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légales associées à ces droits. Ainsi, les utilisateurs:
• Peuvent télécharger et imprimer une copie de toute publication

du portail public aux fins d’étude ou de recherche privée;
• Ne peuvent pas distribuer le matériel ou l’utiliser pour une ac-
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Abstract: We investigate surrogate-assisted strategies for global derivative-free optimization using the
mesh adaptive direct search (MADS) blackbox optimization algorithm. In particular, we build an ensemble
of surrogate models to be used within the search step of MADS to perform global exploration, and examine
different methods for selecting the best model for a given problem at hand. To do so, we introduce an
order-based error tailored to surrogate-based search. We report computational experiments for ten analytical
benchmark problems and three engineering design applications. Results demonstrate that different metrics
may result in different model choices and that the use of order-based metrics improves performance.
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1 Introduction

In many engineering design optimization problems, the objective and constraint functions are evaluated

using simulation models. These models are often not accessible by the user, and so the structure of the

optimization problem cannot be identified in order to be exploited. Such problems are called blackbox

optimization problems [6]. In addition, derivatives may either be unavailable or require significant effort

to be approximated reliably. In this case, derivative-free optimization algorithms [20] may offer a valuable

alternative to gradient-based techniques. Finally, simulations may be computationally expensive. In such

cases, surrogate models of the blackboxes may be built and used to obtain information in a more robust and

inexpensive, yet possibly less accurate, manner.

We consider the constrained engineering design optimization problem

min
x∈X

f(x)

s.t. cj(x) ≤ 0, j ∈ J = {1, 2, . . . ,m},
(P )

where X is a subset of Rn typically defined by bound constraints x ≤ x ≤ x and the functions f and cj ,

j ∈ J , are evaluated by means of blackbox simulation models. We employ the mesh-adaptive direct search

(MADS) algorithm [9] that relies on the search-and-poll paradigm [12]. The poll rigorously ensures global

convergence toward a solution satisfying some local optimality conditions, while the search can implement

any method likely to improve the efficiency and global exploration of the optimization process in order to

escape local optima.

Our research focuses on developing surrogate-assisted strategies integrated in MADS. We build/update

surrogate models that are used to obtain a next-iterate candidate by solving a surrogate optimization problem

in the search step. We also use the surrogate models to rank the candidates proposed by the poll step.

Then, we select the next iterate by evaluating the blackbox simulation at some carefully chosen trial points.

In this manner, we generate as much information as possible using the inexpensive and robust surrogate

models while making decisions using the blackbox simulation models. This approach has served as the

foundation for a body of literature that includes various types of search methods: Latin hypercube-based

design of experiments [49], variable neighborhood search [7], particle swarms [71], genetic algorithms [31] and

surrogate-based [12, 19, 22, 33].

The principle of a surrogate-based search is to use previously evaluated points for building and calibrating

surrogate models to predict blackbox output at new trial points. The idea is that a minimizer of the objective

function surrogate subject to constraint surrogates will be a potentially interesting candidate for the original

optimization Problem (P ). Other approaches that are not considered in this work consist of computing the

Expected Improvement [8, 36] of a design, and/or considering a diversification term that will favor unexplored

areas of the design space [64, 65].

The search step therefore consists of solving the surrogate problem, i.e., the minimization of the surrogate

of the objective function subject to the constraint surrogates. To find a minimizer of this problem, an

inner instance of MADS is used which relies heavily on Variable Neighborhood Search (VNS) [7] and Latin

Hypercube (LH) sampling [49]. In our computational experiments in Section 5, a large budget of model

evaluations (10,000) is allocated for solving the surrogate problem at each search step, which favors a global

solution of the surrogate problem. As a consequence, the main instance of MADS is more likely to converge

towards a global minimizer of the main problem, however, this convergence is contingent upon the accuracy

of the chosen surrogate models.

The challenge is to build surrogate models that adequately approximate the blackbox outputs. Commonly

used models include Gaussian processes [56, 58], in particular Kriging models [12, 16, 23, 36]. While these

models may be very useful, the process of choosing their parameters can be tedious and generate significant

computational overhead. Another common surrogate approach is to build local quadratic models [19, 21, 24],

which rely on trust regions [4, 18, 26]. Finally, other surrogate modeling techniques include radial basis

functions [38, 42, 59, 60, 75], splines [74] and kernel smoothing [2, 34].
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Several studies have shown that no single surrogate modeling technique can be deemed the best on a

consistent basis [2, 25, 27, 29]. To address this issue, our approach is to build an ensemble of surrogates, in

which several surrogate models of different types are constructed [2, 13, 14, 29, 43, 45, 53, 54, 67, 72, 73].

The quality of each model is assessed to either select the best for each individual blackbox output, or to

construct an aggregate model using a weighted combination of all surrogate models. A fundamental aspect

of an ensemble of surrogates is that the models are built without any attempt to fine-tune their parameters.

In the approaches proposed so far to compute aggregate model weights, [29] uses four different empirical

methods to determine them directly from error metrics. On the contrary, [2] and [72] compute the weights

to minimize error metrics.

In this work, we select the best surrogate model according to an error metric. Commonly used metrics

include the Root Mean Square Error (RMSE) and the Predicted Residual Sum of Squares (PRESS) [5, 29,

30, 53]. However, our opinion is that RMSE or PRESS may not be the most suitable metrics for selecting

models in a surrogate-based optimization (SBO) context. For example, metrics based on sums of squares

will penalize models that do not fit outliers well, even though oftentimes these outliers are not critical with

respect to the optimizer. In general, model accuracy (favored by RMSE or PRESS metrics) may not be as

critical as the location of the optimizer; for example, the surrogate af(x) + b of f(x) with a > 0 is perfectly

suitable for SBO even though it has a high RMSE or PRESS value. Our main concern in SBO is to find the

correct optimizer, not necessarily the correct optimum. Therefore, we propose a novel class of order-based

error metrics that is tailored specifically for SBO; these metrics quantify the ability of a model to predict

which of two points has the best objective function, or to predict whether a given point is feasible.

The paper is structured as follows. Section 2 presents a high-level description of the MADS optimization al-

gorithm, and surrogate-based search. Section 3 provides an overview of modeling techniques used to build en-

sembles of surrogates. In Section 4, ensembles of surrogates are discussed in more detail along with several er-

ror metrics (including the newly proposed order-based error metric) used to assess predictive capabilities. Sec-

tion 5 demonstrates the performance of the new metric by means of several computational experiments on a set

of analytical problems, on three engineering design applications. Concluding remarks are drawn in Section 6.

2 The MADS algorithm

At each iteration t of MADS, several candidates are evaluated. To guarantee the convergence of the algorithm

towards a solution satisfying some optimality conditions, all candidates must lie on a discretization of the

design space called the mesh and defined, at iteration t, by

Mt = {x + ∆m
t Dz, z ∈ NnD ,x ∈ Xt}

where ∆m
t ∈ R+ is the mesh size parameter at iteration t, Xt = {x1,x2, . . . ,xp} ⊂ X is the set of points

evaluated previously, and D is a matrix whose columns form a positive spanning set of nD directions in R
n.

2.1 Search and poll

Each MADS iteration consists of an optional search and a mandatory poll step. We use the search step

to solve a surrogate optimization problem, i.e., solve the optimization problem using surrogate models of

the objective and constraints. The training points Xt are used to build a surrogate model for each of the

blackbox outputs. For a given x ∈ X , the models denoted by f̂ and ĉj provide estimates of f(x) and cj(x).

The surrogate-based search is based on the premise that a solution of the surrogate problem

min
x∈X

f̂(x)

s.t. ĉj(x) ≤ 0, j ∈ J,
(P̂ )

will be a promising candidate of the original Problem (P ). The search proceeds as follows: at each iteration of

the MADS algorithm, the surrogate models are updated to account for the most recent observations available.
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Then, a solution of Problem (P̂ ) is computed and denoted by xSt . It is the best feasible solution of (P̂ ) or,

if no feasible design was found, the best infeasible solution (i.e., the solution with the smallest constraint

violation value, as defined in [10]).

The point xSt is then projected on the mesh Mt using the method described in Section 2.2; this process

yields the point xPt which is then evaluated using the blackbox simulation that defines Problem (P ). If this

candidate leads to an improvement of the solution, the surrogate-based search is repeated. Otherwise, the

algorithm proceeds to the poll step.

In the poll step, a set SPoll,t of candidates is built within a distance ∆p
t > 0 of the incumbent solution x∗t .

Candidates of the poll step are ordered depending on how well they perform on the surrogate Problem (P̂ );

they are then evaluated using the blackbox simulation. These evaluations are made opportunistically, which

means that if a candidate leads to an improvement of the solution, the MADS iteration is considered a

success and the other candidates of the poll are not evaluated. This opportunistic strategy implies that for

each MADS iteration, the computational cost and the magnitude of the improvement both depend on the

order in which the candidates of the poll step are evaluated. Specifically, the process of evaluating candidates

from most to least promising allows for a larger improvement of the solution within fewer blackbox evaluations.

At the end of iteration t, the mesh size parameter ∆m
t+1 is updated based on the outcome of iteration t. The

standard MADS algorithm [10] proposes to increase the mesh size parameter when the iteration is successful

(i.e., when a point better than the incumbent solution x∗t has been found) in order to accelerate the movement

towards more interesting regions of the design space. However, in the case where the success of the iteration

is obtained via the search steps, which performs global exploration, it is not relevant to increase the mesh

size. Consequently, we adopt the following scheme: if the search is a success, the mesh size remains at the

same value and the poll step is skipped (i.e., ∆m
t+1 ← ∆m

t ); if the poll is a success, the mesh size is increased

(i.e. ∆m
t+1 ← 4∆m

t ); finally, if the iteration is a failure, the mesh size is reduced (i.e. ∆m
t+1 ← 0.25∆m

t ). This

scheme is permitted in MADS [9]. An overview of MADS is provided in Algorithm 1.

2.2 Projection on the mesh

The search is required to propose finitely many candidates lying on the discrete mesh to preserve the con-

vergence properties of MADS. However, we have observed that the search is often more efficient when the

surrogate optimization process is allowed to evaluate points that do not lie on the mesh. Consequently, the

candidate returned by the optimization of the surrogate problem is often not on the mesh and the last step

of the surrogate-based search projects this point onto the mesh.

We denote x∗t the incumbent solution of the original problem, xSt the non-projected solution of the

surrogate problem optimization, and xPt the projection of xSt onto the mesh

Mt =
⋃

x∈Xt

Mt,x.

where for each point x of Xt, Mt,x = {x + ∆m
t Dz, z ∈ NnD} is a submesh.

The projection of u ∈ X on the submesh Mt,x can then be defined as

projx(u) ∈ argmin
v∈Mt,x

‖u− v‖1,

which can be performed by rounding operations on the components of u and x.

In previous work, the candidate returned by the search was projx∗t (xSt ), i.e., the projection of the surrogate

problem solution onMt,x∗t
[19, 65]. As we generally haveMt,x∗t

⊂Mt with a strict inclusion, many interesting

points that lie on the mesh Mt may be discarded during this projection step. Moreover, this definition of

the projection may be misleading as the point of the mesh that is the closest to xSt is not necessarily the best

candidate according to f̂ and {ĉ}j∈J .



4 G–2016–36 – Revised Les Cahiers du GERAD

Algorithm 1 The MADS optimization algorithm.

[1] Initialization
t← 0
Set initial poll and mesh sizes ∆p

0 ≥ ∆m
0 > 0

Initialize X0 with starting points
Evaluate f(x) and {cj(x)}j∈J for all x ∈ X0

[2] Search

Use Xt to build f̂ and {ĉj}j∈J
xSt ← Solution of (P̂ )
xPt ← Projection of xSt onto mesh Mt

Evaluate f(xPt ) and {cj(xPt )}j∈J
If success, goto [4]

[3] Poll
Build poll set SPoll,t
Sort SPoll,t according to f̂ and {ĉj}j∈J
for x ∈ SPoll,t∣∣∣∣ Evaluate f(x) and {cj(x)}j∈J

If success, goto [4]
end

[4] Updates
t← t+ 1
Update ∆m

t , ∆p
t , Mt, x∗t and Xt

If no stopping condition is met, goto [2]

To address these problems, we propose a novel projection step which consists of the following four steps.

First, we consider the set of perturbation vectors

Π = {u ∈ Rn : ui = ±∆m
t , i = 1, 2, . . . , n} ⊂ R

n,

and we build the set SΠ ⊂ Π by drawing randomly min{2n, 100n} different vectors of Π. These vectors

allow to perturb the design xSt so that not only the closest point to xSt is considered during the projection.

Secondly, we build a set of projection candidates

SProj = {x : x = projx′(x
P
t + u),u ∈ SΠ,x

′ ∈ X}.

Note that there may exist several couples (u,x′) that lead to the same value of projx′(x
S
t + u), so the

training of this set includes the suppression of duplications. Even so, it can be prohibitive to compute f̂(x)

and {ĉ(x)}j∈J for all x ∈ SProj , so the third step of the projection is to perform a greedy selection with

Algorithm 2 (see Appendix A) to reduce the size of this set to no more than 100n candidates. While using

this algorithm, we will favor points close to xSt . Finally, all the points of SProj are evaluated with f̂ and

{ĉ}j∈J , and the best feasible design (or, if unavailable, the best infeasible design) is selected as the candidate

xPt of the search step at iteration t of MADS.

3 Overview of selected surrogate modeling techniques

From a set of p observations [X,y], with X = {x1,x2, . . . ,xp} ⊂ R
n and yi = y(xi), where y : Rn → R is

either the objective function f or one of the constraint functions {cj}j∈J , it is possible to build a surrogate

model ŷ which can be used to predict the value of y(x) for x /∈ X. In this section, we describe three types

of surrogate models and how to use them to build an ensemble of surrogates: Polynomial response surfaces

(PRSs) [2, 53, 57], kernel smoothing (KS) [2, 34], and radial basis functions (RBFs) [2, 15, 53, 57, 59, 60, 73].

As discussed in Section 4.1, it is useful to have access to cross-validation values in order to quantify the

predictive capability of a surrogate model. These consist of the values that ŷ(xi) would have taken if the

model ŷ had been built without the observation [xi, y(xi)]. Thus, we define ŷ(-i) the surrogate model built

by leaving out the observation [xi, y(xi)] for xi ∈ X. We also define the cross-validation vector ŷcv such that

ŷcvi = ŷ(-i)(xi).

Since PRS and RBF models both fall in the category of linear models (not to be confused with linear

regression), Section 3.1 provides an overview of these types of models.
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3.1 Linear models

A model ŷ is said to be linear if it can be expressed as a linear combination of basis functions [28, 46, 55, 62]

ŷ(x) =

q∑
j=1

αjhj(x),

where hj(x) : Rn → R is a (possibly non-linear) basis function. The coefficients α = [α1, α2, . . . , αq]
> are

computed to minimize the regularized quadratic error∑
x∈X

(y(x)− ŷ(x))2 + rridge‖α‖22,

where rridge ≥ 0 is a regularization (or ridge [55]) parameter. This parameter ensures that the linear system

is invertible, even if there are more basis functions than training points or if the training points are aligned.

In case the number of training points does not exceed the number of basis functions (p ≤ q), the model is

constructed only if the ridge coefficient is not equal to zero. Otherwise, the model is considered as not ready

and will be built only when more training points are available.

For such models, the design matrix H can be built from the training points X = {x1,x2, . . . ,xp}

H =

 h1(x1) . . . hq(x1)
...

...
h1(xp) . . . hq(xp)

 .
Note that the matrix H is independent from the output y(X). To solve this kind of problem, we consider

only the cases where the number of training points is larger than the number of basis functions (i.e., the

number of unknown coefficients) or where the ridge coefficient is not equal to zero. In these two cases, the use

of Ordinary Least Squares (OLS) is required. The coefficients α are the solution of the invertible problem

(H>H + rridgeIq)︸ ︷︷ ︸
A

α = H>y.

It follows that

α = A−1H>y.

An interesting property of this kind of model is that the cross-validation vector can be computed by

ŷcv = y − diag(P)−1Py,

where P is the projection matrix [55] such that P = Ip −HA−1H> and diag(P) is a diagonal matrix such

that diag(P)ii = Pii. Once the design matrices H and A are built and A−1 has been computed for a given

function y, it is inexpensive to compute the coefficients α for other functions y (for example, each output of

the blackbox simulation) as well as the cross-validation values.

3.1.1 Polynomial response surfaces

Polynomial response surfaces are linear models for which the basis functions are polynomials. For a PRS of

degree d, the set of basis functions {hj}j=1,2,...,q is a basis of the polynomial vector space of degree d in Rn.

3.1.2 Radial basis functions

RBF models rely on basis functions of the form hj(x) = φ(d(xj ,x)), where d is a distance function (in our

case the Euclidean distance) and φ : R≥0 → R is a kernel function. The coefficients of the RBF models are

typically obtained by solving the linear system [2, 15, 30, 55, 73][
HRBF HPRS

(HPRS)> 0

]
α =

[
y
0

]
, (1)
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where HRBF is a symmetric matrix such that Hij = φ(d(xi,xj)) and HPRS is the design matrix of a PRS

of degree 1.

The main disadvantage of this method is that the computational cost of building an RBF model can

become prohibitive for a large number of training points. We propose a more efficient method which we

have named RBFI (where “I” stands for “Incomplete”). RBFIs are based on the reduction of the number of

basis functions by carefully selecting a subset of the training points S(X) = {xsi}i=1,2,...,qRBF ⊂ X. This

subset contains qRBF < p training points of X, which will be used as centers of the radial basis functions.

The matrix HRBF is then defined in R
p×qRBF such that HRBF

ij = φ(d(xi,x
s
j)) for i = 1, 2, . . . , p and j =

1, 2, . . . , qRBF . The design matrix is defined as H = [HRBF HPRS ], where HPRS is the PRS design matrix

of size p × qPRS . Consequently, the total number of basis functions in this model is q = qRBF + qPRS . We

chose qRBF = min{p/2, 10n}. That means that only qRBF radial basis function are selected; however, they

are merged with qPRS PRS basis functions. The PRS used in this work is of degree 1. That means that

qPRS = n + 1. As the system is overdetermined, we do not need to add orthogonality constraints as in

Equation (1). The coefficients α are computed from the normal equations.

To build the set S(X), we use a greedy algorithm that is computationally efficient and robust in selecting

qRBF points in the set X. This algorithm is based on two requirements. First, the selected points must be

spread across the design space. To do so, points are added greedily to S(X) by selecting the point of X

that maximizes the distance to S(X). Secondly, to allow a better representation of the model in areas of

interest, the number of selected points must be larger next to the incumbent solution x∗. The greedy selection

algorithm is presented in Appendix A. It takes as input the training set X, the incumbent solution x∗, as

well as the desired number of selected points qRBF .

We use two types of kernel in this study. First, the Gaussian kernel φ(d) = exp
(
− r2φd

2

d2mean

)
, where dmean

is the mean Euclidean distance between each pair of points of S(X) and rφ is a parameter of the model.

Secondly, we use the poly-harmonic kernels of degree 1 (φ(d) = d) and degree 2 ( φ(d) = log(d)d2, with

φ(0) = 0 ).

3.2 Kernel smoothing

Kernel smoothing models consist of a weighted sum of the training points, where the weight decreases with

the distance to the training point:

ŷ(x) =

∑p
i=1 φ(d(x,xi))yi∑p
i=1 φ(d(x,xi))

.

The advantage of KS is that the computation is immediate. It does not require a linear system inversion.

One of the drawbacks is that KS rarely respects the training set, and has a tendency to “undershoot”, i.e.,

low values may be estimated higher and high values may be estimated lower. However, despite their tendency

to undershoot, we observe that KS models typically tend to respect the order of the output, which means

that they are able to accurately predict which of two points has the best objective function value. Kernel

smoothing predictions are computed using the same Gaussian kernel as for RBFI models, except that dmean
is the mean Euclidean distance between each pair of points of X.

4 Ensembles of surrogates

For a function y to be modelled, we build a set of kmax surrogate models ŷk. These models can then be

aggregated to a single model by

ŷ(x) =

kmax∑
k=1

wkŷk(x),

where w = [w1, w2, . . . , wkmax ] is a weight vector such that wk ≥ 0 and
∑kmax
k=1 wk = 1.
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Many approaches have been proposed to choose the weights w. Most of them rely on calculating an

error metric Ek for each surrogate ŷk, and then setting wk ∝ g(Ek) ≥ 0, where g depends on the chosen

method [2, 29, 72]. For example, [29] proposes three weight selection methods WTA1, WTA2 and WTA3:

WTA1 : wk ∝ Esum − Ek,
WTA2 : wk ∝ 1Ek=Emin ,

WTA3 : wk ∝ (Ek + αEmean)β ,

where Esum, Emin and Emean are respectively the sum, minimum and mean of {Ek}k=1,2,...,kmax . For WTA3,

the values α < 1 and β < 0 must be provided by the user; [29] recommends α = 0.05 and β = −1. The

WTA2 method is tantamount to selecting the best model; if there are several surrogates with the same error,

equal weights are assigned to these models.

Another approach is to compute the weights that minimize the error metric E of the aggregated model.

However, we have observed that under the constraints 0 ≤ wk ≤ 1 and
∑
k wk = 1, the optimization of the

weights tends to be equivalent to WTA2. Some works [61] have added a diversity term to favor sharing the

weights among all surrogate models; however, we have observed that this did not perform as well as selecting

the best models. Consequently, in this work, we will use the WTA2 method. The remaining question is then

which error metric to use.

The set of models used in this work to build an ensemble of surrogates is listed in Table 1. This set of

surrogate models has been selected empirically after testing diverse models. The wide range of values for the

degree of the PRS and the shape parameter rφ of the Gaussian kernel allows this set to be adapted to reflect

different situations and yet be of a reasonable size.

Table 1: Surrogate model types.

# Model Param. 1 Param. 2

1
2
3
4
5
6

PRS

Degree = 1
1
2
2
3
6

rridge = 0
10−3

0
10−3

0
10−3

7
8
9
10
11

KS

rφ = 0.1
0.3
1.0
3.0
10

Gaussian
kernel

12

RBFI

rφ = 0.3
1.0
3.0
10

Gaussian
kernel

13
14
15

16 Degree = 1
2

Poly-harmonic
kernel17

4.1 Quantifying model quality

A large number of surrogate model techniques exist, which makes it difficult to select the best. Moreover,

most surrogate modeling techniques include parameters that must be selected or optimized (degree for PRSs,

kernel type and shape for RBFIs and KS) since they have a large impact on their “performance”. The

efficiency of the surrogate-based search depends largely on the discrepancy between the prediction f̂(x) and

the real blackbox output f(x) (idem for the constraints). Several studies have shown that there exists no

single surrogate model technique that is consistently best for all problems [2, 25, 29].

The idea investigated in this work consists of building several surrogate models (using different modeling

techniques and different parameters) and selecting, for each blackbox output, the model with the smallest
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discrepancy. We call a metric a measure that allows to quantify this discrepancy. The most common metric

is the root mean square error (RMSE)

ERMSE =

√√√√1

p

p∑
i=1

(
y(xi)− ŷ(xi)

)2

.

This error metric is broadly used in many scientific contexts, including surrogate model selection [72]. How-

ever, it can fail to quantify the predictive accuracy of a surrogate model since the accuracy of the model is

evaluated on the points that were used to build it. For example, RBF (unlike RBFI) and Kriging models are

generally interpolating, which means that the model error is zero at the training points. Thus, the ERMSE

will be zero; however, this does not guarantee accurate predictions outside the training set.

4.1.1 Cross-validation

Cross-validation methods can be useful in addressing this issue of assessing the accuracy of a surrogate model

at other points [2, 25, 63]. The principle is to partition the set of available data X to two disjoint sets: the

training set and the testing set. The training set is used to build the surrogate model. The accuracy of this

model is then assessed using the testing set. This process can be repeated for different training and testing

sets. Such methods generally provide a more robust estimation of the predictive capability of surrogate mod-

els. However, they may be computationally expensive as they require the construction of numerous models.

Moreover, a varying size of the training set may have an adverse impact on the surrogate modeling method.

Considering this, the leave-one-out (LOO) cross-validation method seems to be promising and straight-

forward to implement. For each point xi ∈ X, the training set X(-i) = X\{xi} is used to build the surrogate

model ŷ(-i). This model is then tested on the point xi. The LOO technique has two main advantages over

other cross-validation methods. Firstly, the training sets X(-i) are almost identical to X, which allows the

behavior of ŷ(-i) to be as close as possible to that of ŷ. Secondly, this method does not explicitly require all

the models ŷ(-i) to be built: the “validation value” ŷ(-i)(xi) can often be computed for all i with only a small

additional computational effort. Specifically, as described in Section 3.1, if the surrogate model is built by

means of solving a linear system, the validation values can be obtained by computing explicitly the inverse

of the matrix of this system [55].

The PRESS metric used in [5, 66] is a sum of squares of cross-validation values. To compare it to the

RMSE metric, we take the square root of its average and define

EPRESS =

√√√√1

p

p∑
i=1

(
y(xi)− y(-i)(xi)

)2

.

Cross-validation improvements have been proposed in [17, 50]. In these works, the cross-validation error

is evaluated with various numbers of training points and the error is extrapolated to the entire set X. This

takes into account the fact that the model behavior depends on the number of training points, especially

if that number is small. However, these methods are too computationally expensive to be considered in

this work.

4.1.2 Order-based error (OE) metrics

The main contribution of this work is to propose a novel class of metrics that is tailored to blackbox surrogate

optimization. We start from the observation that Problems (P ) and (P̂ ) have the same solution(s) if the

following two conditions are satisfied

f(x)≤f(x′)⇔ f̂(x)≤ f̂(x′), for all x,x′ ∈ X ,

cj(x)≤0⇔ ĉj(x)≤0, for all x ∈ X and j ∈ J.
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These conditions will generally not be satisfied. Therefore, we propose a discrepancy metric EOE (where

OE stands for Order Error) that is based on the quantification of the violation of these conditions on the

training points:

EOE =



1
p2

p∑
i=1

p∑
l=1

θ
(
f(xi)−f(xl), f̂(xi)−f̂(xl)

)
for the objective f ,

1
p

p∑
i=1

θ
(
cj(xi), ĉj(xi)

)
for a constraint cj ,

where θ : R2 → R is defined as

θ(a, b) = (a ≤ 0) xor (b ≤ 0),

and xor is the logical exclusive or operator (A xor B = 1 if the two Booleans A and B differ, otherwise it is

equal to zero).

EOE is equal to zero if the conditions are satisfied on the training points. We observe that EOE is

bounded above by 1, and a value EOE > 0.5 indicates that the surrogate model is less accurate than its

opposite function. As for the ERMSE metric, an interpolating model will yield EOE = 0, without yielding

necessarily accurate predictions. To address this issue, we propose the use of cross-validation, and define the

order-based metrics

EOECV =



1
p2

p∑
i=1

p∑
l=1

θ
(
f(xi)−f(xl), f̂

(-i)(xi)−f̂ (-l)(xl)
)

for the objective f ,

1
p

p∑
i=1

θ
(
cj(xi), ĉ

(-i)
j (xi)

)
for a constraint cj .

4.2 Comparison of the metrics

In this section, we compute different error metrics for several surrogate models of some test functions to

illustrate how they can lead to different choice decisions. We first propose a simple academic, easy to

reproduce test function

y(x) =

{
x2 if x ≤ 1/2,
1 otherwise,

(2)

and we consider the training points X = {±1/k, k = 1, 2, . . . , 100} which emulate the sequence of iterates,

i.e., the density increases as we get closer to the minimizer. On this set of training points, the function y is

nearly a quadratic function with just one outlier at x = 1/2. Note that this outlier has a rather small value,

which makes the representation of this function easier.

We build two ensembles of surrogates for which the best models will be selected using either the PRESS

metric or the OECV metric. When looking at the general shape of the function (Figure 1), we see that the

model “Select PRESS” (which selected the simple model “PRS 2” with rridge = 10−3) seems to be very

accurate and very close to y. However, the model “Select OECV” (which selected the simple model “KS

10”) has a very nonsmooth behavior. It is clear that the cross-validation error will be especially high for

the KS model at the training points x ∈ {−1,−1/2,+1/5,+1/2,+1} because KS models do not extrapolate.

However, when we “focus” in the region [−0.1; +0.1], we see that the model “Select OECV” fits the data

very well. On the contrary, for the model “Select PRESS”, while the error is small, the fit is shifted to the

left due to the outlier at x = 1/2. As a consequence, unlike the minimizer of the model “Select PRESS”,

the minimizer of the model “Select OECV” is very close to the minimizer of y, which is the most important

feature for surrogate-based optimization.
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Figure 1: The test function of Equation (2); the left plot represents all of the training points as well as the two surrogate models;
the right plot represents the same data, but with a zoom near the minimizer of function y.

The values of the four metrics for each of the seventeen surrogate models listed in Table 1 are presented

in Figure 2. Test functions that include Branin-Hoo, Camelback, Rosenbrock 9, Hartman 3 and Hartman 6
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Figure 2: Comparison of metrics on the test function of Equation (2). The number in the bars denotes model rank according to
the used metric.

were used in [2, 25, 29]. Figure 3 reports results for the Hartman 6 test function; it confirms that different

metrics can lead to different surrogate model selection.

5 Computational experiments

We test the surrogate ensembles and associated model selections on four sets of problems. First, we use

ten analytical benchmark problems. Then, we consider three engineering design applications, namely, the

“simplified wing” [70], the “aircraft range” [3, 39] and the “Lockwood” [33, 37, 47, 48] problems. Table 2
summarizes the main properties of the three engineering design optimization problems.
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Figure 3: Comparison of metrics on the Hartman 6 test function. The number in the bars denotes model rank according to the
used metric.

Table 2: Main properties of the three engineering design optimization problems. The blackbox evaluation times are evaluated on
a 3.4 Ghz Intel Core i7-2600 with 16 Gbytes of RAM.

Problem name n m Eval. budget Eval. time

Simplified wing 7 4 8000 44ms
Aircraft range 10 11 11000 3ms
Lockwood 6 5 700 1.6s

For each of these three problems, 50 different starting points were generated through Latin hypercube (LH)

sampling [49]. Then, each problem is solved for each of these starting points. This benchmarking strategy

allows for the comparison of solvers from various starting points of the design space. It is worth noting

that most of these points will be distant from the global minimizer of the problem. For each optimization
run, a budget of 1000(n+ 1) evaluations is allocated, with the sole exception being the more time-expensive

Lockwood problem, for which a budget of 100(n + 1) evaluations is allocated. The number of variables n

differs from one problem to another. The surrogates or ensembles tested are listed in Table 3: The method

“None” refers to MADS without a surrogate search. The method “Quad” refers to a MADS search step

that uses local quadratic models as described in [19]. The acronym “VNS” refer to MADS with the Variable

Neighborhood Search (VNS) search strategy [7] designed to escape from local minima by favoring global

exploration [51]. The remaining four types are ensembles where the metric utilized to select the best model

differs (“RMSE”, “OE”, “PRESS” or “OECV”).

For the cases where an ensemble of surrogates is used, the surrogate Problem (P̂ ) is solved with an inner

instance of MADS in which no search step is employed. A budget of 10,000 surrogate model evaluations is

allocated for each solution of (P̂ ). The initial mesh and poll size of the second MADS instance (the instance

that is utilized to solve the surrogate problem) are chosen equal to the current mesh and poll size of the

main MADS instance. Up to four starting points (if available) are provided for the solution of the surrogate

problem. The two first possible starting points are the current best feasible and infeasible solutions of the

main problem (P ). The two last possible starting points are the best non-projected feasible and infeasible

designs of the surrogate problem optimization performed during the search step of iteration t − 1. These



12 G–2016–36 – Revised Les Cahiers du GERAD

Table 3: List of compared solvers.
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two last starting points reuse the information available from the previous search step in order to improve the

local convergence of the inner MADS instance.

Moreover, this inner MADS instance strongly relies on LH sampling and VNS search to improve the

chances of finding a global optimum of the surrogate problem (P̂ ) and allows the main MADS instance to

escape from local attraction basins. All MADS executions are conducted using the NOMAD [41] implemen-

tation version 3.7.1, using the default values for the algorithmic parameters that are not involved in defining

the configurations of Table 3.

5.1 Quantifying deviation from the best known solution

For each optimization run ρ ∈ {1, 2, . . . , ρmax}, we denote fs,ρ,i the best objective value found for solver s

after i groups of n + 1 evaluations. If no feasible point is found, we assign fs,ρ,i = +∞. The best solution

found among all runs for optimization run ρ is denoted by

f∗ρ = min
s,i

fs,ρ,i.

The worst first feasible objective value of an optimization run ρ is defined as

fwρ = max
s,i

fs,ρ,i<+∞
fs,ρ,i.

In practice, for an optimization run ρ and solver s, the value fs,ρ,i is piecewise constant with respect

to i. We make the assumption that it takes more than one finite value. This allows to define the relative

discrepancy to the best known solution of run ρ for solver s after i groups of n+ 1 evaluations

δs,ρ,i =
fs,ρ,i − f∗ρ
fwρ − f∗ρ

∈ [0; 1] ∪ {+∞}.

This definition of discrepancy differs from that of [52] to take into account constrained optimization

problems. Specifically, it requires that at least two feasible designs of different objective function value have

been found by any solver for each run. For each set of runs, we report the value of the median discrepancy

after i groups of n + 1 evaluations. The use of the median instead of the mean is motivated by wide range

of magnitude that the discrepancy values can take. Data profiles [52] are provided in Appendix C.

5.2 Analytical benchmark problems

The ten analytical benchmark problems are listed in Table 4. These problems are solved using each of the

seven solvers in Table 3. Median discrepancy curves are depicted in Figure 4.

We first observe that having no search step in MADS (“None”) yields poor performance, which confirms

the motivation for surrogate-based search. Second, the “VNS” performs well in terms of final result, but

requires a large blackbox evaluation budget to become competitive. Third, the ensemble choices based on the
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Table 4: Analytical benchmark optimization problems.

Name n m Bounds Smooth

MAD6 [44] 5 7 no no

CRESCENT [1, 10] 10 2 no yes
SNAKE [10, 19] 2 2 no yes

HS24 2 3 yes yes
HS36 3 1 yes yes
HS37 3 2 yes yes
HS73 [35] 3 3 yes no
HS101 7 4 yes yes
HS102 7 4 yes yes
HS103 7 4 yes yes
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Figure 4: Median discrepancy curves for the ten analytical benchmark problems.

“Select RMSE” and “Select OE” metrics do not perform as well as their cross-validation counter-parts “Select

PRESS” and “Select OECV”. This illustrates the importance of using cross-validation in the error metrics.

For the non cross-validation metrics, we observe that “Select OE” performs better than “Select RMSE”.

Similarly, “Select OECV” performs better than “Select PRESS”. This illustrates that the order-based error

approach is more efficient than the quadratic error approach on this set of runs. Finally, we observe that

“Select OECV” is the most efficient of all surrogate-based searches for these analytical problems. The median

discrepancy reaches 0 after 250 groups of n+ 1 evaluations as this algorithm finds the best solution for eight

out of the ten problems. It is the only algorithm that performs better than MADS with local quadratic search.

These observations are confirmed by the data profiles provided in Figure 9 of Appendix C. Based on these

results, only “Quad”, “VNS”, “Select PRESS” and “Select OECV” will be tested on the two engineering

design problems.

5.3 Simplified wing problem

The “simplified wing” problem considers the minimization of the drag of a wing by optimizing its geome-

try [70]. It is a multidisciplinary design optimization (MDO) problem that involves structures and aerody-

namics. The aerodynamic analysis considers an RAE2822 airfoil in transonic flight and the 2D flow equations

with boundary layers are solved with BGK [11]. The structural analysis considers a wing discretized at 1000

stations. Shear and axial stresses created by lift and drag forces are computed at each station. The multidis-

ciplinary analysis is solved with a fixed point method which stops after 100 iterations, or when the normalized

variation of the analysis variables is smaller than 10−8. The objective function is computed with a variant
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of the Breguet range equation [40]. The problem is smooth but has many local minima. The best objective

function value reported in [70] is f∗ = −16.61. The problem formulation is

min
x∈X⊂R7

wing drag

s.t.

 shear stress ≤ 73,200 psi
tensile stress ≤ 47,900 psi
total weight ≤ total lift .

The design variables, their bounds (set X ) and known optimal values are listed in Table 5. The median

discrepancy curves for the three surrogate types (“Quad”, “Selec PRESS” and “Select OECV”) and for the

“VNS” algorithm are depicted in Figure 5.

Table 5: Simplified wing problem design variables.

Design variable x x x∗

Wing span 30 45 44.132
Root chord 6 12 6.758
Taper ratio 0.28 0.50 0.282
Angle of attack at root -1 3 3.0
Angle of attack at tip -1 3 0.718
Tube external diameter 1.6 5.0 4.03
Tube thickness 0.3 0.79 0.3
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Figure 5: Median discrepancy curves for the 50 simplified wing optimization runs.

“Select PRESS” shows a slight advantage over “Quad” and “Select OECV” generally performs better

than the other solvers. At the very end of the evaluation budget, the “VNS” solver overtakes the “Select

OECV” method and leads to a slightly better median discrepancy.

5.4 Aircraft range problem

The “aircraft range” problem is also an MDO problem that considers aerodynamics, structures, propulsion

and performance for designing a supersonic business jet [3, 39]. The multidisciplinary analysis is handled

with a fixed point method that implements the multidisciplinary feasible optimization (MDF) approach. The

process terminates after 100 fixed point iterations, or when the normalized variation in variables shared by

several disciplines is smaller than 10−12. The variables relative to the thickness of the wing are not considered
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here, and are fixed at the optimal value indicated in [68]. The problem is not smooth and has several local

optima. The best objective value found in this work is f∗ = −3, 964.20 which coincides with that of [65].

The problem formulation is

max
x∈X⊂R10

aircraft range

s.t.



normalized stress ≤ 1.09 (5 constraints)
pressure gradient ≤ 1.04 Pa.m−1

engine scale factor ≥ 0.5
engine scale factor ≤ 1.5
normalized engine temperature ≤ 1.02
throttle setting ≤ max throttle .

Design variables, their bounds (set X ) and known optimal values are listed in Table 6. The median

discrepancy curves are depicted in Figure 6.

Table 6: Aircraft range problem design variables.

Design variable x x x∗

Taper ratio 0.1 0.4 0.4
Wingbox cross-section 0.75 1.25 0.75
Skin friction coeff. 0.75 1.25 0.75
Throttle 0.1 1.0 0.156
Thickness/chord 0.01 0.09 0.06
Altitude 30000 60000 60000
Mach number 1.4 1.8 1.4
Aspect ratio 2.5 8.5 2.5
Wing sweep 40 70 70
Wing surface area 50 1500 1500
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Figure 6: Median discrepancy for the set of aircraft range runs.

Though the difference is not as profound as in the previous tests, “Select OECV” is once again the best-

performing search, especially for high-precision tolerances (see data profile in Figure 11 of Appendix C). For

this problem, “Select PRESS” has a slight advantage on “Quad” at the early stages of the optimization

process, but this trend is reversed later on.
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5.5 Lockwood

The “Lockwood” problem [33, 37, 47, 48] consists of minimizing the cost of the extraction of pollutant from

the soil of the Lockwood site via six decontamination wells in order to prevent two plumes from expanding.

The n = 6 design variables of this problem are described in Table 7. The objective function of the problem

is linear and represents the extraction cost. This structure is not exploited and the objective is treated as a

blackbox. The feasible domain is non-connected and defined by four simulation-based inequality constraints

which are linked two by two in order to approximate equality constraints of the form −10−3 ≤ Q ≤ +10−3

where Q is the steady-state flux of pollutant from each of the two plumes. As observed in [32], even with

its linear objective, this problem poses a difficult global optimization challenge due to the presence of these

constraints. We allocate a budget of 100(n+ 1) blackbox evaluations for each run of this problem.

Table 7: Lockwood problem design variables.

Pumping rates
(m3/day) x x x∗

Plume A, Well 1 0 566 9.712
Plume A, Well 2 0 566 149.744
Plume B, Well 3 0 566 382.695
Plume B, Well 4 0 566 59.6640
Plume B, Well 5 0 566 20.6464
Plume B, Well 6 0 566 22.9182
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Figure 7: Median discrepancy for the set of Lockwood runs.

The best known objective value (reported in [47]) is $23,714, which is reached after 993 blackbox evalua-

tions. With a budget of only 700 blackbox evaluations, 72% of the “Select OECV” runs surpass this objective

and one of the runs reaches an objective value of $22,805. This solver performs better than any of the other

solvers. In particular, it reaches the best objective function value f∗ for more than half of the runs, which

makes the median discrepancy reach zero. Figure 7 presents the value of the median discrepancy for the four

solvers “QUAD”, “VNS”, “Select PRESS” and “Select OECV”.

We define a model selection map Si,k as the number of times that the model k (among the 17 models

listed in Table 1) is selected after i groups of n+ 1 blackbox evaluations over the 50 runs. Figure 8 depicts

the selection maps for the objective and constraint functions c1 and c3 of the Lockwood problem for the

solvers “Select PRESS” and “Select OECV”. Notice how “Select PRESS” captured the linear nature of the

objective while “Select OECV” did not, at least directly. This is due to the fact that many different surrogate

techniques achieved an order error of zero on this linear function. As observed in Figure 1 and in [69], the

PRESS metric tends to overestimate the efficiency of PRS models, whereas the OECV metric is more prone

to using KS and RBF models, which in turn favor multi-modal representation of the blackbox outputs.
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Figure 8: Model selection map Si,k for “Select PRESS” and “Select OECV” solvers on the Lockwood problem; a selection map
indicates how often the model k was selected during blackbox evaluation number i(n+ 1) over the 50 runs. Darker tones indicate
a model selected more frequently. The left (resp. right) column represents the selection maps with the “Select PRESS” (resp.
“Select OECV”) solver. The first row represents the objective function while the second (resp. third) row represents the first
constraint function c1 (resp. c3).
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6 Concluding remarks

We propose a global optimization method based on ensembles of surrogates. These ensembles are managed

with a new order-based metric and used for surrogate-based exploration in the search step of MADS.

We consider ensembles of surrogates based on three types of modeling techniques, including a novel and

efficient method to build RBF models. The ensembles of surrogates are used in the search step of MADS

with an improved projection method that allows to conserve the convergence properties of MADS without

reducing its efficiency.

The main contribution of this work is the introduction of an order-based error metric tailored to surrogate-

based search. This error metric involves cross-validation to ensure that the models have adequate prediction

capabilities.

Using ten analytical benchmark problems and three engineering design applications, we demonstrated that

order-based error metrics perform better than others as they favor models that are relevant for the majority

of training points, i.e., outliers do not contribute inadequately in order-based metrics. In the early stage of

the optimization, the use of order-based metrics ensures an adequate representation of multi-modal functions,

thus improving the global exploration capabilities of the algorithm. Moreover, as the optimization process

unfolds, models selected with order-based metrics provide more accurate candidates of local minimizers.

These candidates allow for more efficient local convergence.

On the contrary, metrics such as the RMSE and the PRESS will favor models which may overemphasize

outliers. This allows a good representation of the general shape of the blackbox functions at the early stages

of the optimization process when few data are available. However, the importance of the outliers does not

decrease fast enough for these metrics as more data become available. Consequently, these metrics will often

favor the selection of PRS models, which will lead to a poor representation of multi-modal functions and will

make the search step unable to move away from local minimizers. Finally, note that a fourth engineering

application (trumpet optimization) is detailed in [69] and that it confirms the efficiency of the ensembles of

surrogates based on the order error.

Appendices

Appendix A Greedy selection algorithm

Algorithm 2 Greedy selection.

Input : Sin, x0 and pout
[1] Initialization

Randomly draw xnew in Sin\{x0}
Sout ← {xnew} ∪ (x0 ∩ Sin)
λ← 3
λmin ← 0.01

[2] Greedy selection
while card(Sout) < pout and λ > λmin∣∣∣∣∣∣∣∣∣∣∣∣∣

xnew ∈ argmax
x∈Sin

d(x, Sout)−λd(x,x0)

if d(xnew, Sout) = 0∣∣ λ← 0.99λ
else∣∣ Sout ← Sout ∪ {xnew}
end

end
Return Sout
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This greedy algorithm is used in Section 2.2 to filter the set of projection candidates and in Section 3.1.2

to select a subset of the training points around which the radial basis functions will be centered. For the

projection step, the inputs of Algorithm 2 are:

Sin ← SProj (Set of projection candidates),

x0 ← xSt (Non projected solution of (P̂ )),

pout ← 100n.

For the selection of the RBF kernels, the inputs of Algorithm 2 are:

Sin ← X (Set of points previously evaluated),

x0 ← x∗t (Incumbent solution of (P )),

pout ← qRBF (Number of radial basis functions, qRBF = min{p/2, 10n}).

In both cases, the goal of this algorithm is to select a set Sout of pout points from the set Sin ∈ Rn. The

set Sout must be spread as widely as possible in R
n while favoring points that are close to a target x0. Since

these two goals can be conflicting, a trade-off parameter λ is introduced. When many points that are close

to x0 have been selected, it is possible that the goal of selecting even more points close to x0 will lead to

selecting a point that is already selected. In that case, the trade-off coefficient λ is decreased.

Appendix B Description of the analytical problems

B.1 MAD6 [44]

The original formulation uses seven variables, but two linear equality constraints allow to express the problem

with five variables as follows:

min
x∈R5

max
1≤i≤163

fi(x)

s.t.



c1(x) = −x1 + 0.4 ≤ 0

c2(x) = x1 − x2 + 0.4 ≤ 0

c3(x) = x2 − x3 + 0.4 ≤ 0

c4(x) = x3 − x4 + 0.4 ≤ 0

c5(x) = x4 − x5 + 0.4 ≤ 0

c6(x) = −x4 + x5 − 0.6 ≤ 0

c7(x) = x4 − 2.1 ≤ 0

where, for 1 ≤ i ≤ 163,

fi(x) =
1

15
+

2

15

((
5∑
k=1

cos(2πxk sin vi)

)
+ cos

(
2π(1 + x4) sin vi

)
+ cos(7π sin vi)

)

and

vi =
π

180

(
8.5 +

i

2

)
.
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x0 =



0.5

1

1.5

2

2.5


, f(x0) = 0.22052, x∗ =



0.4

0.819839074

1.219839074

1.69398531

2.09398531


, f(x∗) = 0.101831.

Best value achieved in this work: f = 0.101831.

B.2 CRESCENT [1, 10]

min
x∈R10

x10

s.t.


c1(x) =

10∑
i=1

(xi − 1)2 − 100 ≤ 0

c2(x) =

10∑
i=1

(xi + 1)2 − 100 ≤ 0

x0 = [10 0 0 0 0 0 0 0 0 0]>, f(x0) = 0,

x∗= [1 1 1 1 1 1 1 1 1 −9]>, f(x∗) = −9.

Best value achieved in this work: f = −9.

B.3 SNAKE [10, 19]

min
x∈R2

√
(x1 − 20)2 + (x2 − 1)2

s.t.

{
c1(x) = sinx1 − 1

10 − x2 ≤ 0

c2(x) = x2 − sinx1 ≤ 0

x0 = [0 −10]>, f(x0) =∞ (x0 is infeasible),

x∗= [20.02887 0.92434]>, f(x∗) = 0.08098094.

Best value achieved in this work: f = 0.08098094. 1

B.4 HS24 [35]

min
x∈R2

(x1−3)2−9

27
√

3
x3

2

s.t.


c1(x) = − x1√

3
+ x2 ≤ 0

c2(x) = −x1 −
√

3x2 ≤ 0

c3(x) = +x1 +
√

3x2 − 6 ≤ 0

x1, x2 ≥ 0

x0 = [1 0.5]>, f(x0) = −0.0133646,

x∗= [3 1.7320508071]>, f(x∗) = −1.

Best value achieved in this work: f = −1.

1There is an error in the objective function formulation of the SNAKE problem in [65].
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B.5 HS36 [35]

min
x∈R3

−x1x2x3

s.t.


c1(x) = x1 + 2x2 + 2x3 − 72 ≤ 0

0 ≤ x1 ≤ 20

0 ≤ x2 ≤ 11

0 ≤ x3 ≤ 42

x0 = [10 10 10]>, f(x0) = −1000,

x∗= [20 11 15]>, f(x∗) = −3300.

Best value achieved in this work: f = −3300.

B.6 HS37 [35]

min
x∈R3

−x1x2x3

s.t.


c1(x) = x1 + 2x2 + 2x3 − 72 ≤ 0

c2(x) = −x1 − 2x2 − 2x3 ≤ 0

0 ≤ x1, x2, x3 ≤ 42

x0 = [10 10 10]>, f(x0) = −1000,

x∗= [24 12 12]>, f(x∗) = −3456.

Best value achieved in this work: f = −3456.

B.7 HS73 [35]

In the original problem, the value of x4 is computed directly by eliminating one linear equality constraint

(x4 = 1− x1 − x2 − x3). Constraint c3 is added to handle the bound x4 ≥ 0.

min
x∈R3

24.55x1 + 26.75x2 + 39x3 + 40.5(1− x1 − x2 − x3)

s.t.



c1(x) = −2.3x1 − 5.6x2 − 11.1x3 − 1.3(1− x1 − x2 − x3) + 5 ≤ 0

c2(x) = −12x1 − 11.9x2 − 41.8x3 − 52.1(1− x1 − x2 − x3) + 21

+1.645
√

0.28x2
1 + 0.19x2

2 + 20.5x2
3 + 0.62(1− x1 − x2 − x3)2 ≤ 0

c3(x) = x1 + x2 + x3 − 1 ≤ 0

0 ≤ x1, x2, x3 ≤ 1

x0 =


0.3

0.3

0.3

 , f(x0) = 31.14, x∗ =


0.6355215683

0

0.3127018814

 , f(x∗) = 29.8944.

Best value achieved in this work: f = 29.8944.
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B.8 HS101, 102 and 103 [35]

min
x∈R7

10x1x
2
4x
a
7

x2x3
6

+ 15x3x4

x1x2
2x5
√
x7

+ 20x2x6

x2
1x4x2

5
+

25x2
1x

2
2

√
x5x7

x3x2
6

s.t.



c1(x) =
0.5
√
x1x7

x3
√
x6

+
0.7x3

1x2x6
√
x7

x2
3

+
0.2x3x

2/3
6

4
√
x7

x2
√
x4

− 1 ≤ 0

c2(x) =
2x1x5

3
√
x7

x
3/2
3 x6

+ 0.1x2x5

x6
√
x3
√
x7

+
x2
√
x3x5

x1
+ 0.65x3x5x7

x2
2x6

− 1 ≤ 0

c3(x) =
2x1x5

3
√
x7

x
3/2
3 x6

+ 0.1x2x5√
x3x6

√
x7

+
x2
√
x3x5

x1
+ 0.65x3x5x7

x2
2x6

− 1 ≤ 0

c4(x) =
0.2x2

√
x5

3
√
x7

x2
1x4

+
0.3
√
x1x

2
2x3

3
√
x4

4
√
x7

x
2/3
5

+
0.4x3x5x

3/4
7

x3
1x

2
2

+
0.5x4

√
x7

x2
3

− 1 ≤ 0

0.1 ≤ x1, x2, . . . , x6 ≤ 10

0.01 ≤ x7 ≤ 10

The value of the parameter a varies between the three problems:
HS101: a = −1/4 ;

HS102: a = −1/8 ;

HS103: a = −1/2 .

The starting point is x0 = [6 6 6 6 6 6 6]> with the value f(x0) = +∞ (x0 is infeasible) and the best

know solutions are:

x∗HS101 =



3.1921264708

0.7569354058

2.5119021207

5.6530753445

0.871294938

1.261887906

0.0558117342


, x∗HS102 =



3.3669180827

0.7679140551

2.797994961

4.1843330406

0.8791473174

1.0784651788

0.0328185121


, x∗HS103 =



2.2198703858

0.6133345902

2.105352648

4.5835873238

0.8698142544

1.1828253718

0.046094896


with

f(x∗HS101) = 1948.02, f(x∗HS102) = 1495.48, f(x∗HS103) = 3367.69.

The best values achieved in this work are 2480.94, 1950.26, and 3367.69, for HS101, HS102, and HS103,

respectively.

Appendix C Data profiles

For a given tolerance τ ≤ 1, the ratio of solved problems for solver s after i groups of n + 1 evaluations is

defined as:

rs,i(τ) =
1

ρmax

ρmax∑
ρ=1

1

(
δs,ρ,i ≤ τ

)
,

where 1 is the indicator function. Note that if τ = 1, a problem is considered solved if a feasible solution has

been found. For a given value of τ , the data profile is the curve corresponding to the ratio of solved problems

after i groups of n+ 1 evaluations [52]. For the set of analytical problems and for the two sets of MDO runs

(simplified wing and aircraft range), we show the data profiles for τ ∈ {10−3, 10−5, 10−7} (See Figures 9, 10
and 11). For the Lockwood problem runs, to which is allocated a much smaller budget of evaluations, we

show the data profiles for τ ∈ {10−1, 10−2, 10−3} (See Figure 12). Note that for the medium discrepancy
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curve, the lower the curve value, the better the performance. However, for the data profiles, the higher the

better.
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Figure 9: Data profiles for the ten analytical problems; τ = 10−3 (left), 10−5 (middle) and 10−7 (right).
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Figure 10: Data profiles for the 50 optimization runs of the simplified wing problem; τ = 10−3 (left), 10−5 (middle) and 10−7

(right).
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Figure 11: Data profiles for the 50 optimization runs of aircraft range problem; τ = 10−3 (left), 10−5 (middle) and 10−7 (right).
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Figure 12: Data profiles for the 50 optimization runs of Lockwood problem; τ = 10−1 (left), 10−2 (middle) and 10−3 (right).
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