
Les Cahiers du GERAD ISSN: 0711–2440

A regularized factorization-free method
for equality-constrained optimization

S. Arreckx
D. Orban

G–2016–65

August 2016
Revised: January 2018

La collection Les Cahiers du GERAD est constituée des travaux de
recherche menés par nos membres. La plupart de ces documents de
travail a été soumis à des revues avec comité de révision. Lorsqu’un
document est accepté et publié, le pdf original est retiré si c’est
nécessaire et un lien vers l’article publié est ajouté.

Citation suggérée: Arreckx, Sylvain; Orban, Dominique (Aot 2016).
A regularized factorization-free method for equality-constrained
optimization, Rapport technique, Les Cahiers du GERAD G-2016-65,
GERAD, HEC Montréal, Canada. Rvision: Janvier 2018.

Avant de citer ce rapport technique, veuillez visiter notre site Web
(https://www.gerad.ca/fr/papers/G-2016-65) afin de mettre à jour
vos données de référence, s’il a été publié dans une revue scientifique.

The series Les Cahiers du GERAD consists of working papers carried
out by our members. Most of these pre-prints have been submitted to
peer-reviewed journals. When accepted and published, if necessary, the
original pdf is removed and a link to the published article is added.

Suggested citation: Arreckx, Sylvain; Orban, Dominique (August
2016). A regularized factorization-free method for equality-constrained
optimization, Technical report, Les Cahiers du GERAD G-2016-65,
GERAD, HEC Montréal, Canada. Revised: January 2018.

Before citing this technical report, please visit our website (https://
www.gerad.ca/en/papers/G-2016-65) to update your reference data,
if it has been published in a scientific journal.

La publication de ces rapports de recherche est rendue possible grâce au
soutien de HEC Montréal, Polytechnique Montréal, Université McGill,
Université du Québec à Montréal, ainsi que du Fonds de recherche du
Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2018
– Bibliothèque et Archives Canada, 2018

The publication of these research reports is made possible thanks to the
support of HEC Montréal, Polytechnique Montréal, McGill University,
Université du Québec à Montréal, as well as the Fonds de recherche du
Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2018
– Library and Archives Canada, 2018

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2016-65
https://www.gerad.ca/en/papers/G-2016-65
https://www.gerad.ca/en/papers/G-2016-65

A regularized factorization-free method for equality-constrained
optimization

Sylvain Arreckx

Dominique Orban

GERAD & Department of Mathematics and Industrial
Engineering, Polytechnique Montréal, Montréal
(Québec) Canada

sylvain.arreckx@gerad.ca

dominique.orban@gerad.ca

August 2016
Revised: January 2018
Les Cahiers du GERAD
G–2016–65
Copyright c© 2018 GERAD, Arreckx, Orban

Les textes publiés dans la série des rapports de recherche Les Cahiers du
GERAD n’engagent que la responsabilité de leurs auteurs. Les auteurs
conservent leur droit d’auteur et leurs droits moraux sur leurs publica-
tions et les utilisateurs s’engagent à reconnâıtre et respecter les exigences
légales associées à ces droits. Ainsi, les utilisateurs:
• Peuvent télécharger et imprimer une copie de toute publication

du portail public aux fins d’étude ou de recherche privée;

• Ne peuvent pas distribuer le matériel ou l’utiliser pour une ac-
tivité à but lucratif ou pour un gain commercial;

• Peuvent distribuer gratuitement l’URL identifiant la publication.
Si vous pensez que ce document enfreint le droit d’auteur, contactez-
nous en fournissant des détails. Nous supprimerons immédiatement
l’accès au travail et enquêterons sur votre demande.

The authors are exclusively responsible for the content of their research
papers published in the series Les Cahiers du GERAD. Copyright and
moral rights for the publications are retained by the authors and the users
must commit themselves to recognize and abide the legal requirements
associated with these rights. Thus, users:
• May download and print one copy of any publication from the

public portal for the purpose of private study or research;

• May not further distribute the material or use it for any profit-
making activity or commercial gain;

• May freely distribute the URL identifying the publication.
If you believe that this document breaches copyright please contact us
providing details, and we will remove access to the work immediately
and investigate your claim.

ii G–2016–65 Les Cahiers du GERAD

Abstract: We propose a method for equality-constrained optimization based on a problem in which all
constraints are systematically regularized. The regularization is equivalent to applying an augmented
Lagrangian method but the linear system used to compute a search direction is reminiscent of regularized
sequential quadratic programming (SQP). A limited-memory BFGS approximation to second derivatives
allows us to employ iterative methods for linear least squares to compute steps, resulting in a factorization-free
implementation. We establish global and fast local convergence under weak assumptions. In particular,
we do not require the LICQ and our method is suitable for degenerate problems. Preliminary numerical
experiments show that a factorization-based implementation of our method exhibits significant robustness
while a factorization-free implementation, though not as robust, is promising. We briefly discuss generalizing
our framework to other classes of methods and to problems with inequality constraints.

Keywords: Sequential quadratic programming, regularization, augmented Lagrangian, limited-memory
BFGS, factorization-free method

Résumé : Nous proposons une méthode d’optimisation sans factorisation pour les problèmes avec contraintes
d’égalité pour lesquels toutes les contraintes sont systématiquement régularisées. Cette régularisation est
équivalente à l’application d’une méthode de lagrangien augmenté dans laquelle les systèmes linéaires utilisés
pour calculer une direction de recherche sont similaires à ceux des méthodes de programmation quadratique
séquentielle (SQP). Grâce à l’emploi d’approximations BFGS à mémoire limitée des dérivées secondes, des
méthodes itératives pour les moindres carrés linéaires peuvent être utilisées afin de calculer par étapes, faisant
de la méthode proposée une méthode sans factorisation. Nous établissons rapidement une convergence globale
et locale sous de faibles hypothèses. En particulier, la LICQ n’est pas requise et notre méthode est adaptée pour
la résolution de problèmes dégénérés. Les résultats numériques préliminaires montrent qu’une implémentation
avec factorisation de notre méthode est significativement robuste alors qu’une implémentation sans factorisation,
bien que moins robuste, est prometteuse. Une brève discussion est incluse sur la généralisation de notre
approche à d’autres classes de méthodes ainsi qu’aux problèmes avec inégalités.

Mots clés : Programmation quadratique séquentielle, régularisation, méthode de lagrangien augmenté, BFGS
à mémoire limitée, méthode sans factorisation

Acknowledgments: Research partially supported by an NSERC Discovery Grant.

Les Cahiers du GERAD G–2016–65 1

1 Introduction

We consider the general equality-constrained optimization problem

minimize
x∈Rn

f(x) subject to c(x) = 0. (1)

The main objective of this paper is to devise an implementable factorization-free algorithm for (1) in the

large-scale case that is somewhat resilient to constraint degeneracy and does not require matrix-vector

products with potentially ill-conditioned operators such as J(x)TJ(x), where J is the Jacobian of c, as is

the case with a standard augmented Lagrangian method. We propose a framework inspired by that of [3]

in which all constraints are systematically regularized. We show that the regularization can be interpreted

as a proximal-point Hestenes-Powell augmented Lagrangian method applied to (1) in the same vein as [40].

Our method uses the proximal augmented Lagrangian as merit function to promote global convergence and

asymptotically blends into a stabilized SQP method possessing fast local convergence properties. Thanks

to appropriate limited-memory BFGS approximations of the Hessian of the Lagrangian, the linear system

encountered at each iteration is symmetric and quasi-definite (SQD) [41], permitting inexact solves and an

entirely factorization-free implementation suggested by methods described in [36]. We assume that f : Rn → R

and c : Rn → R
m are twice continuously differentiable, although we only use exact second derivatives as an

instrument in the analysis and in numerical illustration. In practice, only first derivatives are required when

employing L-BFGS approximations.

The Karush-Kuhn-Tucker (KKT) conditions for (1) are only necessary for optimality when a constraint

qualification holds. The most widely used constraint qualification condition, the Linear Independence

Constraint Qualification (LICQ), requires that all constraint gradients be linearly independent at a stationary

point. When such a constraint qualification fails to hold, the KKT conditions cease to be reliable for optimality.

When it fails to hold at intermediate iterates, computational difficulties also arise. In particular, the linear

systems used to compute search directions may become singular. Our regularization scheme is designed so as

to overcome such complications.

We show that our method possesses global convergence properties similar to those of augmented Lagrangian

methods [6, 7]. In addition, we show that whenever the sequence of iterates converges to an isolated minimizer,

the algorithm reduces asymptotically to pure stabilized SQP iterations and converges superlinearly. The

convergence rate is quadratic if second-derivative approximations and steps are sufficiently accurate. Our
numerical experiments show that the proposed scheme is efficient and robust.

Related Work

Sequential quadratic programming (SQP) methods [8, 43] are among the most successful methods for the

solution of (1). They compute steps via a sequence of subproblems in which a quadratic model of the Lagrangian

is minimized subject to linearized constraints. Convergence is enforced by requiring an improvement in a merit

function at each step. Each iteration of an SQP method requires the solution of a linear system that involves

the constraint Jacobian and its transpose. Most convergence analyses for SQP and most SQP implementations

require that those linear systems be solved exactly. In many large-scale applications, constraint Jacobians

are only available as linear operators. In such cases, systems must be solved iteratively and inexactly, and

it is crucial to account for this inexactness in the design and convergence analysis. An inexact trust-region

SQP algorithm for equality constrained optimization is introduced in [28]. A composite-step approach is

described in which the step in decomposed into a quasi-normal and a tangential step. A set of stopping criteria

designed for controlling the inexactness of substep computations is given and ensures global convergence

of their algorithm. The authors of [11] propose an inexact line-search SQP method for (1) where steps are

computed from an inexact solution of a KKT system. A perturbation of the Hessian of the Lagrangian is

employed to deal with nonconvexity. The perturbation is determined iteratively and may require repeated
KKT solves per step computation. Two distinct termination tests control the level of inexactness in the step

computation procedure.

Stabilized SQP methods were designed to remedy the numerical and theoretical difficulties associated with

degenerate problems [15, 27, 46]. The term stabilized refers to the calming effect on multiplier estimates for

2 G–2016–65 Les Cahiers du GERAD

degenerate problems [27, 45]. Stabilized SQP promises superlinear local convergence under certain assumptions,

but not global convergence to a stationary point. The literature is sparse on globally-convergent methods

that reduce to a sequence of stabilized SQP steps in the local regime. In [16], the authors combine stabilized

SQP with the inexact restoration method to ensure convergence from an arbitrary starting point. The

authors of [21] establish connections between stabilized SQP and augmented Lagrangian methods, including

primal-dual variants of the augmented Lagrangian. In the equality-constrained case, the method described

in the present paper is related to that in [31], where stabilized SQP is combined with the usual augmented

Lagrangian algorithm when inequalities are present, although we emphasize algorithmic choices lending

themselves to an efficient factorization-free implementation. The method of [31] also applies to problems with

inequality constraints, which are penalized in the usual way by a primal augmented Lagrangian. However, their

algorithm doesn’t allow quasi-Newton approximations to second-order derivatives and linear systems must be

solved exactly. In the context of equality-constrained problems, [32] propose outer iterations globalized by a

merit function that combines the primal augmented Lagrangian and a quadratic penalty on dual feasibility.

Several references focus on the primal-dual augmented Lagrangian as primary merit function. Global and

local convergence properties of an active-set method for problems with equality constraints and bounds are

presented in [23, 24]. The authors of [2] propose a primal-dual augmented Lagrangian approach to solve
equality constrained optimization problems that is quadratically convergent. However, local convergence

assumes the LICQ, exact linear system solves and exact second derivatives.

Notation

Throughout the paper, ‖ · ‖ denotes the Euclidean norm and I denotes the identity matrix of appropriate

size. For any symmetric and positive definite matrix H, the H-norm is defined as ‖u‖2H := uTHu. We use

λmin(M) and λmax(M) to denote the smallest and largest eigenvalue of any symmetric matrix M . Similarly,

σmin(A) and σmax(A) denote the smallest and largest singular values of any matrix A. For two non-negative

scalar sequences ak and bk converging to zero, we use the Landau symbols ak = o(bk) if limk→+∞ ak/bk = 0

and ak = ω(bk) if bk = o(ak). We write ak = O(bk) if there exists a constant C > 0, such that ak ≤ Cbk for

large k and ak = Θ(bk) if ak = O(bk) and bk = O(ak).

The rest of the paper is organized as follows. Section 2 summarizes the connection between augmented

Lagrangians and regularized SQP methods. In Section 3, we describe our algorithm in detail. Its global

convergence properties are given in Section 4. Local convergence is analyzed in Section 5. We describe our

implementations and report on numerical experience in Section 6. We conclude and discuss extensions to our

framework in Section 7.

2 A primal-dual regularization and regularized SQP methods

The Lagrangian for (1) is defined as

L(x, y) := f(x)− c(x)T y, (2)

where y ∈ Rm is the vector of Lagrange multipliers associated to the equality constraints. If x∗ is a local

minimizer of (1), the KKT conditions require that there exist y∗ such that

g(x∗)− J(x∗)T y∗ = 0, c(x∗) = 0, (3)

where g(x) := ∇f(x) and J(x) is the Jacobian of c(x). Existence of such a y∗ is only guaranteed provided a

constraint qualification condition holds at x∗. Should constraint qualifications fail to hold at x∗, there may

exist no y∗ satisfying (3) or there may exist an unbounded set of them [20]. In either case, numerical methods,

such as SQP methods, may be confronted with degenerate direction-finding subproblems.

For the purposes of this paper, we say that (1) is degenerate at a feasible x if the LICQ fails to hold at x,

i.e., the vectors ∇ci(x), i = 1, . . . ,m, are linearly dependent.

Consider applying an augmented Lagrangian method to (1). If we denote yk the current approximation of

the Lagrange multipliers, the k-th subproblem has the form

minimize
x∈Rn

L(x, yk) + 1
2δ
−1
k ‖c(x)‖2, (4)

Les Cahiers du GERAD G–2016–65 3

where δk > 0 is a penalty parameter. Following the procedure outlined in [19], it is not difficult to see that (4)

may equivalently be written as

minimize
x∈Rn

,u∈Rm
f(x) + 1

2δk‖u+ yk‖
2 subject to c(x) + δku = 0, (5)

for some new variables u. The problem (5) provides an interpretation of the augmented Lagrangian method

as an adaptive constraint regularization process. Since the regularization acts on the constraints and adds a

term to the objective involving the multipliers, we term it dual. Of paramount importance is the fact that the

LICQ is satisfied at every feasible point of (5).

In addition to the dual regularization term, we follow [19] and add primal regularization in the form of a

proximal-point term, so that the k-th subproblem takes the form

minimize
x∈Rn

,u∈Rm
f(x) + 1

2ρk‖x− xk‖
2 + 1

2δk‖u+ yk‖
2 subject to c(x) + δku = 0, (6)

for a primal regularization parameter ρk ≥ 0, where xk is the current primal iterate.

The KKT conditions for (6), g(x) + ρk(x− xk)− J(x)T y
δk(u+ yk)− δky

c(x) + δku

 =

0
0
0

 (7)

are therefore unconditionally necessary for optimality for any fixed value of ρk ≥ 0 and δk > 0. The following

relationship between KKT points of (1) and those of (6) illustrates the fact that the primal-dual regularization

is exact.

Theorem 1 Suppose (xk, uk, yk) is a KKT point of (6) for some ρk ≥ 0 and δk > 0. Then (xk, yk) is a KKT

point of (1).

Alternatively, suppose ρk = 0 and (x̄, ū, ȳ) is a KKT point of (6) for some δk > 0 and suppose x̄ is feasible

for (1). Then ū = 0, ȳ = yk and (x̄, ȳ) is a KKT point of (1).

Conversely, suppose (x∗, y∗) is a KKT point of (1). Then (xk, uk, yk) := (x∗, 0, y∗) is a KKT point of (6)

for any ρ ≥ 0 and δ > 0.

Proof. Immediate, by direct comparison of (3) and (7).

Sequential quadratic programming methods for (6) may be interpreted as applying Newton’s method

to (7). A Newton-like step for (7) from (xk, uk, yk) solves the linear systemHk + ρkI −JTk
δkI −δkI

Jk δkI

∆x
∆u
∆y

 = −

gk − JTk ykδkuk
ck + δkuk

 , (8)

where gk := g(xk), ck := c(xk), Jk := J(xk) and Hk is a symmetric approximation of ∇xxL(xk, yk). The

elimination of ∆u = −uk + ∆y yields the reduced system[
Hk + ρkI JTk

Jk −δkI

] [
∆x
−∆y

]
= −

[
gk − J

T
k yk

ck

]
, (9)

which is the familiar system encountered in stabilized SQP methods [45], while the system used in classical

SQP methods corresponds to δk = 0. For simplicity in the rest of this paper, the coefficient matrix of (9) is

referred as Kk. The system (9) may be interpreted as the KKT conditions of the quadratic subproblem

minimize
∆x,∆u

∇xL(xk, yk)T∆x+ 1
2∆xT (Hk + ρkI)∆x+ 1

2δk‖uk + ∆u‖2

subject to ck + Jk∆x+ δk(uk + ∆u) = 0.
(10)

4 G–2016–65 Les Cahiers du GERAD

Note that (10) itself always satisfies the LICQ and therefore infeasible subproblems never occur. The primal

regularization term ρkI may be interpreted as a convexifying term that encourages descent in an appropriate

merit function.

Given a fixed x̄ ∈ Rn, we define

φ(x, y; x̄, ρ, δ) := f(x)− c(x)T y + 1
2ρ‖x− x̄‖

2 + 1
2δ
−1‖c(x)‖2. (11)

For future reference, we note that

∇xφ(x̄, y; x̄, ρ, δ) = ∇xL(x̄, y) + δ−1J(x̄)T c(x̄) = g(x̄)− J(x̄)T (y − δ−1c(x̄)). (12)

For simplicity of exposition, we write φ(x, y; ρ, δ) instead of φ(x, y;x, ρ, δ). We also let w := (x, y) and define

F : Rn+m → R
n+m as F (w) := (∇xL(w), c(x)).

3 Main algorithm

Algorithm 1 is a simplification of [3, Algorithm 1] that ignores inequality constraints and allows symmetric

Hessian approximations. In the description, we make use of the norm ‖F (w)‖∗ := ‖∇xL(w)‖+ ‖c(x)‖.

Algorithm 1 Outer iteration

1: Choose α ∈ (0, 1), θ ∈ (0, 1), and ε > 0. Set k = 0.
2: If ‖F (wk)‖ < ε, terminate with final iterate wk.

3: Choose a symmetric matrix Hk, ρk ≥ 0, and δk ∈ [min(‖F (wk)‖, αδk−1), δk−1]. Compute a trial iterate w
+
k as an

approximate solution of

Kk(w
+
k − wk) + F (wk) = 0. (13)

4: Choose εk > 0. If

‖F (w
+
k)‖∗ ≤ θ‖F (wk)‖∗ + εk, (14)

then set wk+1 = w
+
k . Otherwise perform a sequence of inner iterations in order to find a new iterate wk+1 such that

‖F (wk+1)‖∗ ≤ θ‖F (wk)‖∗ + εk. (15)

Increment k by one and return to Step 2.

The main idea of Algorithm 1 is to start each outer iteration with an extrapolation step (13). The

extrapolation step is accepted if it achieves sufficient improvement in the first-order optimality residual. In
the negative, an inner iteration procedure is started in order to identify an improved iterate.

A certain amount of flexibility is allowed in choosing the parameters ρk and δk at the beginning of each

outer iteration. An important feature for global convergence is that it is allowed to keep δk fixed, at least

after a certain number of iterations. An important feature for fast local convergence is that it is allowed to

select δk = ‖F (wk)‖ when close to an isolated minimizer.

Algorithm 2 describes the linesearch procedure used as the inner iteration, which is essentially a standard

augmented Lagrangian subproblem solve in which steps are computed using the augmented form (16) followed

by a Wolfe linesearch on the proximal augmented Lagrangian. During the inner iterations, yk is kept fixed.

The inner primal iterates and regularization parameter corresponding to the k-th outer iteration are denoted

xk,j , ρk,j and δk,j for j ≥ 0. The inner iterations stop as soon as the first-order optimality residual of (1) has

improved in the sense of (14). As in the standard augmented Lagrangian, the penalty parameter is decreased

when dual feasibility improved but primal feasibility lags behind.

In Step 3 of Algorithm 1 and Step 3 of Algorithm 2, the linear system could be solved exactly, but there

is flexibility to compute an inexact solution. The inexactness in the outer iteration is a departure from the

framework of [3].

In Algorithm 2, steplengths are computed so as to satisfy the Wolfe conditions. The reason for this

requirement is that the global convergence analysis is based on a simple application of Zoutendijk’s theorem [34,

Theorem 3.2], which requires the Wolfe conditions. We believe it is possible to develop a global convergence

analysis based solely on the Armijo condition, in the vein of [2].

Les Cahiers du GERAD G–2016–65 5

Algorithm 2 Inner iteration

1: Set j to 0. Choose an initial guess wk,0 and δk,0 > 0. Choose c1 and c2 such that 0 < c1 < c2 < 1.

2: If ‖∇xL(xk,j , yk − δ
−1
k,jc(xk,j))‖ ≤ θ‖∇xL(xk,0, yk)‖+ 1

2
εk, then

if ‖c(xk,j)‖ ≤ θ‖c(xk,0)‖+ 1
2
εk, stop with wk+1 = (xk,j , yk − δ

−1
k,jc(xk,j)),

otherwise, set δk,j = δk,j−1/10.

Go to Step 3.
3: Choose a symmetric matrix Hk,j and ρk,j ≥ 0. Compute ∆xj as an approximate solution to[

Hk,j + ρk,jI J
T
k,j

Jk,j −δk,jI

] [
∆xj
−∆yj

]
= −

[
gk,j − J

T
k,jyk

ck,j

]
. (16)

4: Set xk,j+1 = xk,j + αj∆xj , where αj is obtained using a line search and satisfies the Wolfe conditions:

φ(xk,j+1, yk;xk,j , ρk,j , δk,j) ≤ φ(xk,j , yk; ρk,j , δk,j) + c1αj∇φ(xk,j , yk; ρk,j , δk,j)
T

∆xj

∇φ(xk,j+1, yk;xk,j , ρk,j , δk,j)
T

∆xj ≥ c2∇φ(xk,j , yk; ρk,j , δk,j)
T

∆xj .

Increment j by one and return to Step 2.

The next section examines the global convergence properties of Algorithms 1 and 2 and, in particular,

what conditions should be imposed on inexact steps.

4 Global convergence

In this section, we examine in turn the convergence of Algorithms 1 and 2.

4.1 Convergence of the inner iterations

The convergence of the inner iterations is divided into two parts depending on whether linear systems are

solved exactly or not. In Section 4.1.1, we assume that the linear systems of Algorithms 1 and 2 are solved

exactly. That situation covers the case where the systems are solved via a factorization, whether exact second

derivatives are used or not. It also covers the case where the linear systems are solved iteratively but with

an extremely tight tolerance, although that is not realistic in practice. In Section 4.1.2, we assume that

systems are solved inexactly and we describe the iterative procedure that we use. The latter relies on Hk

being positive definite and such that linear systems with coefficient Hk can be solved easily and cheaply.

Such a situation occurs when Hk is a limited-memory BFGS approximation to the second derivatives, and

that is our selection of choice. With that choice, Hk itself is never really needed and we simply maintain its

inverse implicitly [33]. Other choices are of course possible, including Hk = I, or a positive-definite diagonal

approximation of ∇2
xxL(xk, yk).

In this section, k denotes the outer iteration index and appears everywhere to avoid ambiguity. We refer to

the coefficient of the linear system at outer iteration k and inner iteration j in Step 3 of Algorithm 2 as Kk,j .

Our main working assumption is as follows.

Assumption 4.1 The gradients gk,j, the matrices Hk,j and the matrices Jk,j are uniformly bounded for all

j ∈ N. Moreover, ρk,j is bounded for all j ∈ N.

Section 4.1.1 examines the situation where (16) is solved exactly. Because Hk,j may be indefinite, the role

of ρk,j is to convexify locally so that Hk,j + ρk,jI is positive definite on the nullspace of Jk,j . Our assumption

that ρk,j is bounded is reasonable in the sense that it amounts to assuming that the most negative eigenvalue

of the reduction of Hk,j to the nullspace of Jk,j is bounded below.

4.1.1 Exact system solves

When Hk,j is not positive definite, which is typically the case when exact second-derivatives are used, ρk,j must

be sufficiently large to ensure that ∆xj is a descent direction for the proximal augmented Lagrangian. Linear

6 G–2016–65 Les Cahiers du GERAD

systems may be solved using a symmetric indefinite factorization such as the multifrontal implementation

MA57 [14]. Because this factorization reveals the inertia of Kk,j , the regularization parameter ρk,j can be

increased until the correct inertia is detected [25]. Such a procedure is similar to that used in IPOPT [42].

Those observations motivate the following assumption.

Assumption 4.2 The matrices Hk,j+ρk,jI+δ−1
k,jJ

T
k,jJk,j are uniformly positive definite and uniformly bounded

for all j ∈ N, i.e., there exist constants σ ≥ σ > 0 such that for all j ∈ N and all d ∈ Rn,

σ‖d‖2 ≤ dT (Hk,j + ρk,jI + δ−1
k,jJ

T
k,jJk,j)d ≤ σ‖d‖

2.

Assumption 4.2 implies that {Hk,j + ρk,jI} is uniformly positive definite over the nullspace of Jk,j for all

j ∈ N.

Theorem 2 (Inner iteration, exact solves) Suppose that Assumption 4.2 holds and that φ(·, yk; ρk,j , δk,j) is

bounded below for all j. Then Algorithm 2 generates a sequence of iterates xk,j such that

lim
j→+∞

‖∇xφ(xk,j , yk; ρk,j , δk,j)‖ = 0.

Proof. We eliminate ∆yj from (16) and use (12) to obtain(
Hk,j + ρk,jI + δ−1

k,jJ
T
k,jJk,j

)
∆xj = −∇xφ(xk,j , yk; ρk,j , δk,j). (17)

We take the inner product of both sides of (17) with ∆xj and use Assumption 4.2, and obtain

−∇xφ(xk,j , yk; ρk,j , δk,j)
T∆xj ≥ σ‖∆xj‖

2. (18)

Assumption 4.2 and (17) yield

‖∆xj‖ ≥ λmin

(
(Hk,j + ρk,jI + δ−1

k,jJ
T
k,jJk,j)

−1
)
‖∇xφ(xk,j , yk; ρk,j , δk,j)‖

=
(
λmax(Hk,j + ρk,jI + δ−1

k,jJ
T
k,jJk,j)

)−1

‖∇xφ(xk,j , yk; ρk,j , δk,j)‖

≥ σ−1‖∇xφ(xk,j , yk; ρk,j , δk,j)‖.

Therefore

−
∇xφ(xk,j , yk; ρk,j , δk,j)

T∆xj
‖∇xφ(xk,j , yk; ρk,j , δk,j)‖ ‖∆x‖

≥ σ/σ > 0.

Zoutendijk’s theorem ensures that

lim
j→∞

(
−
∇xφ(xk,j , yk; ρk,j , δk,j)

T∆x

‖∇φ(xk,j , yk; ρk,j , δk,j)‖‖∆x‖

)2

‖∇φ(xk,j , yk; ρk,j , δk,j)‖
2 = 0,

from which the desired result follows immediately.

Theorem 2 implies that the first stopping condition of Algorithm 1 is satisfied after a finite number of

iterations because (12) can also be written

∇xφ(xk,j , yk; ρk,j , δk,j) = ∇xL(xk,j , yk − δ
−1
k,jc(xk,j)).

In order to determine when the second stopping condition holds, we consider the following cases.

If {δk,j}j∈N is bounded away from zero, the mechanism of Algorithm 2 guarantees that the stopping

condition ‖c(xk,j)‖ ≤ θ‖c(xk,0)‖+ 1
2εk is eventually satisfied.

Les Cahiers du GERAD G–2016–65 7

If, on the contrary, there is an index set J such that limj∈J δk,j = 0, the inner iterations may not terminate

if ‖c(xk,j)‖ > θ‖c(xk,0)‖+ 1
2εk for all j. Because of Theorem 2, we have

0 = lim
j∈J

δk,j∇xφ(xk,j , yk; ρk,j , δk,j)

= lim
j∈J

δk,j

(
g(xk,j)− J(xk,j)

T yk

)
+ J(xk,j)

T c(xk,j).

Under Assumption 4.1, the first term of the previous left-hand side converges to zero, and therefore

lim
j∈J

J(xk,j)
T c(xk,j) = 0.

In other words, any limit point x̄k of {xk,j}j∈J is stationary for the (typically underdetermined) least-squares

problem

minimize
x∈Rn

1
2‖c(x)‖2.

If x̄k is feasible, the k-th set of inner iterations eventually terminates. If x̄k is infeasible, we say that it is an

infeasible stationary point for the infeasibility measure ‖c(x)‖. Convergence to such a stationary point occurs,

among other situations, when (1) is infeasible or locally infeasible.

4.1.2 Inexact system solves: a quasi-Newton strategy

A difficulty associated with the iterative solution of systems of the form (16), e.g., using MINRES [37], is the

need to balance residuals associated to each block equation, as in [11]. The framework detailed in this section

solves one of the block equations exactly while controlling the residual associated to the other. That is done

by transforming (16) into the first-order optimality conditions of a preconditioned linear least-squares problem.

The preconditioner used, H−1
k,j in the present case, must be applied at each iteration of an iterative method

for least-squares problems. It is therefore crucial that H−1
k,j be positive definite and cheaply applicable.

In this section, we make the following assumption.

Assumption 4.3 The matrices Hk,j are uniformly positive definite and uniformly bounded for all j ∈ N.

For the above reasons, and in order to preserve hope for fast local convergence when close to an isolated

minimizer, we set Hk,j to a limited-memory BFGS approximation of the Hessian of the Lagrangian [33] that

is possibly modified to take into account the fact that the Hessian of the Lagrangian cannot be expected to

be positive definite. Details are not relevant here and will be given in Section 6. By construction, L-BFGS

approximations are always positive definite. In addition, their inverse can be implicitly maintained and

updated along the iterations, and can be applied to a vector cheaply using either the two-loop recursion or the
compact storage format [10], or by maintaining the approximation in factored form [13, Algorithm A9.4.2].

With such a choice, Kk,j is SQD, and therefore nonsingular irrespective of the rank of Jk,j . We always set

ρk,j = 0 when Hk,j is an L-BFGS approximation.

We first cast (16) as a least-square problem. We introduce ∆ȳ := ∆y + δ−1
k,jck,j , and rewrite (16)

equivalently as [
Hk,j JTk,j
Jk,j −δk,jI

] [
∆x
−∆ȳ

]
=

[
bk,j
0

]
(19)

where bk,j = −gk,j + JTk,j(yk − δ
−1
k,jck,j) = −∇xφ(xk,j , yk; ρk,j , δk,j). In [7] a similar system is obtained from

linear algebra transformations of the Newton equations ∇2
xxφ(x, y; ρ)d = −∇xφ(x, y; ρ).

The shifted system (19) can be seen as the necessary and sufficient optimality conditions of the regularized

and preconditioned least-squares problem

minimize
∆ȳ

1
2‖J

T
k,j∆ȳ + bk,j‖

2

H
−1
k,j

+ 1
2‖∆ȳ‖

2
δk,jI

. (20)

8 G–2016–65 Les Cahiers du GERAD

The latter can be solved approximately using a stopping criterion based exclusively on the residual of the

second block equation of (19), i.e., the optimality residual of (20):

rk,j(∆ȳ) := Jk,j∆x+ δk,j∆ȳ, (21)

where ∆x := H−1
k,j (J

T
k,j∆ȳ + bk,j) is the least-squares residual.

Our choice is to solve (20) with the LSMR method [17] modified as recommended in [36] to accommodate

non-Euclidean norms. This choice is motivated by the fact that we wish to reduce the residual of (19), or

equivalently, of (16), below a certain threshold. The least-squares interpretation guarantees that the first

block equation is always satisfied exactly, by definition of the least-squares residual. The residual of the

second block equation is precisely rk,j(∆ȳ). An important property of LSMR, that is not shared by other

methods such as LSQR [38], is that it decreases an appropriate norm of the optimality residual of (20), i.e., of

rk,j(∆ȳ), monotonically. Finally, using LSMR as described above can save half of the iterations as compared

to using MINRES with the natural preconditioner blkdiag(Hk,j , δk,jI) applied to (19) [36].

Our implementation requires that two termination tests be satisfied. The first guarantees sufficient descent.

Termination Test 1 A step (∆x,∆ȳ) is an acceptable inexact solution of (19) if

‖rk,j(∆ȳ)‖2
δ
−1
k,jI

+ γj‖bk,j‖
2

H
−1
k,j
≤ ‖JTk,j∆ȳ + bk,j‖

2

H
−1
k,j

+ ‖∆ȳ‖2δk,jI
, (22)

for some γj > 0.

We defer comments on Termination Test 1 until the end of this section.

Lemma 1 Let Assumptions 4.1 and 4.3 be satisfied. Suppose that Termination Test 1 is satisfied. Then

−∇xφ(xk,j , yk; ρk,j , δk,j)
T∆x ≥ γ̄j ‖∇xφ(xk,j , yk; ρk,j , δk,j)‖

2,

where γ̄j := 1
2γj/λmax(Hk,j).

Proof. Let us denote φk,j := φ(xk,j , yk; ρk,j , δk,j) and Mk,j := Hk,j + δ−1
k,jJ

T
k,jJk,j for conciseness.

The first block equation of (19) and (21) yield

−∇xφ
T
k,j∆x = ∆xTHk,j∆x−∆ȳTJk,j∆x

= ∆xTHk,j∆x+ δk,j∆ȳ
T∆ȳ −∆ȳT rk,j(∆ȳ). (23)

Isolating ∆ȳ in the second block equation of (19), substituting it into the first one and using (21) gives

−∇xφk,j = Mk,j∆x− δ
−1
k,jJ

T
k,jrk,j(∆ȳ). (24)

Thus

−∇xφ
T
k,j∆x = ∆xTMk,j∆x− δ

−1
k,j∆x

TJTk,jrk,j(∆ȳ). (25)

Adding (23) and (25) together, dividing by 2 and noting that the norm of the residual rk,j(∆ȳ) can be

expressed as

‖Jk,j∆x+ δk,j∆ȳ‖
2 := rk,j(∆ȳ)T rk,j(∆ȳ) = ∆xTJTk,jrk,j(∆ȳ) + δk,j∆ȳ

T rk,j(∆ȳ), (26)

leads to

−∇xφ
T
k,j∆x = 1

2∆xTMk,j∆x+ 1
2∆xTHk,j∆x+ 1

2‖∆ȳ‖
2
δk,jI

− 1
2‖rk,j‖

2

δ
−1
k,jI

= 1
2∆xTMk,j∆x+ 1

2‖J
T
k,j∆ȳ + bk,j‖

2

H
−1
k,j

+ 1
2‖∆ȳ‖

2
δk,jI

− 1
2‖rk,j‖

2

δ
−1
k,jI

≥ 1
2‖J

T
k,j∆ȳ + bk,j‖

2

H
−1
k,j

+ 1
2‖∆ȳ‖

2
δk,jI

− 1
2‖rk,j‖

2

δ
−1
k,jI

≥ 1
2‖J

T
k,j∆ȳ + bk,j‖

2

H
−1
k,j

+ 1
2‖∆ȳ‖

2
δk,jI

− 1
2‖rk,j‖

2

δ
−1
k,jI

,

where we denoted rk,j := rk,j(∆ȳ) for brevity. Using (22) yields −∇xφ
T
k,j∆x ≥ 1

2γj ‖∇xφk,j‖
2

H
−1
k,j
≥

γ̄j ‖∇xφk,j‖
2.

Les Cahiers du GERAD G–2016–65 9

The second termination test requires sufficient decrease in the optimality residual of (20) with a specific

form of the relative tolerance.

Termination Test 2 Let µ > 0 and 0 ≤ β2 ≤ 1 be given constants. A step (∆x,∆ȳ) is an acceptable inexact

solution of (19) if

‖rk,j(∆ȳ)‖
δ
−1
k,jI
≤ µmin(1, δ

β2

k,j)‖bk,j‖H−1
k,j
. (27)

Termination Test 2 leads directly to convergence of the inner iterations.

Theorem 3 (Inner iteration, inexact solves) Suppose that Assumptions 4.1 and 4.3 hold, that Termination

Tests 1 and 2 are satisfied, and that there exists γ > 0 such that γj ≥ γ for all j ∈ N in Termination Test 2.

Then Algorithm 2 generates a sequence of iterates xk,j such that

lim
j→∞

‖∇xφ(xk,j , yk; ρk,j , δk,j)‖ = 0.

Proof. We use the shorthands φk,j := φ(xk,j , yk; ρk,j , δk,j) and Mk,j := Hk,j + δ−1
k,jJ

T
k,jJk,j for conciseness.

Assumption 4.3 implies that there exists κH > 0 such that ‖bk,j‖H−1
k,j
≤ κH‖bk,j‖ and κM > 0 such that

‖M−1
k,j ‖ ≤ κM for all j. From (24) and Termination Test 2, we have

‖∆x‖ ≤ ‖M−1
k,j ‖ ‖ − ∇xφk,j + δ−1

k,jJ
T
k,jrk,j(∆ȳ)‖

≤ κM
(
‖∇xφk,j‖+ δ−1

k,j‖J
T
k,jrk,j(∆ȳ)‖

)
≤ κM

(
‖∇xφk,j‖+ ‖JTk,j‖ ‖rk,j(∆ȳ)‖

δ
−1
k,jI

)
≤ κM

(
‖∇xφk,j‖+ µmin(1, δ

β2

k,j)σmax(Jk,j)κH‖∇xφk,j‖
)

≤ κ ‖∇xφk,j‖ (28)

with κ := supj κM (1 + µσmax(Jk,j)κH) > 0.

Lemma 1 and (28) together imply

−
∇xφ

T
k,j∆x

‖∇xφk,j‖ ‖∆x‖
≥
γ̄j
κ

=
γj

κλmax(Hk,j)
≥ γ

κ supj λmax(Hk,j)
> 0,

where the last inequality follows from Assumption 4.3. At this point, we are in position to apply Zoutendijk’s

theorem and conclude as in the proof of Theorem 2.

In view of Theorem 3, it is easier to provide an interpretation of Termination Test 1. At outer iteration k

and inner iteration j, the right-hand side of (22) is the objective value of (20), which is positive unless bk,j = 0,

i.e., unless xk,j is first-order stationary for the augmented Lagrangian. If bk,j = 0, the only solution of (19)

is ∆x = 0 and ∆ȳ = 0, which is the initial LSMR iterate. In that case, (21) yields rk,j = 0, so that (22) is

satisfied at the first iteration. Let us consider now the case bk,j 6= 0. The first term in the left-hand side of (22)

is the norm of (21), i.e., the optimality residual of (20), which decreases monotonically to zero along the

LSMR iterations. The role of the sequence {γj} is to allow sufficient room for satisfaction of (22) even when

the value of the right-hand side is small. In particular, if ∆ȳ were the exact solution of (20), rk,j(∆ȳ) = 0

and γj should be chosen so that

γj ≤
‖JTk,j∆ȳ + bk,j‖

2

H
−1
k,j

+ ‖∆ȳ‖2δk,jI

‖bk,j‖
2

H
−1
k,j

≤ 1.

The discussion following Theorem 2 also applies in the context of the present section.

10 G–2016–65 Les Cahiers du GERAD

4.2 Convergence of the outer iterations

We now analyze the global convergence of the outer iterations. In this section, we assume that Algorithm 2

succeeds in computing a new iterate wk+1 that satisfies (15) each time it is called at Step 4 of Algorithm 1.

The following corollary results immediately from Theorems 2 and 3.

Corollary 1 Assume Algorithm 2 succeeds each time it is called at Step 4 of Algorithm 1. Then Algorithm 1
generates iterates wk such that

‖F (wk+1)‖∗ ≤ θ‖F (wk)‖∗ + εk.

The following result, which is a direct consequence of [3, Theorem 3.3], describes the behavior of the

sequence of outer iterates.

Theorem 4 (Outer iteration) Assume Algorithm 2 succeeds each time it is called at Step 4 of Algorithm 1

and that the sequence {εk} converges to zero. Then Algorithm 1 generates a sequence of iterates wk such that

{F (wk)} converges to zero.

Proof. Let ` := lim supk→∞ ‖F (wk)‖∗. Taking the limit superior in (15) yields

` ≤ θ`+ lim sup
k→+∞

εk.

Because limk→∞ εk = lim supk→+∞ εk = 0, we have ` ≤ θ`, i.e., ` = 0, which means that {F (wk)} converges

to zero.

5 Local convergence

In this section, we analyze the asymptotic behavior of {wk} under the assumption that it converges to

a stationary point satisfying certain assumptions. We establish that the rate of convergence of {wk} is

Q-superlinear provided δk asymptotically approaches zero sufficiently fast, which is ensured by selecting

δk = ‖F (wk)‖ in Algorithm 1. This last requirement is a departure from standard augmented Lagrangian

methods and ensures the transition to a stabilized SQP method in the local regime.

The analysis in this section broadly follows that of [3] and [45]. The results differ in two important respects.
Firstly, we allow quasi-Newton approximations to second-order derivatives. Secondly, we also allow inexact

solutions to the extrapolation linear system (13).

Assume x∗ is a stationary point of (1) that satisfies (3). We use Y to denote the set of Lagrange multipliers

associated to x∗, i.e.,

Y = {y∗ ∈ Rm | (x∗, y∗) satisfies the KKT conditions (3)}.

We also use the notation S := {x∗} × Y.

Because ∇xL(x∗, ·) is linear, Y is a closed convex set. It is well known that Y is a singleton under the

assumption that J(x∗) has full row rank and may be unbounded or empty if that assumption fails to hold [20].

Our working assumptions for this section are as follows.

Assumption 5.1 The sequence {wk} generated by Algorithm 1 converges to w∗ = (x∗, y∗) for a certain y∗ ∈ Y.

Assumption 5.2 The functions f and c are twice continuously differentiable with locally Lipschitz second

derivatives on Rn.

Assumption 5.3 δk is chosen as ‖F (wk)‖ at Step 3 of Algorithm 1.

Assumption 5.4 Hk is uniformly bounded, i.e., there exists κ > 0 such that ‖Hk‖ ≤ κ for all k = 0, 1,

Les Cahiers du GERAD G–2016–65 11

When (13) is solved inexactly, Assumption 4.3 from the global regime is sufficient for our purposes.

Whether (13) is solved exactly or not, we establish fast local convergence under the following, weaker,

assumption.

Assumption 5.5 The approximation Hk is sufficiently positive definite on the nullspace of J(x∗) for all

sufficiently large k, i.e., there exists η > 0, such that zTHkz ≥ η‖z‖
2 for all z ∈ Null(J(x∗)).

Assumption 5.5 implies that we may set ρk = 0 for all sufficiently large k.

The following assumption states that Hk is an increasingly accurate approximation of ∇2
xxL(x∗, y∗)

along ∆x.

Assumption 5.6 There exists 0 < β1 ≤ 1 such that

‖(Hk −∇
2
xxL(x∗, y∗))∆x‖ = O(‖∆x‖1+β1)

for all sufficiently large k, where ∆x is computed from (13).

Assumption 5.6 is reminiscent of the Dennis-Moré condition [12] in unconstrained optimization but is more

demanding. Though it is unlikely that any quasi-Newton approximation satisfies Assumption 5.6 in the strong

form given, the analysis below illustrates how the assumption allows us to specify the precise convergence rate

of the sequence of iterates. It is more likely that a quasi-Newton approximation satisfies

(Hk −∇
2
xxL(x∗, y∗))∆x = o(∆x) (29)

instead. As we comment at the end of the present section, the local convergence analysis holds under that
weaker assumption, except that the exact convergence rate cannot be specified.

The global convergence analysis does not depend on whether, how, or how accurately we solve (13).

The local analysis, however, depends on (13) crucially. In this section, we specify how accurate the step

computation should be. Note that (13) can be shifted to least-squares form exactly as (19):[
Hk JTk
Jk −δkI

] [
∆x
−∆ȳ

]
=

[
bk
0

]
, (30)

where ∆ȳ := ∆y+ δ−1
k,jck,j and bk = −∇xφ(xk, yk; 0, δk). We use Termination Test 2 as our stopping condition.

We repeat it here without mention of the index j.

Termination Test 3 Let µ > 0 and 0 ≤ β2 ≤ 1 be given constants. A step (∆x,∆ȳ) computed in an inexact
solve of (30) at Step 3 of Algorithm 1 is acceptable if

‖rk‖δ−1
k I
≤ µmin(1, δ

β2

k)‖bk‖H−1
k
. (31)

According to Theorem 4 and Assumption 5.3, δk → 0 and for all sufficiently large k, the term δ
β2

k achieves

the minimum appearing in (31).

For any ε > 0, we define

N (ε) := {(x, y) | there exists ȳ ∈ Y such that ‖(x, y)− (x∗, ȳ)‖ ≤ ε}.

We denote by P the projection onto Y, i.e.,

P (y) := arg min{‖y − ȳ‖ | ȳ ∈ Y},

which is well defined because Y is closed and convex. Finally, the Euclidean distance from (x, y) to S is

denoted

dist((x, y),S) := inf{‖(x, y)− (x∗, ȳ)‖ | ȳ ∈ Y} = ‖(x, y)− (x∗, P (y))‖.

For any w = (x, y) ∈ N (ε), we use the notation δ to denote ‖F (w)‖, in accordance with Assumption 5.3.

12 G–2016–65 Les Cahiers du GERAD

Lemma 2 Suppose that Assumptions 5.2 and 5.3 hold. Then there exists a constant ε > 0 such that for all

(x, y) ∈ N (ε) we have dist((x, y),S) = Ω(δ).

Proof. Let ε > 0 be arbitrary and (x, y) ∈ N (ε). It follows from (3) and Assumption 5.2 that

‖∇xL(x, y)‖ = ‖∇xL(x, y)−∇xL(x∗, P (y))‖ = O(dist((x, y),S)).

Similarly,

‖c(x)‖ = ‖c(x)− c(x∗)‖ = O(‖x− x∗‖) = O(dist((x, y),S)).

Thus δ = O(dist((x, y),S)).

Wright [45] establishes the converse of Lemma 2 under the Mangasarian and Fromovitz constraint

qualification condition, which, in the case of equality constraints, amounts to the linear independence

constraint qualification condition. The authors of [30] establish a similar result without assuming a constraint

qualification but by restricting attention to a neighborhood of (x∗, y∗). We include the proof for completeness.

We denote Bε(x
∗, y∗) the ball centered at (x∗, y∗) of radius ε > 0.

Lemma 3 Suppose that Assumptions 5.2, 5.3 and 5.5 hold. Then there exists ε > 0 such that for all

(x, y) ∈ Bε(x
∗, y∗), we have dist((x, y),S) = O(δ).

Proof. By contradiction, suppose that for any ε > 0, there exists (x, y) ∈ Bε(x
∗, y∗) such that δ = o(‖x−x∗‖)

and δ = o(‖y − y∗‖). By selecting a sequence {εk} → 0, we determine sequences {xk} → x∗ and {yk} → y∗

such that δk = o(‖xk − x
∗‖) and δk = o(‖yk − y

∗‖).

With the purpose of deriving a contradiction with Assumptions 5.2 and 5.5, we use (3) and the fact that

∇xL(xk, yk) = O(δk) = o(‖xk − x
∗‖) by assumption to deduce

∇2
xxL(x∗, y∗)(xk − x

∗) = ∇xL(xk, y
∗)−∇xL(x∗, y∗) + o(‖xk − x

∗‖)

= ∇xL(xk, yk)− J(xk)T (yk − y
∗) + o(‖xk − x

∗‖)

= −J(xk)T (yk − y
∗) + o(‖xk − x

∗‖)

= −J(x∗)T (yk − y
∗)

− (J(xk)− J(x∗))T (yk − y
∗) + o(‖xk − x

∗‖)

= −J(x∗)T (yk − y
∗) + o(‖xk − x

∗‖). (32)

Similarly, our contradiction assumption gives

J(x∗)(xk − x
∗) = c(xk)− c(x∗) + o(‖xk − x

∗‖) = o(‖xk − x
∗‖). (33)

Reducing to a subsequence if necessary, there exists a vector z with ‖z‖ = 1 such that {(xk−x
∗)/‖xk−x

∗‖} → z.

We take limits in (32) and (33), and obtain

∇2
xxL(x∗, y∗)z ∈ Range(J(x∗)T) and z ∈ Null(J(x∗)),

which contradicts Assumption 5.5. Thus there exists ε > 0 such that for all (x, y) ∈ Bε(x
∗, y∗), we have

‖x− x∗‖ = O(δ).

Let (x, y) ∈ Bε(x
∗, y∗). The linear system J(x∗)T (y− ỹ) = ∇xL(x∗, y) in the unknown ỹ possesses at least

the solution y∗, and all solutions ỹ are in Y. In particular, Hoffman’s lemma (see, e.g., [44, Lemma A.3]),

implies that there exists a solution ỹ ∈ Y such that y − ỹ = O(‖∇xL(x∗, y)‖). Thus,

‖y − P (y)‖ ≤ ‖y − ỹ‖
= O(‖∇xL(x∗, y)‖)
= O(‖∇xL(x, y)‖) +O(‖∇xL(x, y)−∇xL(x∗, y)‖)
= O(δ) +O(‖x− x∗‖)
= O(δ),

where we used the first part of the proof. Finally, we have ‖x− x∗‖ = O(δ) and ‖y − P (y)‖ = O(δ), which

concludes the proof.

Les Cahiers du GERAD G–2016–65 13

Lemmas 2 and 3 combine with Assumption 5.1 to yield the following corollary.

Corollary 2 Suppose that Assumptions 5.1 to 5.3 and 5.5 hold. Then, for all sufficiently large k, dist((xk, yk),S)

= Θ(δk).

Let m̄ be the rank of J(x∗)T , with 0 ≤ m̄ ≤ m. The singular value decomposition of J(x∗)T may be

written as

J(x∗)T =
[
U1 U2

] [Σ 0
0 0

] [
V T1
V T2

]
, (34)

where Σ is a diagonal matrix containing the m̄ nonzero singular values, U1 is n× m̄, U2 is n× (n− m̄), V1 is

m× m̄ and V2 is m× (m− m̄). Note that
[
U1 U2

]
and

[
V1 V2

]
are orthogonal and that the columns of U2

constitute an orthonormal basis for the nullspace of J(x∗). The next result follows [45, Theorem 3.2].

Theorem 5 Suppose that Assumptions 5.1 to 5.5 hold. Suppose that the approximate solution (∆x,−∆y)

of (13) satisfies Termination Test 3. Then, for all sufficiently large k,

∆x = O(δk) and ∆y = O(δ
β2

k).

Proof. If we decompose ∆x = U1x̃U1
+ U2x̃U2

and ∆y = V1ỹV1
+ V2ỹV2

, we may rewrite (13) as
UT1 HkU1 UT1 HkU2 UT1 J

T
k V1 UT1 J

T
k V2

UT2 HkU1 UT2 HkU2 UT2 J
T
k V1 UT2 J

T
k V2

V T1 JkU1 V T1 JkU2 −δkI 0

V T2 JkU1 V T2 JkU2 0 −δkI



x̃U1

x̃U2

−ỹV1

−ỹV2

 = −


sU1

sU2

sV1

sV2

 , (35)

where 
sU1

sU2

sV1

sV2

 =


UT1 (gk − J

T
k yk)

UT2 (gK − J
T
k yk)

V T1 (ck − rk)

V T2 (ck − rk),


and rk satisfies (31). According to Assumption 5.2 and Lemma 3, Jk − J(x∗) = O(‖xk − x

∗‖) = O(δk),

so that (34) yields UT1 J
T
k V1 = Σ + O(δk), UT1 J

T
k V2 = O(δk), UT2 J

T
k V1 = O(δk), and UT2 J

T
k V2 = O(δk). We

substitute those estimates into (35) and obtain
UT1 HkU1 UT1 HkU2 Σ +O(δk) O(δk)

UT2 HkU1 UT2 HkU2 O(δk) O(δk)
Σ +O(δk) O(δk) −δkI 0
O(δk) O(δk) 0 −δkI



x̃U1

x̃U2

−ỹV1

−ỹV2

 = −


sU1

sU2

sV1

sV2

 .
After eliminating ỹV2

= −δ−1
k sV2

+O(‖x̃U1
‖) +O(‖x̃U2

‖), there remains

(Mk +O(δk))

−ỹV1

x̃U2

x̃U1

 = −

sU1
+O(‖sV2

‖)
sU2

+O(‖sV2
‖)

sV1

 , (36)

where

Mk :=

Σ UT1 HkU2 UT1 HkU1

0 UT2 HkU2 UT2 HkU1

0 0 Σ

 .
Assumption 5.4 and the orthogonality of U ensure that the blocks involving Hk are bounded above by κ.

Thus, Mk is uniformly bounded. In addition, Mk is uniformly nonsingular because Σ is nonsingular and

Assumption 5.5 ensures that UT2 HkU2 is uniformly positive definite for all sufficiently large k. Thus for all

sufficiently large k, Mk +O(δk) is also uniformly nonsingular. Then according to (36)

‖(ỹV1
, x̃U2

, x̃U1
)‖ = O(‖(sU1

, sU2
, sV1

, sV2
)‖),

14 G–2016–65 Les Cahiers du GERAD

and

‖ỹV2
‖ = O(δ−1

k)‖sV2
‖+O(‖(sU1

, sU2
, sV1

, sV2
)‖).

From the right-hand side of (36), we have

‖(sU1
, sU2

)‖ = ‖gk − J
T
k yk‖ = ‖∇xL(xk, yk)‖ = O(δk),

and Termination Test 3 implies that

‖sV1
‖ = ‖V T1 (ck − rk)‖ ≤ ‖ck − rk‖ ≤ ‖c(xk)− c(x∗)‖+ ‖rk‖

= O(‖xk − x
∗‖) +O(δ

1+β2

k) = O(δk).

In addition,

sV2
= V T2 (ck − rk) = V T2

(
c(x∗) + J(x∗)(xk − x

∗) +O(‖xk − x
∗‖2)− rk

)
.

Because c(x∗) = 0 and V T2 J(x∗) = 0, there remains

‖sV2
‖ = O(‖xk − x

∗‖2) + ‖rk‖ = O(δ2
k) +O(δ

1+β2

k) = O(δ
1+β2

k).

Therefore, ỹV2
= O(δ

β2

k). We have established that ∆x = U1x̃U1
+ U2x̃U2

= O(δk) and ∆y = V1ỹV1
+ V2ỹV2

=

O(δ
β2

k).

Note that Theorem 5 holds even if β2 = 0 in Termination Test 3. However, in order to establish superlinear

convergence, we need to be more demanding on the accuracy of the step computation.

Theorem 6 Suppose that Assumptions 5.1 to 5.6 hold. Suppose that the approximate solution (∆x,−∆y)

of (9) satisfies Termination Test 3 with β2 > 0. Then, for all sufficiently large k,

δ+
k := δ(x+

k , y
+
k) = δ(xk + ∆x, yk + ∆y) = O(δ1+β

k).

where 0 < β = min(β1, β2) ≤ 1.

Proof. A straightforward Taylor expansion and the linearity of ∇xL(x, ·) yield, for all sufficiently large k,

∇xL(xk + ∆x, yk + ∆y) = ∇xL(xk, yk) +∇2
xxL(xk, yk)∆x− J(xk)T∆y +O(‖∆x‖2)

=
(
∇2
xxL(xk, yk)−Hk

)
∆x

+Hk∆x+∇xL(xk, yk)− J(xk)T∆y +O(‖∆x‖2)

=
(
∇2
xxL(x∗, y∗)−Hk

)
∆x+O(δ2

k)

= O(δ
1+β1

k),

where we used the first block equation of (13), Assumption 5.6 and Theorem 5.

Similarly, for all sufficiently large k,

c(xk + ∆x) = c(xk) + J(xk)∆x+O(‖∆x‖2)

= rk − δk∆y +O(‖∆x‖2)

= O(δ
1+β2

k) +O(δ2
k)

= O(δ
1+β2

k),

where we used the second block equation of (13), Termination Test 3 and Theorem 5. The result holds with

β := min(β1, β2) > 0.

The following corollary states that, asymptotically, no inner iterations are performed and thus only the

extrapolation step of Algorithm 1 is employed.

Les Cahiers du GERAD G–2016–65 15

Corollary 3 Suppose that Assumptions 5.1 to 5.6 hold. Suppose that the approximate solution (∆x,−∆y)

of (13) satisfies Termination Test 3 with β2 > 0. Assume that the sequence {εk} is chosen such that

εk = ω(δ1+β
k),

where β is as in Theorem 6. For sufficiently large k, the iterates computed at Step 4 of Algorithm 1 satisfy

wk+1 = w+
k and δk = ‖F (wk)‖ converges to zero at the rate 1 + β.

Proof. The result follows directly from Theorem 6 and the assumption on εk.

Because β := min(β1, β2) and β1 may be unknown, it is safe to set εk = Θ(δk) in Corollary 3. A consequence

of Lemma 2 and Corollary 3 is that {wk} → w∗ R-superlinearly. The next result establishes Q-superlinear

convergence to the set S, which, though weaker than convergence to w∗, results from the fact that Y may be

an unbounded set.

Theorem 7 Under the assumptions of Corollary 3, the sequence {dist(wk,S)}, where {wk} is generated by

Algorithm 1, converges Q-superlinearly to zero with rate 1 + β.

Proof. The result follows directly from Corollary 2 and Theorem 6.

A more precise result follows when (9) is solved sufficiently accurately in the sense that β2 = 1 in

Termination Test 3. The next corollary follows [45, Corollary 4.2].

Corollary 4 Under the assumptions of Corollary 3 with β2 = 1, the sequence {wk} generated by Algorithm 1

converges Q-superlinearly to w∗ with rate 1 + β, and ‖wk − w
∗‖ = Θ(δk).

Proof. By Theorem 5, there exists a constant C > 0 such that ‖(∆xj ,∆yj)‖ ≤ Cδj for all sufficiently large j.

By Theorem 6, {δk} → 0 superlinearly, and thus for all ` > k sufficiently large, we have

‖wk − w`‖ ≤
`−1∑
j=k

‖(∆xj ,∆yj)‖ ≤ C
`−1∑
j=k

δj ≤ 2Cδk.

In the limit, we obtain ‖wk − w
∗‖ = O(δk). Conversely, Lemma 2 yields δk = O(dist(wk,S)) = O(‖wk −

w∗‖).

We close this section by noting that if Hessian approximations are sufficiently accurate in the sense that

β1 = 1 in Assumption 5.6 and if (9) is solved sufficiently accurately in the sense that β2 = 1 in Termination

Test 3, Theorem 6 reveals that β = 1 and quadratic convergence takes place. In particular, such situation

occurs if exact second derivatives are used and (9) is solved exactly, e.g., by way of a stable factorization.

It is possible to weaken Assumption 5.6 and only require (Hk −∇
2
xxL(x∗, y∗))∆x = o(‖∆x‖), which is

closer to the original Dennis-Moré condition [12]. In that case, the conclusion of Theorem 6 changes to

δ+
k = o(δk). Corollary 3, Theorem 7 and Corollary 4 all remain valid except that the rate of superlinear

convergence cannot be specified.

Our requirements on the quality of the Hessian approximation and on the accuracy of the step compu-

tation are substantially weaker than those of, e.g., [2], who require exact steps and the stringent bound

Hk −∇xxL(xk, yk) = O(δk). In view of Theorem 5, the latter is akin to requiring exact second derivatives.

6 Implementation and numerical results

In this section we examine the practical behavior of Algorithms 1 and 2 and specify the details of our

implementation. Our implementation is written in Python with the help of the open-source package NLP.py [5],

a programming environment for designing numerical optimization methods. A Python implementation of

LSMR is available in the PyKrylov package [35], a library of Krylov methods in pure Python.

16 G–2016–65 Les Cahiers du GERAD

Initial Lagrange multipliers Given a user-defined starting point xs, the vector of Lagrange multipliers ys is

obtained as least-square solutions of ∇L(xs, y) = 0, i.e., by solving the linear system[
I JTs
Js −ζI

] [
v
−y

]
= −

[
gs
0

]
,

using MA57 [14] and discarding v or, alternatively, using LSMR to solve

minimize
y∈Rm

1
2‖J

T
s y − gs‖

2 + 1
2ζ‖y‖

2.

In our implementation, ζ is set to 10−8.

Penalty parameter The initial penalty parameter is set to δ0 = min {0.1, ‖F (w0)‖}. In Step 3 of Algorithm 1,

δk is chosen as

δk = max
{

min{‖F (wk)‖, 0.9δk−1, δ
1.1
k−1}, δmin

}
where δmin is a lower bound imposed on the penalty parameter. Our implementation uses δmin = 10−8. This

rule ensures that δk does not deviate much from the value selected by the augmented Lagrangian mechanism

in the global regime, and is set to ‖F (wk)‖ asymptotically so that Assumption 5.3 of the local convergence
analysis is satisfied.

When w+
k does not satisfy (14), a sequence of inner iterations using Algorithm 2 is started from the initial

guess wk,0 = wk.

Even though global convergence of Algorithm 2 is promoted by way of a Wolfe linesearch, our implementation

uses a simple Armijo linesearch, which we have found to be nearly as effective. In the first Wolfe condition,

we use c1 = 10−4. At the end of the inner iterations, the current value of the penalty parameter is returned

to the outer iteration and is used as δk.

Stopping conditions Optimality is declared when the norm of the optimality conditions at wk satisfies

‖F (wk)‖ ≤ εa + εr ‖F (w0)‖,

where εa = 10−6 and εr = 10−5. In (15), we set εk = 103δk and θ = 0.99.

The maximum number of iteration is set to 1000 for each problem.

Exact system solves We use the linear solver MA57 to solve (13) and (16). The primal regularization

parameter ρk is updated until a correct inertia is detected according to [42, Algorithm IC], with the same

values for the various constants.

Inexact system solves In Step 3 of Algorithm 1 and Step 3 of Algorithm 2, LSMR is used to solve the

preconditioned linear least-squares problem (20). The preconditioner, H−1
k,j , is obtained by maintaining a

limited-memory BFGS approximation of the Hessian of the Lagrangian in inverse form. It is well known that a

standard BFGS approximation is ineffective in the presence of constraints because the Hessian of the Lagrangian

is typically indefinite at a solution—see, e.g., [9]. If sk = xk+1 − xk and tk = ∇L(xk+1, yk+1)−∇L(xk, yk+1),

the curvature condition sTk tk > 0 is unlikely to hold asymptotically, and the pair (sk, tk) will be rejected.

Powell [39] suggests to use a damped BFGS update that compensates for the lack of positive definiteness in

the Hessian at the solution. His approach is based on the Hessian of the Lagrangian, instead of its inverse. In

the current work, we transpose Powell’s modified update in terms of Bk = H−1
k . Let qk := θksk + (1− θk)Bktk

where θk ∈ (0, 1] is defined as

θk =

{
1 if sTk tk ≥ η t

T
kBktk

(1− η) tTkBktk/(t
T
kBktk − s

T
k tk) otherwise,

for some η ∈ (0, 1). In our implementation, we set η := 0.2. A straightforward derivation similar to that

of [39] shows that if Bk is positive definite, Bk+1 is also positive definite. Thus starting this damped BFGS

Les Cahiers du GERAD G–2016–65 17

approximation by a scaled identity matrix B0 = γ0I with γ0 > 0 ensures positive definiteness of all subsequent

approximations. Note that the above update differs from the convergent updates of [1] but performed better

in our limited experiments. In addition, only a small number of pairs (sk, qk) is stored so as to provide a

limited-memory version of the damped BFGS method. Application of this approximation to a vector is

performed using the two loop recursion.

Another way of ensuring the positive-definiteness of Hk is to maintain a BFGS approximation of the

Hessian of the augmented Lagrangian φ [9]. This proposal is motivated by the fact that if δ is sufficiently

large, the Hessian of φ(x, y; ρ, δ) is positive definite for all (x, y) close to an isolated solution. However, in

our numerical experiments, results were not as good as with Powell’s damped BFGS. A reason for this is

that when δ increases, convergence of the BFGS approximation is disrupted. Similar observations were also

reported in [22].

In Termination Test 3, we set β2 = 0.5 and µ = 0.2. During the inner iterations, γj = 10−4 for all j in

Termination Test 1.

We perform a preliminary evaluation of our implementation of Algorithm 1, named RegSQP on equality-

constrained problems from the Hock and Schittkowski [29] and CUTEst [26] collections. All models are

formulated using the AMPL modeling language [18]. We do not apply any scaling procedure to the problems.

We first evaluate the algorithm using exact second derivatives. RegSQP uses MA57 [14] to compute steps.

Table 1 summarizes the results. In the table, n is the number of variables, m is the number of equality

constraints, “it” is the number of iterations, f is the final objective value, ‖c‖ and ‖∇L‖ are the final primal

and dual feasibility in Euclidean norm, respectively, “#f”, “#g”, “#c”, “#J” and “#H” are the number of
evaluations of the objective function, objective gradient, constraints, Jacobian and Hessian of the Lagrangian,

respectively, and “time” is the solve time in seconds. A letter in the last colum indicates the final solver status

in case of failure. The possible values of the final status are “i” when the maximum number of iterations is

exceeded, and “x” for another kind of failure, typically a maximum number of backtracking steps during a

linesearch.

Table 1: Performance of RegSQP with factorization on equality-constrained problems from CUTEst.

name n m it f ‖c‖ ‖∇L‖ #f #g #c #J #H time

aircrfta 5 5 2 0.0e+00 4.4e−06 5.2e−34 5 3 5 6 2 0.001
argauss 3 15 1001 0.0e+00 1.1e−04 8.6e−10 2003 1002 2003 2004 1001 0.480 i
argtrig 100 100 3 0.0e+00 1.1e−08 7.8e−36 7 4 7 8 3 0.034
artif 5000 5000 1002 0.0e+00 3.6e+02 1.2e+03 3091 1018 3095 2037 1012 24.376 i
aug2d 20192 9996 55 1.7e+06 5.7e−04 3.9e−12 111 56 111 112 55 3.440
aug3d 3873 1000 6 5.5e+02 1.6e−07 5.0e−06 13 7 13 14 6 0.306
aug3dc 3873 1000 31 7.7e+02 5.1e−04 8.5e−15 63 32 63 64 31 0.307
bdvalue 5000 5000 1 0.0e+00 2.5e−08 1.2e−25 3 2 3 4 1 0.026
booth 2 2 1 0.0e+00 8.9e−16 0.0e+00 3 2 3 4 1 0.000
bratu2d 4900 4900 3 0.0e+00 3.5e−11 5.7e−29 7 4 7 8 3 0.270
bratu2dt 4900 4900 31 0.0e+00 9.5e−02 0.0e+00 505 43 515 80 34 0.000 x
bratu3d 3375 3375 3 0.0e+00 3.2e−08 3.6e−25 7 4 7 8 3 0.516
broydn3d 10000 10000 3 0.0e+00 3.1e−04 2.5e−31 7 4 7 8 3 0.113
broydnbd 5000 5000 4 0.0e+00 4.5e−04 8.3e−32 9 5 9 10 4 0.169
bt1 2 1 8 −1.0e+00 3.3e−06 1.7e−06 17 9 17 18 8 0.004
bt10 2 2 9 −1.0e+00 7.9e−07 1.0e−06 19 10 19 20 9 0.004
bt11 5 3 17 8.2e−01 6.5e−05 3.9e−05 35 18 35 36 17 0.009
bt12 5 3 5 6.2e+00 4.9e−06 3.2e−08 11 6 11 12 5 0.002
bt2 3 1 9 3.3e−02 1.7e−02 5.0e−02 19 10 19 20 9 0.004
bt3 5 3 36 4.1e+00 1.4e−03 1.1e−15 73 37 73 74 36 0.022
bt4 3 2 28 −3.7e+00 1.5e−09 9.5e−11 57 29 57 58 28 0.015
bt5 3 2 7 9.6e+02 5.3e−08 2.0e−09 17 9 17 18 8 0.004
bt6 5 2 11 2.8e−01 1.7e−05 2.6e−04 23 12 23 24 11 0.005
bt7 5 3 161 3.0e+02 5.6e−03 2.8e−04 465 173 465 346 172 0.120
bt8 5 2 37 1.0e+00 9.1e−11 3.1e−05 99 40 99 80 39 0.024
bt9 4 2 12 −1.0e+00 3.6e−05 4.5e−05 25 13 25 26 12 0.006
byrdsphr 3 2 16 −4.7e+00 7.9e−07 1.8e−08 35 18 35 36 17 0.008
catena 32 11 51 −2.3e+04 4.2e−05 1.5e−04 103 52 103 104 51 0.025
catenary 496 166 1002 −2.6e+06 1.3e+05 3.8e+02 20582 1024 20601 2032 1003 3.760 i

Continued on next page

18 G–2016–65 Les Cahiers du GERAD

Table 1—continued from previous page

name n m it f ‖c‖ ‖∇L‖ #f #g #c #J #H time

cbratu2d 882 882 1 0.0e+00 4.4e−07 3.1e−29 3 2 3 4 1 0.011
cbratu3d 1024 1024 1 0.0e+00 8.6e−07 2.1e−27 3 2 3 4 1 0.037
cluster 2 2 7 0.0e+00 7.4e−06 4.2e−08 15 8 15 16 7 0.003
coolhan 9 9 7 0.0e+00 6.6e−04 6.9e−16 15 8 15 16 7 0.004
dixchlng 10 5 61 2.5e+03 1.1e−03 1.3e+00 282 93 282 186 92 0.072
drcavty1 10816 816 94 1.6e−11 4.1e−15 9.9e−07 375 129 375 258 128 51.076
drcavty2 10816 816 495 6.0e−04 1.7e−15 1.4e−07 2016 549 2016 1098 548 209.313
drcavty3 10816 816 729 2.0e−04 1.4e−15 1.7e−06 6497 3092 6497 6184 3091 1186.212
dtoc1l 14985 9990 21 1.3e+02 1.8e−07 9.2e−08 43 22 43 44 21 1.359
dtoc1na 1485 990 15 1.3e+01 3.8e−08 1.7e−08 31 16 31 32 15 0.377
dtoc1nb 1485 990 16 1.6e+01 5.6e−08 1.9e−08 33 17 33 34 16 0.460
dtoc1nc 1485 990 28 2.5e+01 3.8e−08 5.1e−08 57 29 57 58 28 0.852
dtoc1nd 735 490 281 1.3e+01 3.3e−08 1.1e−05 2962 283 2962 566 282 4.856
dtoc2 5994 3996 22 5.0e−01 9.2e−07 4.4e−06 45 23 45 46 22 0.585
dtoc3 14997 9998 42 2.4e+02 6.5e−05 7.9e−14 85 43 85 86 42 1.522
dtoc4 14997 9998 20 2.9e+00 9.4e−07 5.4e−08 41 21 41 42 20 0.802
dtoc5 9998 4999 18 1.5e+00 2.8e−06 1.4e−07 37 19 37 38 18 0.379
dtoc6 10000 5000 111 1.3e+05 1.9e−06 2.4e−05 310 124 310 248 123 2.849
eigena2 110 55 12 8.4e−12 6.6e−04 1.4e−04 33 17 33 34 16 0.018
eigenaco 110 55 64 8.5e−17 3.0e−09 1.7e−07 154 71 154 142 70 0.131
eigenb2 110 55 1002 2.1e+00 3.4e−03 4.4e−01 12039 1009 12040 2018 1006 3.581 i
eigenbco 110 55 40 2.2e−01 2.2e−09 3.5e−05 81 41 81 82 40 0.271
eigenc2 462 231 91 1.8e−12 5.5e−10 2.7e−06 434 112 434 224 111 3.818
eigencco 30 15 26 5.7e−10 1.3e−05 5.8e−05 53 27 53 54 26 0.026
genhs28 10 8 8 9.3e−01 7.2e−07 5.6e−16 17 9 17 18 8 0.004
gottfr 2 2 7 0.0e+00 1.1e−09 6.6e−24 15 8 15 16 7 0.003
gridnetb 13284 6724 50 1.4e+02 8.7e−05 1.6e−14 101 51 101 102 50 2.061
hager1 10001 5001 6 8.8e−01 1.4e−06 9.3e−15 13 7 13 14 6 0.088
hager2 10000 5000 2 4.3e−01 1.7e−07 3.6e−15 5 3 5 6 2 0.497
hager3 10000 5000 1 1.4e−01 2.0e−02 1.5e−15 3 2 3 4 1 0.030
hatfldf 3 3 7 0.0e+00 2.9e−06 2.0e−19 15 8 15 16 7 0.003
hatfldg 25 25 35 0.0e+00 1.2e−08 5.5e−09 73 37 73 74 36 0.024
heart6 6 6 606 0.0e+00 6.9e−06 4.6e−06 3121 611 3121 1222 610 0.577
heart8 8 8 205 0.0e+00 4.8e−07 1.1e−06 844 215 844 430 214 0.249
himmelba 2 2 1 0.0e+00 0.0e+00 0.0e+00 3 2 3 4 1 0.001
himmelbc 2 2 5 0.0e+00 6.5e−08 1.1e−23 11 6 11 12 5 0.003
himmelbd 2 2 1002 0.0e+00 3.1e+02 2.4e−02 19845 1030 19866 2050 1007 1.637 i
himmelbe 3 3 2 0.0e+00 2.2e-16 0.0e+00 5 3 5 6 2 0.002
hs006 2 1 7 0.0e+00 0.0e+00 0.0e+00 17 9 17 18 8 0.004
hs007 2 1 8 −1.7e+00 2.5e−06 7.6e−07 17 9 17 18 8 0.004
hs008 2 2 5 −1.0e+00 1.4e−10 0.0e+00 11 6 11 12 5 0.002
hs009 2 1 10 −5.0e−01 4.5e−13 1.6e−13 21 11 21 22 10 0.004
hs026 3 1 16 3.7e−10 1.1e−05 4.8e−07 33 17 33 34 16 0.006
hs027 3 1 20 4.0e−02 1.7e−09 6.9e−10 111 51 111 102 50 0.023
hs028 3 1 2 1.2e−32 7.8e−16 2.8e−16 5 3 5 6 2 0.001
hs039 4 2 13 −1.0e+00 3.2e−08 4.1e−08 27 14 27 28 13 0.005
hs040 4 3 5 −2.5e−01 3.4e−09 1.7e−09 11 6 11 12 5 0.002
hs046 5 2 23 7.2e−10 6.6e−06 5.5e−07 49 25 49 50 24 0.010
hs047 5 3 47 7.4e−09 3.9e−06 1.6e−05 95 48 95 96 47 0.021
hs048 5 2 2 1.2e−32 9.9e−15 1.4e−15 5 3 5 6 2 0.001
hs049 5 2 25 1.4e−13 4.7e−05 3.8e−06 53 27 53 54 26 0.013
hs050 5 3 25 1.1e−07 5.1e−04 3.2e−06 51 26 51 52 25 0.010
hs051 5 3 6 1.1e−16 6.4e−09 2.1e−16 13 7 13 14 6 0.002
hs052 5 3 38 5.3e+00 1.4e−07 1.4e−15 77 39 77 78 38 0.016
hs061 3 2 12 −1.4e+02 4.0e−09 7.2e−10 25 13 25 26 12 0.005
hs077 5 2 10 2.4e−01 5.9e−09 6.1e−08 21 11 21 22 10 0.004
hs078 5 3 21 −8.2e−01 2.2e−11 8.6e−12 43 22 43 44 21 0.012
hs079 5 3 8 7.9e−02 7.9e−08 1.5e−07 17 9 17 18 8 0.004
hs100lnp 7 2 8 6.8e+02 8.5e−11 2.7e−10 17 9 17 18 8 0.004
hs111lnp 10 3 13 −4.8e+01 4.8e−07 7.1e−07 27 14 27 28 13 0.007
hypcir 2 2 4 0.0e+00 1.3e−05 1.2e−20 9 5 9 10 4 0.002
integreq 100 100 2 0.0e+00 1.1e−06 1.6e−36 5 3 5 6 2 0.028
lch 600 1 1002 −2.1e−31 1.0e+00 3.7e−06 6352 1158 6427 2390 1081 4.675 i
marato 2 1 3 −1.0e+00 5.3e−07 2.7e−07 7 4 7 8 3 0.001
msqrta 1024 1024 5 0.0e+00 8.6e−04 3.3e−26 11 6 11 12 5 0.997

Continued on next page

Les Cahiers du GERAD G–2016–65 19

Table 1—continued from previous page

name n m it f ‖c‖ ‖∇L‖ #f #g #c #J #H time

msqrtb 1024 1024 5 0.0e+00 8.6e−04 1.2e−28 11 6 11 12 5 1.010
mwright 5 3 26 1.3e+00 7.6e−07 5.8e−06 53 27 53 54 26 0.014
orthrdm2 4003 2000 6 1.6e+02 3.2e−06 2.7e−07 20 8 20 16 7 0.490
orthrds2 203 100 33 3.1e+01 2.9e−05 1.0e−02 83 38 83 76 37 0.070
orthrega 517 256 439 1.4e+03 1.6e−05 1.2e−02 1574 459 1574 918 458 3.072
orthregb 27 6 2 4.6e−15 1.1e−07 1.4e−07 5 3 5 6 2 0.002
orthregc 10005 5000 25 1.9e+02 3.3e−05 3.6e−05 51 26 51 52 25 24.355
orthregd 10003 5000 6 1.5e+03 8.0e−04 1.8e−04 20 8 20 16 7 2.711
orthrgdm 10003 5000 11 1.5e+03 3.1e−05 6.4e−06 30 13 30 26 12 13.896
orthrgd 10003 5000 53 1.6e+03 9.0e−04 1.6e−01 132 59 132 118 58 75.270
porous1 4900 4900 9 0.0e+00 2.8e−01 1.4e−26 30 11 30 22 10 1.075
porous2 4900 4900 6 0.0e+00 4.0e−02 6.3e−24 24 8 24 16 7 0.693
powellb 2 2 11 0.0e+00 7.8e−07 3.0e−21 23 12 23 24 11 0.006
powellsq 2 2 22 0.0e+00 1.1e−07 1.1e−08 45 23 45 46 22 0.010
recipe 3 3 2 0.0e+00 0.0e+00 0.0e+00 5 3 5 6 2 0.001
zangwil3 3 3 1 0.0e+00 4.4e−14 0.0e+00 3 2 3 4 1 0.001

We note that the direct implementation fails on only 7 problems out of 110. Regarding the failures, we

note that IPOPT 3.12.8 reports that argauss has too few degrees of freedom, solves bratu2dt to “acceptable

levels” only, reports that himmelbd may be infeasible, and finds an optimal solution to the other problems.

Next, we evaluate our method using L-BFGS approximations with 6 pairs in the history. Table 2
summarizes the results. The table headers are as before, with the exception of “#jprod”, which represents

the number of operator-vector products with the Jacobian or its transpose. It is apparent from Table 2 that

our preliminary implementation of the matrix-free implementation is not as robust as the direct version;

67 out of 110 problems are solved to optimality and another 7 are suboptimal in the sense that somewhat

looser, but acceptable, tolerances were attained: argauss, drcavty1, drcavty2, drcavty3, dtoc2, dtoc4, and

eigenbco. Note that drcavty3 was interrupted after 500 iterations due to a long run time for higher values of

the iteration limit. In all other instances, the final status “xfail” indicates a linesearch failure in our primitive
implementation of the inner iteration. Such failures occur with both a simple Armijo backtracking and our

strong Wolfe linesearch. They are never due to failure of the iterative solver for (19).

Table 2: Performance of RegSQP without factorization on equality-constrained problems from CUTEst.

name n m it f ‖c‖ ‖∇L‖ #f #g #c #jprod time

aircrfta 5 5 12 0.0e+00 2.8e+00 0.0e+00 18 15 18 41 0.000 x
argauss 3 15 1001 0.0e+00 1.1e−04 2.9e−10 1002 1002 1002 3003 1.045 i
argtrig 100 100 20 0.0e+00 5.7e+00 0.0e+00 22 22 22 63 0.000
artif 5000 5000 1002 0.0e+00 1.4e−01 3.1e−03 17980 1015 17981 2103 200.235 i
aug2d 20192 9996 873 1.7e+06 3.4e−04 1.2e−03 1722 882 1722 21828 603.021
aug3d 3873 1000 47 5.5e+02 1.1e−09 4.9e−04 48 48 48 2142 13.621
aug3dc 3873 1000 57 7.7e+02 3.2e−08 1.1e−04 61 59 61 2175 16.348
bdvalue 5000 5000 0 0.0e+00 3.2e−06 0.0e+00 1 1 1 1 0.000
booth 2 2 59 0.0e+00 8.3e−11 5.5e−06 68 63 68 187 0.055
bratu2d 4900 4900 42 0.0e+00 2.2e−10 9.5e−07 66 44 66 109 51.779
bratu2dt 4900 4900 47 0.0e+00 9.5e−02 0.0e+00 86 50 86 123 0.000
bratu3d 3375 3375 60 0.0e+00 1.5e+00 0.0e+00 99 63 99 168 0.000
broydn3d 10000 10000 1002 0.0e+00 2.0e+01 2.5e+03 1971 1005 1972 2039 201.235 i
broydnbd 5000 5000 649 0.0e+00 4.2e+02 0.0e+00 5314 700 5343 1428 0.000 x
bt1 2 1 1002 −9.3e+01 9.3e−01 1.1e+02 1979 1005 1980 2034 1.057 i
bt10 2 2 23 −1.0e+00 2.1e−08 1.4e−06 24 24 24 74 0.018
bt11 5 3 29 8.2e−01 7.3e−08 1.1e−04 30 30 30 94 0.030
bt12 5 3 35 6.2e+00 7.7e−09 3.2e−05 36 36 36 112 0.037
bt2 3 1 34 3.3e−02 6.3e−04 8.3e−02 35 35 35 105 0.029
bt3 5 3 35 4.1e+00 1.2e−06 1.1e−03 65 59 65 543 0.065
bt4 3 2 1002 1.1e−02 2.5e+01 1.2e+03 2009 1008 2010 2060 1.017 i
bt5 3 2 57 9.6e+02 7.1e−09 1.3e−04 69 61 69 185 0.061
bt6 5 2 196 2.8e−01 8.5e−09 1.4e−04 2719 239 2719 1392 0.376
bt7 5 3 56 3.1e+02 1.6e−08 1.2e−03 197 114 197 2008 0.121
bt8 5 2 26 1.0e+00 1.4e−09 3.5e−05 27 27 27 83 0.026

Continued on next page

20 G–2016–65 Les Cahiers du GERAD

Table 2—continued from previous page

name n m it f ‖c‖ ‖∇L‖ #f #g #c #jprod time

bt9 4 2 20 −1.0e+00 7.7e−08 2.1e−05 21 21 21 65 0.021
byrdsphr 3 2 52 −4.7e+00 7.9e−08 2.3e−05 56 54 56 164 0.053
catena 32 11 59 −2.3e+04 2.2e−10 7.9e−03 215 117 215 2555 0.202
catenary 496 166 1002 −5.7e+05 4.3e+01 2.0e+03 7992 1041 7999 2174 3.328 i
cbratu2d 882 882 48 0.0e+00 6.4e−08 2.0e−07 90 50 90 109 4.148
cbratu3d 1024 1024 14 0.0e+00 3.1e−06 5.0e−07 17 16 17 46 2.801
cluster 2 2 48 0.0e+00 1.8e−08 3.7e−08 72 54 72 155 0.050
coolhan 9 9 164 0.0e+00 9.5e+02 0.0e+00 301 177 301 431 0.000 x
dixchlng 10 5 35 2.5e+03 2.6e−07 1.1e+00 184 90 184 1194 0.098
drcavty1 10816 816 1002 4.6e−05 1.7e−12 6.9e−03 2111 1066 2112 2401 67.716 i
drcavty2 10816 816 1002 2.2e−05 4.1e−12 5.4e−03 2100 1050 2102 2307 59.321 i
drcavty3 10816 816 502 2.0e−04 2.1e−13 8.3e−04 1078 552 1079 1345 43.114 i
dtoc1l 14985 9990 92 1.3e+02 2.0e−10 2.7e−09 140 94 140 20225 492.947
dtoc1na 1485 990 84 1.3e+01 4.3e−11 7.1e−10 133 86 133 2191 10.957
dtoc1nb 1485 990 94 1.6e+01 6.9e−11 1.8e−09 144 96 144 2220 13.345
dtoc1nc 1485 990 103 2.5e+01 1.4e−06 1.2e−05 267 105 267 2242 14.411
dtoc1nd 735 490 1002 1.3e+01 2.1e−04 4.6e−01 11154 1006 11155 3035 20.866 i
dtoc2 5994 3996 502 4.9e−01 2.6e−04 7.4e−03 981 510 986 1035 103.566 i
dtoc3 14997 9998 86 2.4e+02 2.1e−07 1.3e−04 155 90 155 240 521.957
dtoc4 14997 9998 502 2.9e+00 1.1e−05 1.2e−02 980 507 981 1050 3288.848 i
dtoc5 9998 4999 45 2.0e−04 1.0e+00 0.0e+00 63 48 63 131 0.000 x
dtoc6 10000 5000 502 1.3e+05 4.6e−03 1.8e+00 1224 549 1228 11881 396.894 i
eigena2 110 55 6 1.1e−09 1.1e−06 2.3e−03 85 63 85 2728 0.283
eigenaco 110 55 44 1.2e−09 2.8e−12 2.1e−04 137 96 137 2445 0.490
eigenb2 110 55 1002 1.8e+01 8.3e−08 1.7e−01 17489 1060 17490 4622 2.913 i
eigenbco 110 55 1002 8.2e−01 8.7e−07 2.9e−02 18451 1039 18452 2707 3.620 i
eigenc2 462 231 1002 4.1e+01 3.6e−04 1.2e+02 24764 1051 24765 4466 39.692 i
eigencco 30 15 80 1.1e−10 7.3e−12 5.4e−05 266 131 266 1334 0.260
genhs28 10 8 54 9.3e−01 1.9e−10 3.9e−07 64 56 64 179 0.099
gottfr 2 2 21 0.0e+00 2.4e−09 1.4e−05 28 25 28 75 0.029
gridnetb 13284 6724 438 1.4e+02 2.2e−09 6.7e−07 821 441 821 944 310.679
hager1 10001 5001 21 0.0e+00 1.0e+00 0.0e+00 27 25 27 76 0.000 x
hager2 10000 5000 52 3.3e−05 5.0e+03 6.7e−09 55 54 55 10159 0.000 x
hager3 10000 5000 49 1.6e−05 5.0e+03 2.5e−05 52 51 52 10150 0.000 x
hatfldf 3 3 61 0.0e+00 2.8e−01 0.0e+00 244 64 244 146 0.000 x
hatfldg 25 25 66 0.0e+00 5.2e+00 0.0e+00 94 69 94 182 0.000 x
heart6 6 6 525 0.0e+00 2.4e+01 0.0e+00 1871 534 1871 1131 0.000 x
heart8 8 8 99 0.0e+00 1.3e+01 0.0e+00 225 104 225 263 0.000 x
himmelba 2 2 54 0.0e+00 1.4e−08 8.2e−05 55 55 55 162 0.052
himmelbc 2 2 42 0.0e+00 1.1e−05 3.2e−05 46 44 46 127 0.042
himmelbd 2 2 67 0.0e+00 1.8e+03 0.0e+00 330 75 333 187 0.000 x
himmelbe 3 3 53 0.0e+00 3.0e+00 0.0e+00 72 56 72 151 0.000 x
hs006 2 1 13 3.3e−15 3.1e−08 3.0e−05 14 14 14 42 0.011
hs007 2 1 20 −1.7e+00 1.5e−07 2.5e−05 21 21 21 63 0.018
hs008 2 2 50 −1.0e+00 8.5e−09 7.4e−07 53 52 53 154 0.046
hs009 2 1 19 −5.0e−01 3.0e−11 3.3e−07 41 21 41 60 0.017
hs026 3 1 121 2.1e+01 0.0e+00 1.2e+01 482 162 482 842 0.000 x
hs027 3 1 35 4.0e+00 7.0e+00 1.6e+01 310 88 310 1738 0.000 x
hs028 3 1 27 1.5e−13 2.5e−08 1.6e−05 28 28 28 84 0.024
hs039 4 2 20 −1.0e+00 7.7e−08 2.1e−05 21 21 21 65 0.019
hs040 4 3 30 −2.5e−01 9.6e−12 6.5e−07 34 32 34 100 0.032
hs046 5 2 57 3.3e+00 2.2e−16 7.6e+00 597 112 597 3090 0.000 x
hs047 5 3 69 −6.6e−07 3.5e−08 1.8e−04 625 125 625 3024 0.154
hs048 5 2 37 1.9e−13 1.1e−08 7.3e−05 38 38 38 116 0.036
hs049 5 2 19 1.6e−06 2.1e−12 9.7e−04 93 76 93 2829 0.059
hs050 5 3 16 1.7e−10 8.3e−09 4.9e−03 88 67 88 2412 0.052
hs051 5 3 37 1.7e−13 2.0e−09 6.0e−05 38 38 38 118 0.038
hs052 5 3 50 5.3e+00 2.4e−07 1.5e−04 51 51 51 157 0.049
hs061 3 2 28 −1.4e+02 9.2e−06 6.9e−05 29 29 29 89 0.024
hs077 5 2 110 5.5e+00 8.5e−12 1.1e−06 515 155 515 1088 0.158
hs078 5 3 27 −2.9e+00 2.1e−08 2.3e−05 28 28 28 88 0.027
hs079 5 3 26 7.9e−02 5.3e−09 5.4e−05 27 27 27 85 0.028
hs100lnp 7 2 48 6.8e+02 9.7e−10 1.9e−04 119 79 119 651 0.080
hs111lnp 10 3 49 −2.1e+01 1.4e+00 7.2e−01 61 52 61 155 0.000 x
hypcir 2 2 13 0.0e+00 1.5e−06 6.4e−06 14 14 14 39 0.012

Continued on next page

Les Cahiers du GERAD G–2016–65 21

Table 2—continued from previous page

name n m it f ‖c‖ ‖∇L‖ #f #g #c #jprod time

integreq 100 100 35 0.0e+00 4.7e−09 1.7e−05 39 37 39 108 0.861
lch 600 1 1002 −3.4e+00 8.6e−06 3.0e+00 11677 1060 11678 3234 2.552 i
marato 2 1 7 −1.0e+00 8.2e−11 4.2e−06 8 8 8 24 0.006
msqrta 1024 1024 165 0.0e+00 8.9e+01 0.0e+00 292 172 292 408 0.000 x
msqrtb 1024 1024 261 0.0e+00 8.9e+01 0.0e+00 478 268 478 602 0.000 x
mwright 5 3 21 2.5e+01 8.2e−09 1.0e−04 93 69 93 1742 0.058
orthrdm2 4003 2000 24 1.6e+02 9.6e−04 4.9e−02 90 26 90 57 3.209
orthrds2 203 100 346 3.8e+02 4.5e−04 9.7e−03 902 366 902 826 1.478
orthrega 517 256 1002 1.7e+03 3.8e−06 5.2e+00 2035 1040 2038 2211 6.065 i
orthregb 27 6 7 7.7e−07 1.5e−07 1.8e−03 8 8 8 21 0.011
orthregc 10005 5000 524 1.9e+02 1.1e−09 8.7e−05 1713 536 1713 1152 180.110
orthregd 10003 5000 345 7.4e+03 1.8e−03 2.6e−02 835 362 835 810 186.537
orthrgdm 10003 5000 1002 1.2e+04 2.4e−01 2.4e+02 15970 1037 15971 2184 220.255 i
orthrgd 10003 5000 291 1.6e+03 1.3e−03 7.8e−02 1837 302 1837 10678 164.767
porous1 4900 4900 1 0.0e+00 5.8e+04 0.0e+00 9 3 9 5 0.000 x
porous2 4900 4900 1 0.0e+00 5.4e+04 0.0e+00 10 3 10 5 0.000 x
powellb 2 2 26 0.0e+00 1.1e+00 0.0e+00 31 28 31 78 0.000 x
powellsq 2 2 1002 0.0e+00 1.1e+01 4.8e+00 31904 1013 31911 2068 2.695 i
recipe 3 3 52 0.0e+00 8.5e−09 1.7e−05 59 55 59 162 0.060
zangwil3 3 3 30 0.0e+00 1.7e+02 0.0e+00 33 32 33 92 0.000 x

7 Discussion

The main contribution of this paper is the formulation and analysis of an algorithm for equality-constrained

optimization that combines the favorable global properties of augmented Lagrangian methods and local

properties of stabilized SQP methods. The use of positive-definite limited-memory approximations to the

Hessian of the Lagrangian presents the significant advantage that the linear system encountered at each

iteration is always SQD. An appropriate interpretation of that system in terms of a linear least-squares

problem permits efficient inexact system solves and an entirely factorization-free implementation. The analysis

of Sections 4 and 5 does not rely on the LICQ. The numerical results of Section 6 indicate that the proposed

method is promising but call for a more robust implementation of the inner iteration. A performance evaluation

on a set of degenerate problems is the subject on ongoing work. In order for our implementation to become

more generally useful, it is necessary to supplement it with an infeasibility-detection mechanism as well

as penalty and multiplier update rules that allow us to guarantee convergence towards a point when the

constraint qualification fails when the penalty parameter diverges and the iterates approach the feasible set.

The use of our BFGS-LSMR strategy for solving (13) or (16) inexactly is not restricted to the specific scope

of the present research. It could also be employed when applying a quadratic penalty method to (1) in the

same vein as described in [4]. Following the procedure of Section 2 leads to the fully regularized subproblem

minimize
x∈Rn

,r∈Rm
f(x) + 1

2ρk‖x− xk‖
2 + 1

2δk‖r‖
2 subject to c(x) + δkr = 0, (37)

for δk > 0, ρk ≥ 0 and for some new variables r. Applying Newton’s method to the KKT conditions of (37)

yields [
Hk + ρkI JTk

Jk −δkI

] [
∆x
−∆y

]
= −

[
gk − J

T
k yk

ck + δkyk

]
. (38)

Note that the coefficient of (38) is the same as that of (16), only the right-hand side differs.

The local convergence properties of Section 5 assume that quasi-Newton approximations converge super-

linearly to the exact Hessian at the solution along the primal steps. The authors of [9] establish that fast

local convergence of a SQP method can take place provided Hk is defined as the BFGS approximation of the

Hessian of the augmented Lagrangian. It may be possible to transpose their results to the present context

because (9) is precisely a step on an augmented Lagrangian. Unfortunately, the performance of the augmented

Lagrangian approximation is poor compared to that of the damped BFGS update of [39]. Local convergence

properties of the damped update remains an open question. Powell proves that if convergence occurs, it does

22 G–2016–65 Les Cahiers du GERAD

so at a R-superlinear rate. Further exploration of those considerations is beyond the scope of the present

paper and is left for future research.

We briefly mention potential avenues to extend our method to problems with inequality constraints. A

first approach is to use an augmented Lagrangian function that takes inequalities into account, such as that

of [7], as in [31]. The advantage of such an approach is that we expect its convergence analysis to be similar

to that developed in the present paper. Another approach is to add slack variables and treat bounds via a

logarithmic barrier. Such an approach could continue to build upon the interior-point framework of [3] and its

transition between the global and local regimes, and would continue to bear some resemblance with IPOPT.

Finally, allowing the penalty parameter to increase during the inner iterations as proposed in [2] might

further improve performance.

References
[1] M. Al-Baali. Damped techniques for enforcing convergence of quasi-Newton methods. Optimization Methods and

Software, 29(5):919–936, 2014. DOI: 10.1080/10556788.2014.891030.

[2] P. Armand and R. Omheni. A globally and quadratically convergent primal-dual augmented La-
grangian algorithm for equality constrained optimization. Optimization Methods and Software, 2015.
DOI: 10.1080/10556788.2015.1025401. Online First.

[3] P. Armand, J. Benoist, and D. Orban. From global to local convergence of interior methods for nonlinear
optimization. Optimization Methods and Software, 28(5):1051–1080, 2012. DOI: 10.1080/10556788.2012.668905.

[4] P. Armand, J. Benoist, R. Omheni, and V. Pateloup. Study of a primal-dual algorithm for equality constrained
minimization. Computational Optimization and Applications, 59(3):405–433, July 2014. DOI: 10.1007/s10589-
014-9679-3.

[5] S. Arreckx, D. Orban, and N. van Omme. NLP.py — a large-scale optimization toolkit in Python. Cahier du
GERAD G–2016–42, GERAD, Montréal, QC, Canada, 2016.

[6] D. P. Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic press, 1996. DOI:
10.1016/b978-0-12-093480-5.50005-2.

[7] E. G. Birgin and J. M. Mart́ınez. Practical augmented Lagrangian methods for constrained optimization. SIAM,
May 2014. DOI: 10.1137/1.9781611973365.

[8] P. T. Boggs and J. W. Tolle. Sequential quadratic programming. Acta Numerica, 4:1–51, January 1995. DOI:
10.1017/S0962492900002518.

[9] R. H. Byrd, R. A. Tapia, and Y. Zhang. An SQP augmented lagrangian BFGS algorithm for constrained
optimization. SIAM Journal on Optimization, 2(2):210–241, 1992.

[10] R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representations of quasi-Newton matrices and their use in limited
memory methods. Mathematical Programming, 63(1):129–156, 1994. DOI: 10.1007/BF01582063.

[11] R. H. Byrd, F. E. Curtis, and J. Nocedal. An inexact Newton method for nonconvex equality constrained
optimization. Mathematical Programming, 122(2):273–299, September 2009. DOI: 10.1007/s10107-008-0248-3.

[12] J. E. Dennis and Jorge J. Moré. Quasi-Newton methods, motivation and theory. SIAM Review, 19(1):46–89,
January 1977. DOI: 10.1137/1019005.

[13] J. E. Jr Dennis and R. B. Schnabel. Numerical methods for unconstrained optimization and nonlinear equations,
volume 16. SIAM, January 1996. DOI: 10.1137/1.9781611971200.

[14] I. S. Duff. MA57—a code for the solution of sparse symmetric definite and indefinite systems. ACM Transactions
on Mathematical Software, 30(2):118–144, June 2004. DOI: 10.1145/992200.992202.

[15] D. Fernàndez and M. Solodov. Stabilized sequential quadratic programming for optimization and a stabilized
Newton-type method for variational problems. Mathematical Programming, 125(1):47–73, September 2010. DOI:
10.1007/s10107-008-0255-4.

http://dx.doi.org/10.1080/10556788.2014.891030
http://dx.doi.org/10.1080/10556788.2015.1025401
http://dx.doi.org/10.1080/10556788.2012.668905
http://dx.doi.org/10.1007/s10589-014-9679-3
http://dx.doi.org/10.1007/s10589-014-9679-3
http://dx.doi.org/10.1016/b978-0-12-093480-5.50005-2
http://dx.doi.org/10.1137/1.9781611973365
http://dx.doi.org/10.1017/S0962492900002518
http://dx.doi.org/10.1007/BF01582063
http://dx.doi.org/10.1007/s10107-008-0248-3
http://dx.doi.org/10.1137/1019005
http://dx.doi.org/10.1137/1.9781611971200
http://dx.doi.org/10.1145/992200.992202
http://dx.doi.org/10.1007/s10107-008-0255-4

Les Cahiers du GERAD G–2016–65 23

[16] D. Fernández, E. A. Pilotta, and G. A. Torres. An inexact restoration strategy for the globalization of the sSQP
method. Computational Optimization and Applications, 54(3):595–617, 2012. DOI: 10.1007/s10589-012-9502-y.

[17] D. C.-L. Fong and M. A. Saunders. LSMR: An iterative algorithm for sparse least-squares problems. SIAM
Journal on Scientific Computing, 33(5):2950–2971, 2011. DOI: 10.1137/10079687X.

[18] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for Mathematical Programming.
Duxbury Press / Brooks/Cole Publishing Company, second edition, 2003.

[19] M. P. Friedlander and D. Orban. A primal-dual regularized interior-point method for convex quadratic programs.
Mathematical Programming Computation, 4(1):71–107, 2012. DOI: s12532-012-0035-2.

[20] J. Gauvin. A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming.
Mathematical Programming, Series B, 12:136–138, 1977.

[21] P. Gill and D. Robinson. A globally convergent stabilized SQP method. SIAM Journal on Optimization, 23(4):
1983–2010, January 2013. DOI: 10.1137/120882913.

[22] P. E. Gill and E. Wong. Sequential quadratic programming methods. In Jon Lee and Sven Leyffer, editors, Mixed
Integer Nonlinear Programming, volume 154 of The IMA Volumes in Mathematics and its Applications, pages
147–224. Springer New York, November 2011. DOI: 10.1007/978-1-4614-1927-3“˙6.

[23] P. E. Gill, V. Kungurtsev, and D. P. Robinson. A stabilized SQP method: global convergence. IMA Journal of
Numerical Analysis, 37(1):407–443, 2017. DOI: 10.1093/imanum/drw004.

[24] P. E. Gill, V. Kungurtsev, and D. P. Robinson. A stabilized SQP method: superlinear convergence. Mathematical
Programming, 163(1):369–410, 2017. DOI: 10.1007/s10107-016-1066-7.

[25] N. I. M. Gould. On practical conditions for the existence and uniqueness of solutions to the general equality
quadratic programming problem. Mathematical Programming, 32(1):90–99, May 1985. DOI: 10.1007/BF01585660.

[26] N. I. M. Gould, D. Orban, and Ph. L. Toint. CUTEst: a Constrained and Unconstrained Testing Environment
with safe threads. Computational Optimization and Applications, 60(3):545–557, 2015. DOI: 10.1007/s10589-014-
9687-3.

[27] W. W. Hager. Stabilized sequential quadratic programming. Computational Optimization and Applications,
12(1):253–273, 1999. DOI: 10.1023/A:1008640419184.

[28] M. Heinkenschloss and D. Ridzal. A matrix-free trust-region sqp method for equality constrained optimization.
SIAM Journal on Optimization, 24(3):1507–1541, 2014.

[29] W. Hock and K. Schittkowski. Test Examples for Nonlinear Programming Codes, volume 187, chapter Lectures
Notes in Economics and Mathematical Systems. Springer Verlag, Berlin, 1981.

[30] A. F. Izmailov and M. V. Solodov. Stabilized SQP Revisited. Mathematical Programming, 133(1–2):93–120,
June 2012. DOI: 10.1007/s10107-010-0413-3.

[31] A. F. Izmailov, M. V. Solodov, and E. I. Uskov. Combining stabilized SQP with the augmented Lagrangian
algorithm. Computational Optimization and Applications, 62(2):405–429, 2015. DOI: 10.1007/s10589-015-9744-6.

[32] A. F. Izmailov, M. V. Solodov, and E. I. Uskov. Globalizing stabilized sequential quadratic programming method
by smooth primal-dual exact penalty function. Journal of Optimization Theory and Applications, 169(1):148–178,
2016. DOI: 10.1007/s10957-016-0889-y.

[33] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization. Mathematical
Programming, 45(1):503–528, August 1989. DOI: 10.1007/BF01589116.

[34] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, second edition, 2006. DOI:
10.1007/b98874.

[35] D. Orban. PyKrylov: Krylov subspace methods in pure Python. github.com/PythonOptimizers/pykrylov, July
2009.

[36] D. Orban and M. Arioli. Iterative Solution of Symmetric Quasi-Definite Linear Systems, volume 3. SIAM, 2017.
DOI: 10.1137/1.9781611974737.

http://dx.doi.org/10.1007/s10589-012-9502-y
http://dx.doi.org/10.1137/10079687X
http://dx.doi.org/s12532-012-0035-2
http://dx.doi.org/10.1137/120882913
http://dx.doi.org/10.1007/978-1-4614-1927-3_6
http://dx.doi.org/10.1093/imanum/drw004
http://dx.doi.org/10.1007/s10107-016-1066-7
http://dx.doi.org/10.1007/BF01585660
http://dx.doi.org/10.1007/s10589-014-9687-3
http://dx.doi.org/10.1007/s10589-014-9687-3
http://dx.doi.org/10.1023/A:1008640419184
http://dx.doi.org/10.1007/s10107-010-0413-3
http://dx.doi.org/10.1007/s10589-015-9744-6
http://dx.doi.org/10.1007/s10957-016-0889-y
http://dx.doi.org/10.1007/BF01589116
http://dx.doi.org/10.1007/b98874
github.com/PythonOptimizers/pykrylov
http://dx.doi.org/10.1137/1.9781611974737

24 G–2016–65 Les Cahiers du GERAD

[37] C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations. SIAM Journal on
Numerical Analysis, 12(4):617–629, September 1975. DOI: 10.1137/0712047.

[38] C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM
Transactions on Mathematical Software, 8(1):43–71, 1982. DOI: 10.1145/355984.355989.

[39] M. J. D. Powell. A fast algorithm for nonlinearly constrained optimization calculations. In Lecture Notes in
Mathematics, pages 144–157. Springer Science + Business Media, 1978. DOI: 10.1007/bfb0067703.

[40] R. T. Rockafellar. Augmented Lagrangians and applications of the proximal point algorithm in convex programming.
Mathematics of Operations Research, 1:97–116, 1976. DOI: 10.1287/moor.1.2.97.

[41] R. J. Vanderbei. Symmetric quasi-definite matrices. SIAM Journal on Optimization, 5(1):100–113, 1995. DOI:
10.1137/0805005.

[42] A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search algorithm for large-scale
nonlinear programming. Mathematical Programming, 106:25–57, 2006. DOI: 10.1007/s10107-004-0559-y.

[43] R. B. Wilson. A Simplicial Method for Convex Programming. PhD thesis, Harvard University, Boston, USA,
1963.

[44] S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, 1997. DOI: 10.1137/1.9781611971453.

[45] S. J. Wright. Superlinear Convergence of a Stabilized SQP Method to a Degenerate Solution. Computational
Optimization and Applications, 11(3):253–275, 1998. DOI: 10.1023/A:1018665102534.

[46] S. J. Wright. An algorithm for degenerate nonlinear programming with rapid local convergence. SIAM Journal
on Optimization, 15(3):673–696, 2005. DOI: 10.1137/030601235.

http://dx.doi.org/10.1137/0712047
http://dx.doi.org/10.1145/355984.355989
http://dx.doi.org/10.1007/bfb0067703
http://dx.doi.org/10.1287/moor.1.2.97
http://dx.doi.org/10.1137/0805005
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1137/1.9781611971453
http://dx.doi.org/10.1023/A:1018665102534
http://dx.doi.org/10.1137/030601235

	Introduction
	A primal-dual regularization and regularized SQP methods
	Main algorithm
	Global convergence
	Convergence of the inner iterations
	Exact system solves
	Inexact system solves: a quasi-Newton strategy

	Convergence of the outer iterations

	Local convergence
	Implementation and numerical results
	Discussion

