consequence of a failure detection event. However,

the implementation could be easily extended to accept an additional state both in the LF and RF FSMs

to declare a flow or port as affected by failure without triggering the periodic link probing process. In

this case the controller should be able to directly add or replace an entry in the state table.7

• Down state synchronization: In some cases, only 1 of the 2 directions of a link might break, an

event that is common in fiber optics. When using SPIDER, the party which incoming direction is down

will detect first the failure after the configured detection timeout, thus stopping sending traffic on that

7Possible in OpenState via state-mod messages
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port, after which the other party will trigger the down state after another detection timeout, resulting

in twice the time for the failover to take place. BFD instead, applies a mechanism for session state

synchronization, such that when a first endpoint detects the failure it notifies the other of the down

event, in which case (if one direction of the two is still up) the other endpoint will immediately trigger

the failover procedure. In this case, the LS FSM could be extended to emit such an extra signaling

message (via tagging of the first packet matching the DOWN: need probe state) and to trigger a forced

down state upon receiving such a packet.

7.2 Comparison with MPLS Fast Reroute

Fast Reroute (FRR) [8] is a technique used in MPLS network to provide fast protection (in the order of 10s of

milliseconds) of Label-switched Paths (LSP). Similarly to SPIDER, backup LSPs are established proactively

for each desired failure scenario, such that, when a router detects a failure on one of its local ports, it swaps

the label at the top of the MPLS stack with the one of the detour LSP, forwarding the packet to an alternative

port. Packets are forwarded on a detour until they reach a merge point with the primary path, where the

label is swapped back to the primary LSP. RSVP-TE signaling is used to establish backup LSPs between

routers in a distributed fashion.

Differently from FRR, SPIDER does not need a separate complex signaling protocol (which is described

in around 30 pages in the original FRR RFC [8]) to establish backup paths. Instead, computation and

provisioning of both primary and backup paths is performed by the remote controller with all the benefits of

the SDN logically centralized paradigm, such as access to a global topology graph and a centralized API to

provision forwarding rules on switches. It must be noted that in the proposed prototype implementation of

SPIDER, MPLS labels are used for the solely purpose of carrying failure tags Fi, and must not be confused

with their role in LSPs as the only parameter of the router forwarding function. In fact, in SPIDER the

forwarding function is independent on the data protocol and can be based on arbitrary header fields. For

example, as in our implementation, the output port of each packet is decided looking at the 3-tuple comprising

Ethernet source address, Ethernet destination address, and failure tag.

When an alternative path is not available from the node that detected the failure, SPIDER allows to

bounce back packets on the primary path until they reach a predefined reroute node, in which case a detour

path is enabled. A similar approach is implemented by FRR when used in combination with another RSVP-

TE extension for crankback signaling [32]. Differently from SPIDER, data packet are dropped before the

failure point, while a separate failure notification is sent back on the primary path. Signalization in SPIDER

is performed using the same data packets, with the added benefit of avoiding dropping extra traffic, a feature

particularly useful when dealing with geographical distant nodes (e.g. 100MB otherwise lost at 10Gbps with

80ms signalization latency).

7.3 Data plane reconciliation

A stateful data plane seems to disagree with the architectural principles of OpenFlow and SDN, where all the

state is handled at the logically centralized control plane, so that devices do not need to implement complex

software to handle state distribution. In fact, when dealing with legacy distributed protocols (e.g. OSPF),

an important concern is about handling state reconciliation, for example after a device reset or failure, in

which case the state of the device (e.g. topology view and link metrics in OSPF) might not be in sync with

the rest of the network devices, causing loops or black holes.

Handling data plane reconciliation with OpenFlow is relatively easy given the stateless nature of the

flow tables. Indeed, modern SDN platforms [30, 31] follow an approach were applications operate on a

distributed flow rule database that is then used to keep the data plane in sync, for example periodically

polling the devices’ flow tables so that missing flow rules are re-installed and extraneous ones removed.

SPIDER forwarding decisions are based not only on flow rules but also on flow states, maintained by the

switch and updated as a consequence of packets and timeout events. From here the question if this additional
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state needs to be synchronized (e.g. notify the controller of every state transition) and reconciliation schemes

needed.

We argue that the reliability of SPIDER operations does not necessarily require support for flow state

synchronization and reconciliation. In other words, when not used, the flow states are guaranteed to converge

to the expected value in relatively short time with no risk of traffic loops or black holes. In fact, the per-flow

state maintained by both the RF and LF FSM can be learned by observing the incoming traffic (tag value)

and does not depend on other means of state distribution. Moreover, the correctness of a forwarding decision

of a switch does not depend on the flow state of any other switch.

As an example, we analyze the case of switch j implementing SPIDER being reset (e.g. content of the

state and flow table wiped out) during a situation of remote failure (i.e. serving some flows on a detour,

and hence in macro-state Fi for the RF FSM). If we assume the controller is able to re-install the flow rules

in a time shorter than the detection delay configured on the upstream switch connected to j, so that it

will not generate a failure state Fj itself, we end up with switch j forwarding traffic according to an empty

state table, i.e. all flows in default state for both the RF and LF FSM. In this case, when a packet of a

traffic flow affected by the failure state Fi arrives, it will be initially forwarded as in Normal state on the

primary path, meaning that the switch directly connected to the unreachable node i will bounce back the

packet appropriately tagged with Fi, triggering a state transition to Fault signaled on switch j, and hence

initiating the failover procedure. Similarly, if node j is affected by a local failure state Fj, resetting the state

table of the LF FSM will have as a consequence that packets will be forwarded according to the default state

(UP: need heartbeat), initiating the failure detection procedure, finally converging to the expected failure

state. The tax to pay in this case is a few more packets dropped, depending on the detection delay configured

for that node. If the time to re-provision the switch configuration (flow tables) after a reset takes more than

the detection delay, this situation can be interpreted as a multiple concurrent failure for which a rerouting

of flows is required to be performed by the controller.

8 Conclusion

In this paper we have presented SPIDER, a new approach to failure recovery in SDN that provides a fully

programmable abstraction to application developers for the definition of the re-routing policies and for the

management of the failure detection mechanism. The use of recently proposed stateful data planes, allows to

execute the programmed failure recovery behaviors directly in the switches, minimizing the recovery delay and

guaranteeing the failover even when the controller is not reachable. We believe that the proposed approach

can close one of the gaps between the required and supported features that at the moment are slowing down

the adoption of SDN in carrier grade networks for telco operators.

SPIDER has been implemented using OpenState and P4. The prototype implementation (code is made

available at [25]) has been used to validate the proposed scheme and to experimentally assess its basic

performance in a few example scenarios. The results have shown the potential advantages of SPIDER with

respect to fully centralized applications where the controller is notified of failure events and is required to

modify all affected forwarding rules.
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