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Abstract: An electronic nose (e-nose) is a device that analyzes the chemical components of an odour. The
e-nose consists of an array of gas sensors for chemical detection and a mechanism for pattern recognition
to return the odour concentration. Odour concentration defines the identifiabilty and perceivability of an
odour. It is of high importance to assess the validity of measurements during the sampling as the qualified
measurements can only produce an accurate prediction for odour concentration. The physical impairment
of the e-nose and/or environmental factors (including wind, humidity, temperature, etc.) can introduce
significant amount of noise into sensor measurements. Inevitably, the pattern recognition results are affected.
Here, we propose an online algorithm to assess the validity of sensor measurements. The algorithm enables
e-nose to perform a self-assessment procedure during the sampling before utilizing the data for pattern
recognition phase. The proposed algorithm is proved to be computationally cheap and easy to implement.

Key Words: Artificial olfaction, computational complexity, electronic nose, gas sensor, odour, outlier,
robust covariance estimation.
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1 Introduction

The ability to recognize the chemicals in the environment is a very basic and essential need for the living

organisms; from a single-cell amoebae to human beings, all species are provided with a chemical awareness

system. Human beings have three sensory systems to detect odours: sense of taste, sense of smell, and

chemical feel with receptors all over the body. All species employ their chemical senses to approach and

being attracted to possibly safe conditions, as well as avoiding and being resisted to the harmful ones. As

for human beings, in every breath, the sense of smell collects a sample from its environment and forwards it

to the brain for further analyses. Unlike the sense of taste, smell can be captured from a distance and assist

the brain in producing a warning. Unfortunately, the human sense of smell does not respond to all harmful

air pollutants. Additionally, sensitivity of humans to many air pollutants varies — one can be accustomed

to a toxic smell. In the last decade, great attention has been paid to the subject of air quality because

it directly influences the environmental and human health. A crucial element in assessment of indoor and

outdoor air quality is auditing the odourants. There exists various odour measurement techniques such as

dilution-to-threshold, olfactometers, and referencing techniques (McGinley and Inc, 2002). The performance

of these approaches depend on human evaluation. Due to the high variability of individual’s sensitivity, the

common methods mostly lack accuracy. In 1982, the first gas multisensor array was invented as primary

artificial olfaction (Persaud and Dodd, 1982). The term electronic nose (e-nose) was introduced by Gardner

and Bartlett (1994). E-nose is an artificial olfactory system which consists of an array of gas sensors. The e-

nose is designed for recognizing complex odours in its surrounding environment. The gas sensor array receives

chemical information about gaseous mixtures as input and converts it to measurable signals. Sensors act

independently and simultaneously in this device. Cross-sensitivity of gas sensors is inevitable in sensor array

structure. The cross-sensitivity is the interaction among chemicals that leads to a different signal from the

component in a mixture compared to the single component. Gas sensor’s performance is affected by different

elements which make it unstable and less sensitive to odours. One of the most serious deterioration in sensors

is owing to a phenomenon called drift. Drift is a temporal change in sensor’s response while all other external

conditions are kept constant. The majority of manufactured sensor arrays are subject to drift, and several

methods have been introduced to overcome this problem (Carlo and Falasconi, 2012; Artursson et al., 2000;

Padilla et al., 2010; Zuppa et al., 2007). The behavior of a sensor is directly influenced by the surrounding

chemical and physical conditions. For instance, the sensor response may depend on the temperature of the gas

under examination. Therefore, thermal conditions around the sensing elements need to be supervised. The

multivariate response of gas sensor arrays undergoes different pre-processing procedures before the prediction

is performed using statistical tools such as regression, classification, or clustering. Numerous methods have

been developed for analyzing the gas sensor array data, including Gutierrez-Osuna (2002); Kermiti and Tomic

(2003); Bermak et al. (2006).

2 Problem statement

The e-nose has partially addressed the human sense of smell in diverse industrial sites. Unwanted variability

may occur in sensor’s output data. This happens due to environmental factors or physical impairment of the

system, since e-noses are installed in outdoor fields where the conditions can dramatically fluctuate. This

demands for monitoring the critical factors through adding extra sensors and temperature compensation in

sensor pre-processing. The sensor’s output is used to quantify odour concentration. Transferring the data

to olfactometry is both time consuming and costly. Only small portions of data are appointed for further

analyses of its concentration in olfactometry. Pattern recognition methods are employed in order to predict

the odour concentration for each set of sensor values. To assess the accuracy of predictions, the validity of

sensor values must be ensured. Sensors in the e-nose structure may report incorrect values or some stop

functioning for a short period of time. These anomalies are ought to be diagnosed and reported in real time

using a computationally efficient algorithm.



2 G–2016–28 Les Cahiers du GERAD

3 Data description

The data under the study include 11 distinct attributes, each representing sensor values of the e-nose. Sensors

react to almost all gases in the air, but they are designed so that each sensor is more sensitive to a specific

type of gas. Some of the sensors are highly positively correlated with each other, see Fig. 1 and Fig. 2 (left

panel).
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Figure 1: Sensor’s output during three days of sampling for 4 randomly selected sensors.
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Figure 2: Left panel, heatmap of the correlation matrix of the sensor values (s1–s11). Right panel, the
undirected graph of partial correlation using the graphical lasso. The undirected graph of the right panel
approves the block structure of the heatmap of the left panel.

Suppose that x
>

p×1 is a random vector of p = 11 attributes, in which a
>

illustrates the transpose of vector

a, and its n independent realization are stored in the rows of data matrix Xn×p. The covariance matrix of

xp×1 , say ΣΣΣ = [σij ]i,j=1,2,...,p, is defined as

ΣΣΣp×p = Cov(x) = E{(x−µµµ)(x−µµµ)
>
},

where µµµ represents the mean of x, E is the expectation operator. The covariance, σij , measures the degree to

which two attributes are linearly associated. It is well-known that the inverse of covariance matrix, commonly
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known as precision matrix, yields the partial correlation between the attributes. The partial correlation is

the correlation between two attributes conditioning on the effect of other attributes. Non-zero elements

of ΣΣΣ−1 implies the conditional dependence. Therefore, the sparse estimation of ΣΣΣ−1 pinpoints the block

dependent structure of attributes. The sparse estimation of ΣΣΣ−1 set some of the ΣΣΣ−1 entries exactly to zero.

Investigation of the inherent dependence between the sensor values is then performed by means of the partial

correlation. In order to obtain a clear image of sensors which are potentially grouped together, the graphical

lasso (Friedman et al., 2008) is used. Friedman et al. (2008) considered estimating the inverse of covariance

matrix, ΣΣΣ−1, sparsely by applying a lasso penalty (Tibshirani, 1996). In Figure 2 (right panel), the undirected

graph connects two variables which are conditionally correlated given all other attributes. For instance, the

sensors 9, 10, and 11 are conditionally correlated with each other. This also agrees with the heatmap of the

correlation matrix Figure 2 (left panel). Thus, this dependence must be taken into account while modeling

data. Another vital assumption that should be verified is the Gaussianity of the data. The non-Gaussianity of

the sensor values is established using various methods such as analyzing the distribution of individual sensor

values, scatter plot of the linear projection of data using principal components, estimating the multivariate

kurtosis and skewness, and also multivariate Mardia test, see Figure 3.

0 200 400 600 800 1000

10
20

30
40

Squared Mahalanobis Distance

C
hi
−S

qu
ar

e 
Q

ua
nt

ile

×
10

−4

35 40 45 50

0
2

4
6

s1 × 103
D
en
si
ty

×
10

−4

35 40 45 50

0
2

4
6

s6 × 103

D
en
si
ty

×
10

−4

35 40 45 50

0
2

4
6

s11 × 103

D
en
si
ty

Figure 3: Left panel, the Q-Q plot of squared Mahalanobis distance supposed to follow chi-square distribution
for Gaussian data. Right panel, the marginal density for some randomly chosen sensor values. Both graphs
confirm the non-Gaussianity of data.

4 Methodology

In order to demonstrate the validity of the e-nose measurements, we aim to allocate each sample to different

zones. To be able to verify the validity of the measurements, it is necessary to have some reference samples for

the purpose of comparison. These reference samples are collected while the e-nose is at its best performance,

and the conditions are fully under control. For the data set under the study, there are two distinct reference

sets. Reference 1 is constituted of data in a period of sampling defined by an expert after installation of

the e-nose. We call the data in this period of sampling as proposed set. Reference 2, upon its availability, is

manually gathered samples from the field and brought to the laboratory to quantify the odour concentration.

We call the latter data, calibration set to emphasize that it can be used for data modelling using supervised

learning. If new data diverge greatly from the overall pattern of data previously seen, then it is marked as

an outlier and is allocated to the red zone. This zone represents a dramatic change in the pattern of samples

and refer to “risky” samples. If new data is non-outlier and it is also located within the data polytope of the

Reference 1 or the Reference 2, it is assigned to green or blue zone respectively. These zones represent the

“safe” samples. If new data is non-outlier, but outside of the area of green and blue zones, it is assigned to

yellow zone. This zone displays potentially “critical” samples.
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Producing many samples belonging to the yellow and the red zones is an indication of a major flaw in

the system. Physical complications, such as sensor loss in the e-nose, or sudden changes in the chemical

pattern of the environment, account for all undesirable measurements. Zone assignment, therefore, require

some outlier detection algorithms. To define the green and the blue zones, the new samples are projected

onto a lower dimension subspace. Dimension reduction methods such as principal component analysis (PCA)

can serve this purpose (Jolliffe, 2002). PCA transforms a collection of possibly correlated attributes into a

set of linearly uncorrelated axes through orthogonal linear transformations. The first k (k < p) principal

components are the eigenvectors of the covariance matrix ΣΣΣ associated with the k largest eigenvalues. PCA

exploits empirical covariance matrix, Σ̂ΣΣ, which is extremely sensitive to outliers (Prendergast, 2008). Since

the data contain many outliers, robust covariance estimation must be applied to avoid misleading results.

Robust principal component analysis (Hubert et al., 2005) is employed for dimension reduction purpose

throughout this paper. This robust PCA computes the covariance matrix through projection pursuit (Li and

Chen, 1985) and minimum covariance determinant (Croux and Haesbroeck, 2000) methods. The robust PCA

procedure can be summarized as follows:

1. The matrix of data is pre-processed such that the data spread in the subspace of at most min(n− 1, p).

2. In the spanned subspace, the most obvious outliers are diagnosed and removed from data. The covari-

ance matrix is calculated for the remaining data, Σ̂ΣΣ0.

3. Σ̂ΣΣ0 is used to decide about the number of principal components to be retained in the analysis, say k0
(k0 < p).

4. The data are projected onto the subspace spanned by the first k0 eigenvectors of Σ̂ΣΣ0.

5. The covariance matrix of the projected points is estimated robustly using minimum covariance deter-

minant method and its k leading eigenvalues are computed. The corresponding eigenvectors are the

robust principal components.

To define the red zone, it is required to find the outliers of data as it is being measured by the e-nose

through time. As the data fail to follow a Gaussian distribution, outlier detection methods that rely on the

assumption of elliptical contoured distribution should be avoided. Here, outliers are flagged by means of

adjusted outlyingness (AO) criterion (Brys et al., 2006). If a sample is detected as an outlier by AO measure,

it belongs to the red zone. For the specification of the remaining zones, we need to define the polytopes of

the samples in Reference 1 and Reference 2. These polytopes are built using the convex hull of the robust

principal component scores. More specifically, the boundary of the green zone is defined by computing the

convex hull of the robust principal component scores of the Reference 1. A short description of each zone is

provided in Table 1. Before determining the color tag for each new data, the samples are checked for missing

values and are imputed in case needed by multivariate imputation methods such as Josse et al. (2011). The

idea behind the validity assessment is visualized in Fig. 4. For simplicity, only 2 sensors are used for all

computations in Fig. 4 and a 2D presentation of zones is plotted using the sensors’ coordinates. Suppose

that XN×11 represents the matrix of sensor values for N samples, yN the vector of corresponding odour

concentration values and x
>

l is the lth row of XN×11, l = 1, 2, . . . , N . Furthermore, suppose that n1 refers

Table 1: Description of each zones in validity assessment procedure.

Zone Description

Red Observations that are outliers in terms of AO measure.

Green
Observations that are non-outliers in terms of AO measure. Moreover, they fall into the
polytope of the Reference 1.

Blue
Observations that are non-outliers in terms of AO measure. Moreover, they fall into the
polytope of the Reference 2.

Orange
Observations that are non-outliers in terms of AO measure. Moreover, they fall into the
polytopes of both the Reference 1 and the Reference 2.

Yellow
Observations that are non-outliers in terms of AO measure. Moreover, they do not fall into
the polytope of neither the Reference 1 nor the Reference 2.
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Figure 4: Validity assessment for about 700 samples based on 2 sensor values. Left panel, the plot illustrates
the contour map of estimated density function for the 2 sensors. Right panel, the density function of the
samples demonstrated in 3D with zones identified for each of the samples in the sensor 1 (s1) versus sensor
2 (s2) plane. Higher density is assigned to green, blue, and orange zones compared to yellow and red zones.

to the number of samples in the proposed set of the sampling and n2 refers to the number of samples in

the calibration set. The samples of the proposed set are always available, but not necessary the calibration

set. Two different scenarios occur based on the availability of the calibration set. If the calibration set is

accessible, then Scenario 1 happens. Otherwise, we only deal with Scenario 2. Scenario 1 is a general case

which is explained more in details. The data undergo a pre-processing stage, including imputation and outlier

detection, before any further analyses. Having done the pre-processing stage, data are stored as Reference 1,

Xn1×11, and Reference 2, Xn2×11. The first k, e.g. k = 2, 3, robust principal components of Xn1×11 are

calculated and the corresponding loading matrix is denoted by L1. The pseudo code of two algorithms for

Scenario 1 is provided below. Scenario 2 is a special case of Scenario 1 in which Sub-Algorithm (Scenario 1)

is used with ConvexHull(2) = ∅ that eliminates the blue and the orange zones. Consequently, there is no

model for odour concentration prediction in the Main Algorithm.

Sub-Algorithm (Scenario 1)

1: if the point x
>

l , l = 1, 2, . . . , N is identified as an outlier by AO measure then

2: x
>

l is in red zone,

3: else if x
>

l L1 ∈ ConvexHull(1) AND x
>

l L1 6∈ ConvexHull(2) then

4: x
>

l is in green zone,

5: else if x
>

l L1 6∈ ConvexHull(1) AND x
>

l L1 ∈ ConvexHull(2) then

6: x
>

l is in blue zone,

7: else if x
>

l L1 ∈ ConvexHull(1) AND x
>

l L1 ∈ ConvexHull(2) then

8: x
>

l is in orange zone,
9: else

10: x
>

l is in yellow zone.
11: end if

Main Algorithm (Scenario 1)

Require: Xn1×11, Xn2×11, and the loading matrix L1 using robust PCA over Reference 1, Xn1×11.

1: ConvexHull(1) ← the convex hull of the projected values of the Reference 1, Xn1×11L1.
2: Train a supervised learning model on Reference 2, Xn2×11, and its odour concentration vector, yn2

.

3: ConvexHull(2) ← the convex hull of the projected values of the Reference 2, Xn2×11L1.
4: Do Sub-Algorithm for new data x∗.
5: Predict the odour concentration for new data x∗ using the trained supervised learning model.
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The above steps are implemented over 8 months of data collected by the e-nose in Section 6. In order to

justify our choice of statistical techniques, the proposed methodology is run over a set of simulated data in

a following section.

5 Simulation

To emphasize on the importance of the assumptions such as non-eliptical contoured distribution and robust

estimation considered in our methodology, we examine the methodology on a set of simulated data. Assume

the matrix of data XN×2, where x
>

l = (xl1, xl2); l = 1, 2, . . . , N , are generated according to the mixture

of Gaussian and the Student’s t-distributions, Fig. 5 (top left panel). Ignoring the distribution of data and

seeking for any classical approach toward outlier detection, renders some observations as outliers mistakenly,

Fig. 5 (top right panel). The parameters of interest, the mean vector and the covariance matrix, need to

be estimated robustly, otherwise the confidence region misrepresents the underlying distribution. In Fig. 5

(bottom left panel), the classical confidence region is pulled toward the outlier observations. On the contrary,

the robust confidence region perfectly unveil the distribution of the majority of observations because of the

robust and efficient estimation of the mean and the covariance matrix. Consequently, the classical principal

components are affected by the inefficient estimation of the covariance matrix. We proposed using methods

which deal with contaminated data appropriately. Adjusted outlyingness (AO) measure identifies the outliers

of the data correctly. In the Main Algorithm, suppose we take the Gaussian sub-sample as the Reference 1.

Fig. 5 (bottom right panel) shows the result of our algorithm on the simulated data.

6 Computational complexity

Here, we discuss the computational complexity of our proposed algorithm (Main Algorithm). First, a brief

introduction to computational complexity is given to facilitate the understanding.

The computational complexity of an algorithm is studied asymptotically by the big O-notation (Arora

and Barak, 2009). The big O-notation explains how quickly the run-time of an algorithm grows relative

to its input. For instance, sum of n values require (n − 1) operations. Consequently, the mean requires n

operations reserving one for the division of the sum by n. As they are both bounded by a linear function, they

have computational complexity of order O(n). In other words, the performance of the sum and mean grow

linearly and in direct proportion to the size of the input. Note that not all algorithms are computationally

linear. Computational complexity of covariance matrix, for instance, is O(np2) where n is the sample size

and p is the number of attributes. Since each covariance calls for sum of the pairwise cross-products each of

complexity O(n). In total, there are p(p−1)
2 off-diagonal cross products and p square sums for the diagonal

entries of the covariance matrix. This yields n{p(p − 1) + p} operations. For a fixed number of attributes

p, the computation is of order O(n). Likewise, for a fixed number of observations the computation is of

order O(p2). Another nontrivial example for non-linear algorithm is PCA or the robust PCA. Computation

of robust principal components involves various operations that has been briefly discussed in Section 4.

Computational complexity of robust PCA is discussed below. Computation of robust PCA comprises the

following steps:

1. Reducing the data space to an affine subspace spanned by the n observations using singular value

decomposition of (X− 1nµ̂µµ)
>

(X− 1nµ̂µµ), where 1n is the column vector of n dimension with all entries

equal to 1. This step is of order O(p3), see Golub and Loan (1996) and Holmes et al. (2007).

2. Finding the least outlying points using the Stahel-Donoho affine-invariant outlyingness (Stahel, 1981;

Donoho, 1982). Adjusting this outlyingness measure by the minimum covariance determinant location

and scale estimators is of order O(pn log n), see Hubert and Van der Veeken (2008) and Hubert et al.

(2005). Then the covariance matrix of the non-outliers data, Σ̂ΣΣ0, is calculated which is computationally

less expensive.

3. Performing the principal component analysis on Σ̂ΣΣ0 and choosing the number of projection components

(say k0 < p) to be retained. Computing the Σ̂ΣΣ0 needs np2 operations. Thus its complexity is O(np2).

The spectral decomposition of the covariance matrix is achieved by applying matrix-diagonalization
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method, such as singular value decomposition or Cholesky decomposition. This results in O(p3) com-

putational complexity. Determining the k0 largest eigenvalues and their corresponding eigenvectors has

time complexity of O(k0p
2) (Du and Fowler, 2008). As a result, the time complexity of this step is

O(np2).

4. Projecting the data onto the subspace spanned by the first k0 eigenvectors, i.e (X− 1nµ̂µµ)Pp×k0 where

Pp×k0
is the matrix of eigenvectors corresponding to the first k0 eigenvalues. This step has O(npk0)

time complexity.

5. Computing the covariance matrix of the projected points using the method of fast minimum covariance

determinant has the computational complexity which is sub-linear in n, for fixed p. This is O(n)

(Rousseeuw and Driessen, 1999). The calculation of the spectral decomposition of the final covariance

matrix has at maximum O(nk0) time complexity.

Considering the worst case complexity in the above steps, one concludes that the computational complexity

of robust PCA is O(max{pn log n, np2}), or O(p2n log n).

x1

x 2

x1

x 2

x1

x 2

x1

x 2

Figure 5: Top left panel, the simulated data from the mixture distribution f(x) = (1 − ε)f1(x) + εf2(x)
with contamination proportion of ε = 1

10 , and f1 and f2 being the Gaussian and Student’s t-distribution
respectively. The data from f1, and f2 are plotted in triangles and crosses correspondingly. Top right panel,
the outliers of data are identified and highlighted with red using the classical Mahalonobis distance and
95th percentile of the Chi-square distribution with two degrees of freedom. Bottom left panel, the 95%
confidence region for the data is computed using the classical estimates of parameters (solid line) and the
robust estimates (dashed line). Bottom right panel, the Main Algorithm is implemented and the zones are
graphed by colors described in Table 1.
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To ascertain the complexity of the Main Algorithm, one needs to analyze each step separately. The

measurement validation in e-nose broadly necessitates the calculation of certain steps of the Main Algorithm

including Step Require, Step 1, Step 3, and Step 4. All these tasks excluding Step 4 of the Main Algorithm

(Sub-Algorithm) must be run only once. Step 4 duplicates upon the arrival of the new observations.

First, we start by evaluating the complexity of Step Require, Step 1, and Step 3 that should be run once.

Afterwards Step 4 is analyzed in a similar fashion. Note that for the e-nose data, the number of samples is

generally much greater than the number of sensors p. In addition, as the number of sensors p is fixed in an

e-nose equipment, the computational complexity is reported as the function of number of samples only.

The Main Algorithm starts with the robust PCA over the Reference 1. As a result, Step Require has

O({n1 log n1}) complexity assuming p to be fixed. Step 1 requires O(n1k0) computing time for computing

Xn1×11L1 where k0 stands for the the number of eigenvectors retained in the loading matrix L1. Computing

the convex hull of these projected values for k0 ≤ 3 is of order O(n1 log n1). For k0 > 3, the computational

complexity of hull increases exponentially with k0, see Ottmann et al. (1995) and Chan (1996). Similarly,

the same complexity is valid for Step 3. Performing some pre-processing steps on the Reference sets including

outlier detection using AO measure has O(n1 log n1) complexity (Hubert and Van der Veeken, 2008) assuming

that n1 > n2, which is common in practice. As a result, Step Require, Step 1, and Step 3 which is performed

only once take O(n1 log n1) run-time.

Now, we analyze Step 4 in terms of its computational complexity. Step 4 mainly does the following three

tasks.

i) Accumulating the new observations with the past history, X
>

1:t×p = [X
>

1:t−1×p : xt×p] where n1 < t ≤ N ,

and identifying outliers using AO measure. This has computational complexity of O(t log t).

ii) Projecting the observations onto the space of Reference 1, x
>

l L1. This is a simple matrix product and

has the computational complexity of O(k0p).

iii) Verifying whether the projection of data, x
>

l L1, locates within the convex hull of either Reference 1 or

Reference 2 which is equivalent to solving a linear optimization with linear constraints (Kan and Telgen,

1981; Dobkin and Reiss, 1980). The algorithm used for this purpose has computational complexity

which varies quadratically with respect to the number of vertices of the convex hull, and has O(n21k0)

complexity in the worst case. The R code used for solving this linear program resembles the MATLAB

code1 and is available upon the request.

Thus, the computational complexity of Step 4 is O(t log t) as in practice the convex hull of Reference 1 is

computed, in Step 1, and kept fixed prior to this step.

The mean CPU time in seconds for Step Require, Step 1, and Step 3 that need to be run once and Step 4

which duplicates for each new sample, are reported in Fig. 6.

1http://www.mathworks.com/matlabcentral/fileexchange/10226-inhull
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Figure 6: The solid line shows the mean CPU time in seconds as a function of input being run on 1.3 GHz
i5 processor. The dashed lines depict the lower and the upper bound of the 95% confidence interval for the
mean CPU time. Left panel, the run-time corresponding to Step Require, Step 1, and Step 3 as the function
of the number of samples in Reference 1, n1. Right panel, the run-time associated with Step 4 as a function
of the total number of samples upto the moment, t. In each iteration, 100 new observations are sampled.

Fig. 6 confirms that the run-times for the ensemble of the steps Require, 1, and 3 and the step 4 agree

with the computational complexity evaluated theoretically earlier. This implies that measurement validation

can be achieved with O(t log t) time complexity employing our proposed method.

7 Application

For the easy visualization, the first 3 robust principle components of the data are used, PC1, PC2, PC3.

These components correspond to the 3 largest eigenvalues of the covariance matrix. In case of sensor failures,

the data contain missing values that need to be imputed. First, data are imputed to replace all the missing

values, and then the validity of the measurements are identified over the 8 months sampling. Only a subset

of 500 samples out of 200 thousands of observations are plotted to make the graphs more readable. In Fig. 7,

the sample points are drawn in gray and each zone is highlighted using its corresponding color of Table 1.

The circles in Fig. 7 are also illustrated on PC1 and PC2 plane for a better demonstration of the zones.

The zones’ definition is helpful in interpreting the results. As an example, the green or the blue zone reveals

the fact that the sampling points are very close to the samples that have already been observed in either

Reference 1 or Reference 2. The observations in reference sets were entirely under control, therefore, the blue

and green zones justify the validity of samples. Consequently, the prediction obtained over these samples is

expected to be more accurate. On the contrary, the prediction values for the points in the yellow zone are

less accurate compared with the green and the blue zones. In other words, the data that are dissimilar to

the already observed data deserve further attention. These points are the potential outliers and are reported

in the red zone. Additionally, this also reveals that the predictions values associated with such data can be

misleading. Producing a noticeable percentage of samples belonging to the yellow and the red zones referring

to the possible failure of the e-nose equipment.

8 Conclusion

An electronic nose device, which mainly consists of a multi-sensor array, attempts to mimic the human

olfactory system. The sensor array is composed of various sensors selected to react to a wide range of chemicals

to distinguish between mixtures of analytes. Employing the pattern recognition methods, the sensor’s output

are compared with reference samples in order to predict odour concentration. Consequently, the accuracy of
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Figure 7: A random sample of size N = 500 is plotted over the first three robust principal components
coordinates. From top left panel to bottom right panel, the colored blobs represent green, blue, yellow, and
red zones respectively.

predicted odour concentration depends heavily on the validity of sensor’s output. An automatic procedure

that detects the samples’ validity in an online manner has been a technical shortage that is addressed in this

work. A measurement validation process provides the administrator with the possibility of attaching a margin

of error to the predicted odour concentrations. Furthermore, it allows them to take the subsequent actions

such as re-sampling to re-calibrate the models or checking the e-nose structure for the possible sensor failures.

The proposed measurement validation algorithm in this work hopefully initiate a new era to automatic odour

detection by minimizing the manpower involvement.
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