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Abstract: In this paper, we study how uncertainties weighing on the climate system impact the optimal
technological pathways the world energy system should take to comply with stringent mitigation objectives.
We use the TIAM-World model that relies on the TIMES modelling approach. Its climate module is inspired
by the DICE model. Using robust optimization techniques, we assess the impact of the climate system
parameter uncertainty on energy transition pathways under various climate constraints. Unlike other studies
we consider all the climate system parameters which is of primary importance since: (i) parameters and
outcomes of climate models are all inherently uncertain (parametric uncertainty); and (ii) the simplified
models at stake summarize phenomena that are by nature complex and non linear in a few, sometimes linear,
equations so that structural uncertainty is also a major issue. The use of robust optimization allows us
to identify economic energy transition pathways under climate constraints for which the outcome scenarios
remain relevant for any realization of the climate parameters. In this sense, transition pathways are made
robust. We find that the abatement strategies are quite different between the two temperature targets. The
most stringent one is reached by investing massively in carbon removal technologies such as bioenergy with
carbon capture and storage (BECCS) which have yields much lower than traditional fossil fuelled technologies.

Keywords: Robust optimization, climate change, climate modelling
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1 Introduction

According to the Intergovernmental Panel on Climate Change (IPCC 2013), anthropogenic greenhouse
gas (GHG) emissions, such as carbon dioxide (CO2) emissions from the combustion of fossil fuels, play
an important role in the warming of the climate system. This global warming and the associated climate
changes pose important threats to ecosystems and human societies (IPCC 2014). To cope with these threats,
a possible strategy is to reduce GHG emissions, the so-called mitigation approach.1 The latter has been
put forward by the Paris Agreement (United Nations 2015) to the United Nations Framework Convention on
Climate Change (UNFCCC), which calls for a strong reduction in GHG emissions to limit global temperature
rise to “well below” 2 ◦C, with an aim to limit the increase to 1.5 ◦C.

To design climate mitigation policies, and especially to analyze energy transition pathways ensuring a
strong abatement of GHG emissions, one may follow an integrated assessment (IA) approach. The latter
typically combines the socio-economic elements that drive GHG emissions with the geophysical and environ-
mental elements that determine climate changes and their impacts. Integrated assessment models (IAMs)
are computational tools to perform IA. Examples of such models include: BaHaMa (Bahn et al. 2015), DICE
(Nordhaus 2014), FUND (Anthoff and Tol 2013), MERGE (Manne et al. 1995), PAGE (Hope 2006) and
TIAM-World (Loulou and Labriet 2008).

These IAMs operate under different paradigms (e.g., bottom-up or top-down, optimization or simula-
tion, . . . ). Furthermore, they specifically vary with respect to the level of modelling details for the mitigation
options. At both ends of the spectrum, DICE aggregates (following a top-down philosophy) all mitigation
options into a single cost function, whereas TIAM-World offers a very detailed bottom-up representation of
the energy sector with thousands of energy technologies following the TIMES paradigm of the International
Energy Agency. This large variety of IAMs used, along with our current imperfect knowledge of all the
climate change mechanisms, yield sometimes very different climate policy recommendations. For instance,
Stern (2007) has advocated using PAGE for immediate actions to abate GHG emissions. While, conversely,
Nordhaus (2008), with his DICE model, has reached the conclusion that immediate and massive actions are
not necessary.

This lack of robustness across models leads some economists to disregard the use of current IAMs (Pindyck
2013, Stern 2013). It is indeed undeniable that the long-term energy-economy-climate outlook provided by
current IAMs is clouded with a great degree of uncertainty that may deeply affect the relevance of the
policy analyses performed and the validity of the policy recommandations formulated. The source of this
uncertainty is multiple (see for instance van Asselt and Rotmans 2002). Moreover, even small variations in
data can impact feasibility or optimality properties of a given solution (Ben-Tal and Nemirovski 2000). It is
thus important to make uncertainty a core feature of long-term climate policy analyses using IAMs.

Several approaches have been followed to address uncertainties in IAMs, in particular: deterministic multi-
scenario analysis, sensitivity analysis and Monte-Carlo simulations, stochastic programming and stochastic
control. These approaches are quite useful but all have drawbacks. Sensitivity analysis and Monte-Carlo
simulations make way for the investigation of the impact of particular parameters, but do not provide un-
ambiguous hedging strategies. Deterministic multi-scenario analysis results are also difficult to interpret as
models are run in a deterministic way with little possibility to probabilize the scenario occurrence. The
stochastic programming drawback is that probability distributions (eventually parameterized) have to be
defined over the whole tree and that conclusions might be sensitive to the choice of scenario and branching
scheme. Moreover, stochastic programming may considerably increase the size of the problem to be solved,
leading quickly to excessive computational times. Computational burden also typically limits the use of
stochastic control approaches in IAMs.

In this paper, we use robust optimization (RO). Early developments date back to Soyster (1973), who
initiated an approach to obtain relevant (feasible) LP solutions although matrix coefficients are inexact. This
idea has then been largely explored with different formalisms (Ben-Tal and Nemirovski 2002, El Ghaoui

1Alternative strategies are adaptation to climate change impacts and the use of geoenginering measures.
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et al. 1998) or by generalizing the Soyster approach (Bertsimas and Sim 2004). RO allows to solve decision-
making problems under uncertainty even when the underlying probabilities are not known. It consists in
immunizing a solution against adverse realizations of uncertain parameters within given uncertainty sets.
The basic requirement for a robust solution is that constraints of the problem are not violated regardless
of the realization of the parameters in the set. The issue then consists in identifying computable robust
counterparts for the initial optimization program. Ben-Tal et al. (2015) or Bertsimas et al. (2010) review
techniques for building such robust counterparts in general cases.

Up until now, RO has not been used in IAMs, with the exceptions of Babonneau et al. (2011) and Andrey
et al. (2015). A first contribution of our paper is to propose a general robust approach to consider uncertainty
in simple climate models (SCMs) typically used by IAMs to represent climate evolution. Our approach relies
on Bertsimas and Sim (2004). It consists in defining an uncertainty budget to control the degree of pessimism;
in short, to limit the number of climate parameters allowed to deviate from their nominal values. We then
obtain robust strategies by using a decomposition scheme that involve solving a series of sightly modified
versions of the deterministic IAM. In comparison, Babonneau et al. (2011) use robust optimization in order
to protect the total future energy supply from possible perturbations of technological efficiencies. Their
methodology exploits independence and first moment information about some underlying efficiency factors
that have linear effects on the total available capacity for each period. Their proposed solution scheme relies
on second order cone programming which might limit the size of problem that can be efficiently addressed.
More recently, Andrey et al. (2015) also choose to “robustify” total future energy supply but make use of
the budgeted uncertainty set of Bertsimas and Sim (2004) which allows them to have a solution scheme
that is based on linear programming. In contrast with these two approaches, our research focuses on how
to “robustify” the world’s capacity to meet its targets regarding future temperature levels given the current
available knowledge of the climate parameters. Moreover, our analysis will account for plausible perturbations
of these parameters which have strong non-linear (instead of linear) effects on the temperature that will be
reached. Finally, the solution scheme that is proposed has a similar advantage as the method of Andrey et al.
(2015) which is to preserve the linear structure of the IAM model that needs to be solved.

As an illustration, our approach is implemented in the TIAM-World integrated assessment model, which
also relies on a SCM. We first define plausible uncertainty ranges for the climate parameters of the TIAM-
World model and then calibrate these ranges using existing literature (van Vuuren et al. 2009) against
climate simulations from the MAGICC model (Meinshausen et al. 2011). Then, using a robust counterpart
of TIAM-World, a second contribution of this paper is to enrich the climate debate by defining robust energy
transition pathways for different global warming targets. In other words, we identify economic transition
pathways under climate constraints for which the outcome scenarios remain relevant for any realization of
the climate parameters. Moreover, we can assess which climate parameter or which combination of climate
parameters are the most sensitive in our model and we can quantify the uncertainty cost. The originality
of our numerical results is that, unlike other studies (e.g., Syri et al. 2008, Labriet et al. 2015), we consider
uncertainty on all the climate system parameters of our IAM.

The remainder of this paper is organized as follows: we first present the approach in the general case (for
all IAMs). We then describe how we implement our RO approach in the TIAM-World model and finally we
present numerical results of selected scenarios and review the different insights brought by the RO approach
and how it can inform policy makers.

2 General approach

2.1 Integrated assessment modelling

Integrated assessment models (IAMs) present different levels of integration (Schneider 1997). On one end
of the spectrum, there are models such as the MIT IGSM (Sokolov et al. 2005) composed of loosely inter-
connected but more detailed (economic and climate, in particular) modules. At the other end, there are
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more integrated models such as TIAM-World. We believe that this second set of comprehensively integrated
models are more amenable to uncertainty analyses.

A comprehensively integrated IAM can typically be cast as a single mathematical programming model,
where a social planner would be assumed to maximize social welfare (f), under constraints which could be
economic, technical or social (g) as well as climatic (h):

maxx f(x) (social welfare)
s.t.
g(x) ≤ 0 (economic, technical or social constraints)
h(x) ≤ 0 (climatic constraints)
x ∈ Rn

(1)

The set h(x) ≤ 0 of climatic contraints minimally i) describes the Earth’s carbon cycle to determine the
atmospheric CO2 concentration; ii) computes, using this concentration as well as other GHGs concentration
(often exogenous), the Earth’s radiative forcing balance; and iii) determines the evolution of the Earth’s
mean surface temperature. This constitutes the typical climate module of well-known IAMs such as DICE,
FUND and MERGE. We shall refer to such a module as a simple climate model (SCM). By contrast, there
are more complex climate models called Earth System Models of Intermediate Complexity (EMICs) such
as C-GOLDSTEIN (Edwards and Marsh 2005), which could take hours to run, or even full-fledged climate
models called Atmosphere-Ocean Global Circulation Models (AOGCMs, see e.g. Boville et al. 2001), which
could take weeks to run on a supercomputer.

In SCMs, the carbon cycle can be modelled in two main ways. It can be represented by different ‘carbon
boxes’ (e.g., the atmosphere, the upper ocean and the lower ocean) with exchange rates as in DICE. Or
it can be represented by an impulse-response function as in FUND and MERGE. Most SCMs do not have
retroactions of the CO2 concentration on the carbon cycle parameters. This is an obvious simplification as
the CO2 removal rate from the atmosphere is not constant due the finite uptake capacity of the ocean.

The modelling of radiative forcing (F ) is rather similar across SCMs. It is defined by the radiative forcing
of each GHG considered (FGHG):

F (t) =
∑
GHG

FGHG(t) (2)

Radiative forcing due to CO2 is often defined by a logarithmic function of the actual atmospheric CO2

concentration (M):

FCO2(t) = γlog2

(
M(t)

M0

)
(3)

This logarithmic function is sometimes linearized, as in TIAM-World. The main differences among SCMs
are parameter values (e.g., γ and M0) and the treatment of non-carbon dioxide GHGs (exogenously or not).

Change in radiative forcing translates in changes for the mean surface temperature (Tat) and the mean
(deep) ocean temperature (Toc) depending in particular on the assumed climate sensitivity. In SCMs, this is
generally estimated using two linear equations:

Tat(t) = µ
(
F (t), Tat(t− 1), Toc(t− 1)

)
(4)

Toc(t) = ψ
(
Tat(t− 1), Toc(t− 1)

)
(5)

The main differences among SCMs are, again, parameter values and the functional form of µ and ψ.

2.2 Uncertainty ranges

Differences among SCMs especially come from their choices of key parameters. It is thus important to
define ‘appropriate’ uncertainty ranges for these parameters. This will help assess how robust SCMs are and
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understand which parameters or combinations of parameters are the most sensitive. Evaluating such ranges
reveals several difficulties (see, e.g., Hof et al. 2012, Hu et al. 2012, Butler et al. 2014). First, as already
mentioned, SCMs are designed to evaluate climate responses with limited computational burdens. They thus
rely on some structural simplifications. For instance, most SCMs ignore carbon and climate feedbacks in
their description of the carbon dynamics. Such simplifications induce bias. As an illustration, van Vuuren
et al. (2009) show how differently carbon cycle can behave within a standard impulse-response experiment,
depending on whether it includes or not feedbacks. Second, there is a parametric uncertainty due to the
intrinsic volatility of the natural phenomena at stake, as well as the imperfection of measures and statistical
estimations. As an illustration, Knutti and Hegerl (2008) exhibits different distributions and ranges for
the climate sensitivity based on different lines of evidence. And third, there is a form of ‘selection bias’
due to heterogeneous degrees of information on parameters estimation and calibration. Overall, IAM-SCMs
modellers may have a tendency to pay more attention to some parameters, based on available information.

2.3 Robust optimization approach

Let us consider again our basic IAM formulation:

(P) :

 maxx f(x)
s.t. g(x) ≤ 0
h(x, a) ≤ 0

(6)

where x ∈ Rn is a vector of decision variables, and a ∈ Rm is a vector of uncertain parameters in h(x, a). In
what follows, h will be a temperature constraint. We assume that any realization ai might take one of three
values {a−i , āi, a

+
i }, each representing the lowest value, nominal value, and highest value, respectively. This

uncertainty typically gives rise to the following space of possible candidates for a:

U =
{
a ∈ Rm | ∃ z+ ∈ {0, 1}m, z− ∈ {0, 1}m, z+ + z− ≤ 1, ai = āi + (a+

i − āi)z
+ + (a−i − āi)z

−}
Following Bertsimas and Sim (2004), it is possible to control the degree of pessimism of the solution by

allowing only a subset of parameters to deviate from their nominal values. The concept of the uncertainty
budget is based on the fact that it is highly unlikely that all the parameters take one of their two extreme
values at the same time. This motivates the use of the following robust counterpart of the initial problem:

(RC) :

 max f(x)
s.t. g(x) ≤ 0
h(x, a) ≤ 0,∀a ∈ U(Γ)

(7)

with
U(Γ) =

{
a ∈ Rm

∣∣∣∣∃ z+ ∈ {0, 1}m, z− ∈ {0, 1}m, z
+ + z− ≤ 1,

∑
i z

+
i + z−i ≤ Γ

ai = āi + (a+
i − āi)z

+
i + (a−i − āi)z

−
i

}
where Γ ∈ {0, 1, 2, . . . , n} is the maximum number of parameters taking one of their extreme values. The
idea behind the robustification of h is that the solution of the energy-economy problem should be feasible for
any ‘nature-controlled’ realization of the uncertain parameters in e.g. the temperature constraint. Thus, we
want to identify the worst-case combination of parameters in h constrained by the uncertainty budget Γ. For
example, assuming we want to determine optimal economic mitigation choices to limit global warming below
2 ◦C, we need to identify trajectories that meet the temperature target even though some of the climate
parameters were wrongly estimated. We assume that decisions shall be taken before the actual values of the
parameters are known, to reflect the current status of political discussions and scientific progress in climate
science.

Under linearity conditions of h(x, a) with respect to a, the uncertainty set U(Γ) can be equivalently
replaced with its convex hull:2

U′(Γ) =

{
a ∈ Rm

∣∣∣∣∃ z+ ∈ [0, 1]m, z− ∈ [0, 1]m,
z+ + z− ≤ 1,

∑
i z

+
i + z−i ≤ Γ

ai = āi + (a+
i − āi)z+ + (a−i − āi)z−

}
2Refer to example 14.3.2.B in Ben-Tal et al. (2009) for a proof of this representation.
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and the robust constraint can be reformulated using strong duality as:{
h(x, ā) +

∑
i max

(
(a−i − āi)h′i(x)− v; 0; (a+

i − āi)h′i(x)− v
)

+ Γv ≤ 0
v ≥ 0

(8)

where v ∈ R is an additional decision variable that need to be optimized jointly with x, and where h′i(x) is
the derivative of h(x, a) with respect to ai.

The robust problem can then be reformulated by incorporating this new set of constraints in the original
problem (see Bertsimas and Sim 2004, for the original discussion about such a reformulation). Unfortunately,
such reformulations are not always possible. Beyond the strictly linear case, Ben-Tal et al. (2015) proposes a
methodology to reformulate robust programs in the more general case of nonlinear but still convex constraints
when using convex uncertainty sets such as U ′(Γ). Yet, these conditions typically involve that both h(x, a)

be concave in a and that the uncertainty set be a convex set. Unfortunately, the mere fact that h(x, a) be a
concave function prevents one from replacing U(Γ) with its convex hull. This implies that such reformulation
are unlikely to be obtainable for robust non-linear climate constraints when an uncertainty set as U is used.

As an illustration, let us consider that temperature follows some linear dynamics, i.e., Equation (4) can
be written as:

Tat(t) = a1F (t) + a2Tat(t− 1) + a3Toc(t− 1) ,

where (a1, a2, a3) are three parameters that might be considered uncertain. When unfolding this expression
in order to assess the long term effect of the parameters on the temperature level, we get expressions of
the form:

Tat(t) =

t∑
τ=1

at−τ2 a1F (τ) + at2Tat(0) +

t∑
τ=1

at−τ2 a3Toc(τ) ,

which is a polynomial function of (a1, a2, a3) and does not in general satisfy structural assumptions such as
monotonicity, convexity or concavity. This makes the hope of obtaining a compact reformulation as in (8)
somewhat unrealistic.

Note that it is possible to avoid the need of a compact reformulation by including additional constraints
that exhaustively enumerate all possible combination of deviations that need to be verified for a given choice
of Γ. Unfortunately, the number of such combinations increases exponentially with respect to m, the number
of uncertain parameters. To avoid the exponential growth in the problem size, we suggest employing a
constraint generation method that will attempt to identify a small subset of such extreme value combinations
that are sufficient to obtain the optimal robust solution of the problem. This approach is fairly generic as it
relies entirely on two modest (as we will see) assumptions: i) the ability to identify a worst-case combination
of extreme value for a fixed decision x; and ii) the ability to solve the RC problem where the robust constraint
is replaced by:

h(x, a) ≤ 0 , ∀ a ∈ {â1, â2, . . . , âK} (9)

Let us now detail our proposed constraint generation algorithm:

1. Set Û1 = {ā} and k = 1

2. Solve the master problem (MP (Û)) which consists in maximizing the social surplus under a robust
temperature constraint that accounts only for instances of the parameters a contained in Û:

(MP (Û)) :



max
x

f(x)

s.t.

g(x) ≤ 0

h(x, a) ≤ 0 , ∀ a ∈ Û
x ∈ Rn

Capture the optimal trajectories in this problem with x∗k.
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3. Given some optimal trajectories, identify the worst-case scenario in U for the parameters of the tem-
perature constraint function by solving the SP (x∗k) worst-case analysis problem:

(SP (x∗k)) :
{

max
a∈U(Γ)

h(x∗k, a)

Capture the worst-case value of this problem as h∗k and one of the assignments that achieve the worst-
case value as a∗k.

4. If h∗k ≤ 0, terminate the algorithm and return x∗k as the optimal robust trajectories of problem (P) in
Equation (6). Otherwise, add a∗k in the set Û, increase k by one, and go to Step 2.

3 Application to TIAM-World

3.1 TIAM-World

3.1.1 Model overview

The TIMES Integrated Assessment Model (TIAM-World) is a detailed, global, multi-region technology-rich
model of the energy/emission system of the world. It is based on the TIMES (The Integrated MARKAL-
EFOM System) economic paradigm, which computes an inter-temporal dynamic partial equilibrium on energy
and emission markets based on the maximization of total surplus.3 TIAM-World is described in Loulou
(2008) and in Loulou and Labriet (2008). It is used in many international and European projects (for recent
applications see: Babonneau et al. 2011; Labriet et al. 2012). The multi-region partial equilibrium model of
the energy systems of the entire World is divided in 16 regions. Regions are linked by trade variables of the
main energy forms (coal, oil, gas) and of emission permits. TIAM’s planning horizon extends from 2000 to
2100, divided into periods of varying lengths.

3A complete description of the TIMES equations appears in www.etsap.org/documentation.

Figure 1: TIAM reference energy system

www.etsap.org/documentation
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In TIMES, an intertemporal dynamic partial equilibrium on energy markets is computed, where demands
for energy services are exogenously specified (only in the reference case), and are sensitive to price changes
in alternate scenarios via a set of own-price elasticities at each period. Although TIMES does not encompass
all macroeconomic variables beyond the energy sector, accounting for price elasticity of demands captures
a major element of feedback effects between the energy system and the economy. Thus, the equilibrium
is driven by the maximization (via linear programming) of the discounted present value of total surplus,
representing the sum of surplus of producers and consumers, which acts as a proxy for welfare in each region
of the model (practically, the LP minimizes the negative of the surplus, which is then called the energy
system cost).

The maximization is subject to many constraints, such as: supply bounds (in the form of supply curves)
for the primary resources, technical constraints governing the use of each technology, balance constraints for
all energy forms and emissions, timing of investment payments and other cash flows, and the satisfaction of
a set of demands for energy services in all sectors of the economy.

The nominal formulation of the TIAM problem is a cost minimization and can be written as follows (with
some simplifications):

min
∑
t c
T
t xt

s.t.
Ltxt ≥ bt, xt ∈ Rn, Lt ∈ Rm∗n , (technological constraints)
Dtxt ≥ dt, xt ∈ Rn, Dt ∈ Rd∗n , (demand constraints)
yt ≤ wt, with yt = Ayt−1 + Fxt , (recursive climate constraints)
xt ∈ Rn, yt ∈ Rw, A ∈ Rw∗w, F ∈ Rw∗n

The objective function is the total cost of the system. It includes, among others: investment costs,
operating costs of the various sectors, taxes, transportation costs between geographical zones... Technological
constraints cover capacity limits, supply limits, yields, the allowed growth rates of the processes in the various
sectors. Demand constraints include each zone’s energy service demands and climate constraints embrace
limits on GHG emissions or stocks in the atmosphere or on temperature increase. These latter constraints
belong to an endogenous climate module. Note that the CO2, CH4 and N2O emissions related to the energy
sector are explicitly represented by the energy technologies included in the model. The nonenergy-related
CO2, CH4 and N2O emissions (landfills, manure, rice paddies, enteric fermentation, waste water, and land
use) are also included in order to correctly represent the radiative forcing induced by them, but they are
exogenously defined. Emissions from some Kyoto gases (CFCs, HFCs, and SF6) are not explicitly modelled,
but a special radiative forcing term is added in the climate module.

3.1.2 The climate module

The climate module used in TIAM-World for this work is an adapted version of the model developed by
Nordhaus and Boyer (1999). Greenhouse gas concentration and temperature changes are calculated from
linear recursive equations. We briefly present its characteristics here, a detailed description can be found in
Loulou et al. (2010).

The climate representation in TIAM-World is characterized by three steps. First, the GHGs emitted by
anthropogenic activities accumulate in the atmosphere; exchanges with the upper and deep ocean layers occur
then for CO2, while the dissipation of CH4 and N2O is described with single atmospheric decay parameters.
The terrestrial carbon cycle of this climate module is depicted in Figure 2. Formally, the one-year-lagged
dynamics of the three detailed greenhouse gases are the following (see Appendix A for detailed equations):

Mg
t = ΦgMg

t−1 + FEgt (10)

where Mg
t is the vector of the mass of gas g across the different reservoirs in year t, Egt is the emission

of gas g in year t (from the global energy model), g ∈ G = {CO2,CH4,N2O} and r : reservoirs ∈ R =
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Figure 2: TIAM climate module

{Atmosphere, UpperLayer, LowerLayer}. This set of equations defining the time profiles of atmospheric
GHGs is then used to compute the radiative forcing. It is common to consider that forcings are additive,
so that:

∆Ft =
∑
g∈G

∆F gt + Exft (11)

where ∆F gt is the forcing of gas g in period t and Exft corresponds to an exogenous assumption of forcing for
all gases other than carbon dioxide, methane and nitrous oxide. The current knowledge on radiative forcing
suggests that none of these terms is linear in the atmospheric stock of gas; the linearization used here is
proposed by Loulou et al. (2010):

∆F gt = γgA
g + γgB

gMg
t , (12)

where γ is a constant (the radiative forcing sensitivity to atmospheric CO2 doubling for g =CO2), and A’s
and B’s are constant depending on pre-industrial concentration levels and linearization intervals.

Finally, temperature elevation profiles are computed based on the following equations:

[
∆Tup

∆T lo

]
t

=S

[
∆Tup

∆T lo

]
t−1

+

[
σ1

0

]
∆Ft,

S =

[
1− σ1

(
γ
CS

+ σ2

)
σ1σ2

σ3 1− σ3

]
.

(13)

where ∆Tup is the variation of the atmospheric temperature, ∆T lo the variation of the ocean temperature,
CS represents the climate sensitivity, i.e. the change in equilibrium atmospheric temperature due to a
doubling of GHG concentration; σ1 and σ3 are the adjustment speeds for respectively atmospheric and
oceanic temperature (lags, in year−1); σ2 is a heat loss coefficient from the atmosphere to the deep ocean.

3.2 Uncertainty sets

The concrete procedure for estimating min and max values for the climate system parameters differs across
parameters. While most estimations are based on comparisons with existing literature (IPCC 2013, Butler
et al. 2014), the construction of lower and upper bounds for the three-box carbon cycle parameters relies on
a calibration against existing emission scenarios and the subsequent concentrations from MAGICC6 (Mein-
shausen et al. 2011). More detail about the estimation procedures can be found in Appendix B; Table 1 lists
the nominal values and upper/lower bounds for the TIAM climate model parameters. Instead of keeping
an upper and a lower value for the parameters, a rapid pre-study provided us the worst-case value of the
parameters (in bold letters in the table).
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Table 1: Nominal values and bounds for climate parameters

Parameter Description Nominal Lower Upper
value bound bound

φa−u Atmosphere to upper layer carbon transfer coefficient (annual) 0.046 0.04393 0.04807
φu−a Upper layer to atmosphere carbon transfer coefficient (annual) 0.0453 0.04326 0.0473
φu−l Upper to lower layer carbon transfer coefficient (annual) 0.0146 0.0139 0.01526
φl−u Lower to upper layer carbon transfer coefficient (annual) 0.00053 0.00051 0.00055
γ Radiative forcing from doubling of CO2 3.7 2.9 4.5
CS Climate sensitivity from doubling of CO2 2.9 1.3 4.5
σ1 Adjustment speed of atmospheric temperature 0.024 0.0216 0.0264
σ2 Heat loss from atmosphere to deep ocean 0.44 0.396 0.484
σ3 Heat gain by deep ocean 0.002 0.0018 0.0022

3.3 Robust formulation of the climate problem

Based on the uncertainty that was described above, one can describe a robust counterpart of TIAM as follows :

min
x

∑
t

cTt xt

s.t. Ltxt ≥ bt (technological constraints)
Dtxt ≥ dt (demand constraints)
yt(x,A, F ) ≤ wt , ∀ (A,F ) ∈ U(Γ) (robust temperature constraints)
x ∈ Rn+

where the climate equation is written as:

yt(x,A, F ) =

t∑
τ=1

At−τFxτ +Aty0

and where intuitively the uncertainty set U(Γ) includes any pair of matrices (A,F ) that can be obtained by
setting less than Γ of the uncertain parameters described in Table 1 to one of their extreme values. The
algorithm described in Section 2.3 can be applied here as long as we are able to solve:

(SP (x∗k)) :
{

max
(A,F )∈U(Γ)

h(x∗k, A, F ) := max
t=1,...,T

yt(x,A, F )− wt ,

and return the maximum value with a pair (A∗k, F
∗
k ) that achieves this worst-case value for one of the time

period in the horizon t = 1, . . . , T .

This resolution will be done by enumerating through all t’s and identifying a worst-case (A∗t , F
∗
t ) pair for:

max
(A,F )∈U(Γ)

yt(x,A, F )− wt . (14)

Given that the largest worst-case difference among all t’s is achieved at t∗, the oracle will return
h∗k := yt(x,A, F ) − wt with the pair (A∗t∗ , F

∗
t∗) to be included in MP (Û). While it might be possible to

solve problem (14) by enumerating through all the possible scenarios for A and B, we present in Appendix C
the procedure that we employed. It relies on the resolution of a mixed integer linear program which we
believe might be more efficient when the number of uncertain parameters becomes large.

4 Numerical results

This section presents the results obtained with our robust version of TIAM-World. The uncertainty sets
are given in Section 3.2 and the uncertainty budget takes value in [0 − 9] (9 being the number of uncertain
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parameters in the climate module). We consider two temperature limits for the whole 2000–2200 horizon:
2 ◦C and 3 ◦C. We will see that with the uncertainty-immunized solution, temperature paths are consistent
with the limits considered by the Paris Agreement to the UNFCCC. We will first present temperature and
GHG emission profiles, and then discuss energy transition pathways.

4.1 Temperature and emission trajectories

Figure 3 gives the temperature trajectories obtained with the nominal values of the climate parameters, when
the trajectory with deviated parameters has to respect the 2 ◦C or 3 ◦C limit. They can be viewed as hedging
trajectories: they should be followed in order to comply with the temperature constraint even in presence of
parameter uncertainty. An increase of the uncertainty budget corresponds to an increase of the protection
level. Figure 3 reveals that uncertainty has a significant impact on the temperature trajectories, even for the
uncertainty budget’s low values. In order to ensure that the temperature does not exceed 2 ◦C (respectively,
3 ◦C), we should aim for a temperature increase ranged between 1.3 ◦C and 1.5 ◦C (resp., between 2 ◦C
and 2.3 ◦C) with the nominal climate model in 2100. These new targets are consistent with the levels
(1.5 ◦C and 2 ◦C) proposed by the Paris Agreement. Figure 3 reveals also that, to immunize against climate
uncertainty with a 2 ◦C temperature limit, temperature peaks between 2060 and 2070 before decreasing
rapidly. This notably impacts the energy transition pathways needed to comply with these temperature
limits; see Section 4.3. On the other hand, with a 3 ◦C temperature limit, temperature peaks only by the
end of the century and decreases more slowly afterwards.

Figure 3: Atmospheric temperature trajectories for different values of the uncertainty budget

The robust optimization approach also makes it possible to rank the parameters or group of parameters by
sensitivity. Table 2 shows the order in which climate parameters deviate, characterizing a diminishing negative
impact on the temperature constraint. Since the robust counterpart of the nominal problem maximizes the
temperature deviation for a given emission profile, increasing the uncertainty budget consists in finding
parameters with the worst effect on the solution within the set of remaining (undeviated) parameters. The

Table 2: Deviation order of uncertain climate parameters

Parameters CS φa−u φu−a σ2 γ σ1 φu−l φl−u σ3

Order 3 °C 1 2 3 4 5 6 7 8 9
Order 2 °C 1 2 3 4 9 7 5 6 8
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first deviating parameter is the climate sensitivity (CS). This can be explained by i) its wide uncertainty
range compared to the ones of the other parameters and ii) the fact that it is a central parameter of the climate
module. This is consistent with other studies analyzing climate response sensitivity to derive 2 ◦C-compliant
mitigation pathways (Vanderzwaan and Gerlagh 2006, Labriet et al. 2010, Ekholm 2014). More interestingly,
after the climate sensitivity, the most critical parameters are the ones of the carbon cycle (φa−u and φu−a).
The terrestrial carbon dynamics is indeed of primary importance to assess the impact of anthropogenic GHG
emissions, as it influences directly the atmospheric carbon concentration, and hence the radiative forcing
and the temperature. This strengthens the importance of relying on appropriate uncertainty ranges for the
climate parameters; see Appendix B. This also pleads for the necessity to pay more attention in IAMs to
the intricacies of the carbon cycle, including feedbacks and nonlinearities. While climate sensitivity and the
carbon cycle appear as primary factors, second-order parameters are ranked very differently. This may be
(at least partially) explained by the mitigation dynamics in the two climate scenarios: in the 2 ◦C case,
mitigation pathways must be implemented earlier (see the next figure) such that the climate dynamics does
not have the same overall impact.

Figure 4 displays CO2 emission trajectories for the nominal scenarios and emission ranges in the robust
scenarios.

Figure 4: CO2 emission profiles in the nominal and robust scenarios

In the nominal trajectories, emissions peak by the middle of the century in the 3 ◦C case, and decreases
rapidly afterwards. Whereas in the 2 ◦C case, emissions must decrease rapidly from 2020 on 4. Looking at
the range of robust trajectories (shaded areas), it roughly expands over time in the 3 ◦C case to reach a
maximum size by 2080; whereas in the 2 ◦C case, it reaches its maximum size earlier (2040). These dynamics
are necessary to respect the different temperature profiles and implies contrasted energy transition pathways
(both in terms of transition timing and energy portfolios); see Section 4.3. Note also the presence of negative
emissions due to specific energy systems (see again Section 4.3).

4.2 Robustness cost

Let us now assess how using a robust model rather than a deterministic one impacts the total energy system
cost (TIAM-World’s objective function), which yields the robustness cost. More precisely, we assess the trade-
off between optimality (low system cost) and robustness (high uncertainty budget) by plotting in Figure 5 the

4Positive emissions in 2100 corresponds to a steady-state level, consistent with the temperature target, given the past emission
trajectories.
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cost increase with the ‘insurance/protection’ level. It has been constructed through Monte-Carlo simulations,
using the emission trajectories obtained for each value of Γ with a temperature constraint (Tlim=2 ◦C or 3 ◦C).
The climate model parameters considered are uniformly distributed on the previously defined uncertainty
sets. We are then able to derive the VaR and the CVaR for the temperature deviation in 2100 for both
constraints. On the abscissa, we report the temperature deviation against which we ‘insure’ ourselves using
the optimal robust pathway: x(Tlim, 2100,Γ) = CV aR(Tlim, 2100, 0)−CV aR(Tlim, 2100,Γ); see Appendix D
for plots of the distributions obtained. The ordinate represents the objective function obtained for different
value of the protection level normalized by the deterministic case objective function.

Figure 5: Costs of insurance

Figure 5 depicts how the world energy system and its emissions adapt to increasing protection levels with
respect to a reference temperature target. It reads as the cost increase to support in order to ‘buy’ a certain
amount of protection level given the uncertain response of the climate system: insuring against the risk that
the 5%-CVaR of the average temperature increase will not be higher than xx (or reducing it by xx compared
to the nominal case).

This function aggregates two elements, namely: (i) the evolution of the total energy system cost with
an increasing uncertainty budget (increasing protection level); and (ii) the CVaR-computed protection level
associated to the change in global GHG emissions trajectory. Both are by construction concave functions
of the uncertainty budget Γ. Indeed, the robust hedging strategies are driven by a worst-case logic, which
implies that the incremental cost of increasing the uncertainty budget is necessarily diminishing. The same
principle applies to GHG emissions. Interestingly, the process of composing these two functions yields a
convex-shaped function. This implies that although both the temperature-expressed protection level and
the incremental cost are concave shaped, the incremental cost still grows faster than the temperature hedge
acquired.

Overall, this plot is comparable to a ‘standard’ temperature-based marginal abatement cost curve, except
that it embeds a consistent risk perspective which combines robust optimization and a simple CVaR metrics
for the output GHG emissions pathways. Comparing the two series for different climate constraints, it
appears naturally that costs of protection are higher for the 2 ◦C series, and also more convex, yielding
higher marginal costs.
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4.3 Robust energy transition pathways

Increasing the required protection level for a given nominal temperature target implies an adaptation of the
energy system towards lower GHG emission levels. This section describes salient elements of these robust
energy transition pathways.

4.3.1 Robust decarbonization challenges: A mesoscopic view

Figure 6 plots the world primary energy5 intensity of GDP, in 2050 and 2100, for the 3 ◦C and 2 ◦C targets
(2050: plain lines, 2100: dashed lines; 3 ◦C: blue dot markers, 2 ◦C: red square markers) as a function of the
protection level and 2008 normalized.6 With the same convention, Figure 7 plots the evolution of the carbon
intensity of primary energy with the protection level.7

Figure 6: Primary energy intensity of GDP against
protection level

Figure 7: Carbon intensity of primary energy
against protection level

The evolution of these two intensities reflects very different strategies for the 3 ◦C and 2 ◦C constraints.
Hedging against climate uncertainty at the 3 ◦C level shows a balanced use of energy efficiency and decar-
bonization of primary energy in 2050; the two indicators show comparable reduction levels (more or less
50%) compared to the 2008 reference. In 2100, the 3 ◦C scenario hedges with a stronger reduction of carbon
intensity, at the expense of primary energy intensity: carbon intensity drops with hedging (-50% to -60%)
while energy intensity remains quite flat (-45% to -47%). This is especially true for higher protection levels
for which CCS massively penetrates the decarbonization mix (see below). This yields negative carbon in-
tensities, indicating negative net emissions. CCS-ready technologies being less efficient than their non-CCS
equivalents, the primary energy requirements increase (moderately) with hedging.

At the 2 ◦C level, the tradeoff between energy intensity and carbon intensity is anticipated as early as
2050. With increased protection levels, the fall of primary energy intensity of GDP is smaller (from -40% to
-30% compared to 2008), while the carbon intensity of GDP is reduced by an additional 10% going to negative
values and hence negative net emissions. By 2100, protection strategies have reached a status-quo situation
with the amount of climatic uncertainty. Both the primary energy intensity and the carbon intensity have
become insensitive to the protection level. The maximum abatement potential is thus reached (reflecting the
model limits).

Overall, between the two climate scenarios, comparable strategies are chosen (tradeoff between energy
intensity and carbon intensity, with the necessity to spend more energy to store carbon) but with a large

5Primary energy consumptions are computed as the sum of coal, crude oil, natural gas, enriched uranium, biomass, solar and
wind energy consumed in the whole energy system.

6PEIratio =
Primary_Energy(Y r)

GDP (Y r)
× GDP (2008)

Primary_Energy(2008)

7CIratio =
CO2(Y r)

Primary_Energy(Y r)
× Primary_Energy(2008)

CO2(2008)
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difference in timing. This result is consistent with the temperature observation and CO2 emissions paths,
which show that protection at the 3 ◦C level is an endpoint issue (mitigation occurs in the second half of the
century), while protection at the 2°C level is a midpoint question (mitigation is extremely strong by 2050,
but final states – 2100 – show less variability). This raises the question of the economy’s decarbonization
speed, and how to reach e.g. COP21 compliant objectives.

4.3.2 Robust energy portfolios

While the previous results show an aggregate picture of reduction and mitigation strategies in an uncertain
climate context, further desegregating the primary energy consumption level (see Figure 8) offers additional
insights.

Figure 8: Primary energy consumption by type against protection level

Both the 3 ◦C and the 2 ◦C scenario groups show similarities. Naturally, increasing protection and/or
imposing a more stringent climate objective tend to reduce the use of the most carbonized energy sources
(coal, gas) in favour of renewable energy sources (solar, wind, biomass) (see also Figure 9).

As primary energy sources with high carbon contents, gas and coal uses are highly elastic to the protection
level. Gas use decreases between 13% and 20% in 2050 and between 32% and 75% in 2100 in the 3 ◦C scenarios
(always compared to the deterministic case in the same target scenario group). At the same time, coal use
is diminished by 22% to 36% in 2050 and 53% to 65% in 2100. The scenarios for the 2 ◦C target show a
comparable albeit amplified tendency: both energy source uses diminish by 75% to 90% in 2050 and 2100.
At the same time, the use of renewable energy raises in any case, up to 200% in 2050 for the 2 ◦C scenarios.
While for the 3 ◦C scenarios, renewable use is tripled between 2050 and 2100. In the renewable group,
biomass plays a particular role as its use coupled with CCS is a critical pathway for decarbonization (as it
generates negative emissions).
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Figure 9: Primary energy consumption by type

Nuclear is an option for decarbonizing the economy, and more precisely an electro-intensive economy
which relies more on carbon-neutral sources. The use of uranium gradually increases by 2100 in the 3 ◦C
scenarios, and much faster in the 2 ◦C scenarios (up to 2050) before stabilizing. Lastly, oil plays a particular
role: while the use of other fossil energy decreases, the amount of crude oil consumed in the primary energy
mix is rather stable across scenarios and protection levels. This tendency to maintain the use of oil products
is to be related to the difficulty of reducing transport emissions (high abatement costs) combined with the
large availability of low-carbon alternatives in other sectors (nuclear, CCS).

4.3.3 A sectoral view: The‘backstop’ negative emissions pathways against low-elastic transport

Figure 10 helps next to assess the role of the various sectors in the decarbonization process.

Regardless of the scenario, transport remains the main CO2 emitter worldwide. In the 3 ◦C case, all emis-
sions peak around 2040 before falling – with the exception of the transport sector – alternative technologies
penetrate the mix. Electricity and industry are the main contributors to abatement, essentially between 2050
and 2100. In 2100, transport emissions represent between 60% and 90% of the end-use emissions; they are
rather stable in absolute terms, so that technology improvements (efficiency, low-carbon fuels) compensate
for the demand growth. While CCS is deployed by 2050 as a hedge for about 10 Gt/yr, transport emissions
in the second half of the century are compensated by credits from CCS captured from biomass (negative
emissions).

The 2 ◦C case differs in three ways. First, the need to reduce emissions further to remain compliant with
a 2 ◦C target with uncertainty forces to reduce emissions from the power and industry sectors much faster
(by 2050). Second, even transport emissions go down sharply to get to a 1.5 ◦C average elevation level.
At this timescale, only transport and industry have some residual emissions. Third, the additional use of
CCS from biomass fueled power plants is not only incremental but also comes as a substitute for fossil CCS
pathways. The importance of bioCCS in this picture reveals the importance of estimating biomass potentials
and assessing relevant sensitivity analysis on the subject.

The clear-cut arbitrage strategy between biomass-CCS and transport emissions can be explained at the
technology level, see Figure 11.
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Figure 10: Sectoral emissions and Stored Carbon (from biomass and fossil fuels)

Figure 11: Energy mix for transport and electricity generation
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The analysis of the energy mix for transport shows a strong reliance on fossil-based fuels, which represent
a large part of the mix except in the longer term for the 2 ◦C target. In that case, transport fuels have become
almost carbon free with a strong reliance on hydrogen. Since transport is a sector with high abatement costs
(van Dender and Crist 2008), it is only when the protection level is high that the oil trajectory is impacted.
The vehicle fleet is progressively electrified, diesel and gasoline losing market share with time and uncertainty.
Electric vehicles appear as a relevant way to mitigate the risk induced by climate uncertainty. Besides, in
energy terms, the moderate penetration of electricity as a transportation fuel minimizes a wider reality: while
electricity can represent up to 30% of the energy used in transport, the relative efficiency of electric vehicles
compared to conventional ones (2 to 2.5 more efficient) implies that, in 2050, more than 50% of the total
world mobility is actually electromobility. Yet, the commercial transportation fleet sticks with diesel trucks,
leading to a stable diesel consumption.

In the power sector, the protection level increase leads to an early use of CCS, as early as 2030 in most
cases (see also Figure 10). The nuclear and the CCS trajectories under uncertainty have large consequences
in terms of policy decision. For example, given the current state of R&D on CCS (with various projects
shut down this last decade), this result suggests that we may want to reconsider the current R&D budget
allocation. The importance of nuclear in the energy mix is also at odds with some country policies like
Germany. Indeed, they decided some years ago to close all the nuclear plants in a near future (unlike Japan,
where nuclear plants are planned to restart in the near future). Negative emission possibility is also something
quite abstract and subject to much uncertainty, as the first commercial-scale biomass-fueled power plant with
CCS has yet to be built.

5 Conclusion

Climate modeling is hampered by a considerable amount of uncertainty because of the lack of knowledge of
the climate system. As it significantly impacts climate policy making, the need for tools to evaluate robust
transition pathways is more and more urgent. In this paper, we present a robust approach to handling climate
uncertainty in Integrated Assessment Models (IAMs).

We find that the climate module’s most sensitive parameter is the climate sensitivity. This is consistent
with the existing literature on the subject. Yet, it is important to remember that climate sensitivity is
the most studied parameters and that its value estimations are numerous. Hence, the determination of the
climate sensitivity uncertainty range is quite straightforward. Another important point is that this range
relies on a large information set unlike the other parameters, for which data is scarce. It is indeed quite
complicated to find information on the carbon cycle parameters (few studies in the IAMs climate module
literature) and yet the global climate system behavior is very sensitive to them. Furthermore, the parameters
impact diversely the timing of the adaptation: the radiative forcing sensitivity multiplies directly the CO2

concentration, hence even a small variation of this parameter leads to a strong impact on the CO2 abatement
timing. We then believe that a stronger focus should be put on the other climate model parameters.

To ensure that we comply with a 3 ◦C constraint, the temperature trajectories we should aim at with the
nominal parameters should not exceed 2.4 ◦C, leading to zero net carbon emissions at the end of the century.
With a 2 ◦C constraint, we should aim at 1.6 ◦C with negative carbon emissions as soon as 2050. If the
insurance cost is quite reasonable for the higher constraint (from 1.5% to 4% of the system total discounted
cost), it is less the case with a 2 ◦C objective. In the latter situation, the total discounted system cost
increases by 7% when the protection level is low and up to 14% when it is high. Indeed, in order to comply
with a stringent target, sectors with high abatement costs have to participate in the global reduction effort.
Transport is little impacted by the 3 ◦C target (but as the protection level increases, the vehicle fleet is
slightly modified), whereas the introduction of uncertainty leads to major fuel consumption changes for the
2 ◦C constraint.

The abatement strategies are quite different between the two temperature targets. For the 3 ◦C target,
both the carbon intensity and the primary energy intensity of the economy decrease with the protection
level whereas for the 2 ◦C target, the energy intensity increases and the carbon intensity decreases. This
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more stringent goal is reached by investing massively in carbon removal technologies such as bioenergy with
carbon capture and storage (BECCS) which have yields much lower than traditional fossil fueled technologies.
Another interesting fact of the 2 ◦C hedging trajectories is the drastic increase in the nuclear electricity
production. The massive use of nuclear or carbon removal technology is highly uncertain as BECCS is a very
expensive technology that is not competitive in the absence of a high CO2 price, while the development of the
nuclear industry could be hampered by social acceptance issues. The 1.5 ◦C objective mentioned during the
COP21 is obviously very ambitious and reaching it would necessitate strong political and societal ambitions
and actions (much stronger than the ones decided during the COP21).

By taking a robust approach to study ways of complying with ambitious climate targets, we were able
to bring to light hedging technological trajectories without excessive computational issues. The method
presented being quite generic, it could be interesting to perform similar exercises with other IAMs. It would
help strengthen the knowledge on technological transition pathways with uncertainty and would allow a
better understanding and awareness of the costs of the risks linked to our partial knowledge of the climate
system.

Appendix A TIAM-World climate module

The terrestrial carbon cycle of this climate module is depicted in Figure 2. Formally, the one-year-lagged
dynamics of the three detailed greenhouse gases are the following:MCO2,a
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where Mg,r
t is the mass of gas g in reservoir r in year t, Egt is the emission of gas g in year t (from the

global energy model), ϕro,ri is the transfer coefficient for CO2 from reservoir ro to reservoir ri, ϕCH4 and
ϕN2O are the decay rates of methane and nitrous oxide in the atmosphere, g ∈ G = {CO2, CH4, N2O} and
r ∈ R = {a = Atmosphere, u = UpperLayer, l = LowerLayer}.

This set of equations defining the time profiles of atmospheric GHGs is then used to compute the radiative
forcing. It is common (IPCC 2007) to consider that forcings are additive, so that:

∆Ft =
∑
g∈G

∆F gt + Exft,

where ∆F gt is the forcing of gas g in period t and Exft corresponds to an exogenous assumption of forcing for
all gases other than carbon dioxide, methane and nitrous oxide. The current knowledge on radiative forcing
suggests that none of these terms is linear in the atmospheric stock of gas; the linearization used here is
proposed by Loulou et al. (2010):
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∆FCO2
t =γACO2 + γBCO2MCO2,a
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∆FCH4
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where γ is the radiative forcing sensitivity to atmospheric CO2 doubling, and A’s and B’s are constant
depending on pre-industrial concentration levels and linearization intervals. Finally, temperature elevation
profiles are computed based on the following equations:[

∆Tup

∆T lo

]
t

= S

[
∆Tup

∆T lo

]
t−1

+

[
σ1

0

]
∆Ft,

S =

[
1− σ1

(
γ
CS

+ σ2

)
σ1σ2

σ3 1− σ3

]
.

where ∆Tup is the variation of the atmospheric temperature, ∆T lo the variation of the ocean temperature,
CS represents the climate sensitivity, i.e. the change in equilibrium atmospheric temperature due to a
doubling of GHG concentration; σ1 and σ3 are the adjustment speeds for respectively atmospheric and
oceanic temperature (lags, in year−1); σ2 is a heat loss coefficient from the atmosphere to the deep ocean.

Appendix B Estimation of lower/upper bounds for climate parame-
ters

Overall, and in the course of this estimation exercise, we may classify the climate parameters at stake in
this study into three groups. First, one group contains the parameters for the carbon cycle. The terrestrial
carbon cycle itself is a rather large field of study in geophysics (see e.g. Smith et al. 2012, Joos et al. 2013; for
a multi-model approach). One can also find sensitivity analysis on the carbon cycle in IAM-based research
(Butler et al. 2014, Hof et al. 2012), or are least clues on how uncertain these parameters are (Nordhaus 2008).
One way of assessing the behavior of carbon cycle models is to perform the so-called ‘doubling experiment’,
where the evolution of an atmospheric CO2 doubling-concentration pulse in year 0 is followed across the
various carbon sinks for the next 100-400 years. Existing multi-models experiments (Joos et al. 2013, van
Vuuren et al. 2009) point out large response spectra; van Vuuren et al. (2009) additionally show that simple
carbon models (few boxes, simple linear recursive dynamics) such as DICE end up in the low range of possible
outcomes: they have, compared to the rest, relatively optimistic carbon cycles. Such an experiment seems
to be a good starting point to calibrate a carbon cycle. However, the uncertainty it translates covers both
parametric and structural uncertainty. For example, van Vuuren et al. (2009) argue that the PAGE model
behaves very differently from the rest of the test population because it includes feedbacks on the carbon
cycle. This limitation – carbon cycle models have different structures, hence different parameters – makes it
difficult to adopt such a calibration procedure. Therefore, we adopt a calibration procedure similar to that of
Nordhaus and Sztorc (2013), but for the four IPCC-RCP emissions scenarios ran under the multi-ensemble
simulation mode of MAGICC6 (Meinshausen et al. 2011). To this purpose:

• the nominal values of the parameters in the climate module in TIAM-World was left as described in
Loulou et al. (2010);

• the upper bound of the inter-boxes transfer coefficients were estimated to get close to the 83rd percentile
of the MAGICC6 inter-model simulations for the four RCP scenarios. This is done by changing the
parameters by identical relative amounts, and computing a simple distance measure (the sum of squares
of annual relative distances between the TIAM-climate simulation and the MAGICC6-RCP benchmark).

The result of this experiment is shown in Figure 12. The blue lines and shade represent, in each subgraph,
the average, 95% and 90% confidence intervals produced by MAGICC6. The black plain and dotted show
the average and 95% confidence intervals obtained with the TIAM-World climate module.
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Figure 12: TIAM-World climate module: Uncertainty in the carbon cycle agains MAGICC6 ranges for the four RCP scenarios

These variations allow to capture only a minor part of the carbon cycle model variations described by
Joos et al. (2013) or van Vuuren et al. (2009). Hof et al. (2012) show that the variations in climate change
benefits from a set of IAMs due to the carbon cycle are lower than the MAGICC6 ranges, which seems to
indeed indicate that simple carbon cycles do not capture all the ‘volatility’ of outcomes.

A second set of parameters includes the forcing and climate sensitivities, which are likely to be the most
well-documented parameters in the climate literature. They traduce the global equilibrium surface forcing and
warming after a doubling of atmospheric CO2 concentration; any climate models includes these parameters.
The importance of the equilibrium radiative forcing is widely acknowledged (Cao et al. 2010); multi-models
comparisons and simulations are also frequent (Schmidt et al. 2012). If issues such as climate feedbacks arise
in the estimation of forcing (Block and Mauritsen 2013), available comparisons indicate plausible range for
the forcing parameters (using doubling or quadrupling experiments), with the last IPCC report (AR5-WG1,
IPCC 2013) providing a central value of 3.7 with a +/- 0.8 99% confidence interval. This estimation is
consistent with Zhang and Huang (2014), and is retained for this study. As for the climate sensitivity, the
initial value of the TIAM-World calibration corresponds to the Knutti and Hegerl (2008) synthesize plausible
sensitivity ranges for the climate sensitivity for different lines of evidence, and demonstrate how critical it
is if the policy objective is to prevent damages caused by certain levels of warming. The IPCC most likely
value and upper bound are 3 ◦C and 4.5 ◦C respectively, which is consistent with other papers such as Syri
et al. (2008). Butler et al. (2014) make a different choice, and end up with a range (upper bound of 8 ◦C)
closer to what Knutti and Hegerl (2008) refer to as ‘expert elicitation’. Combining different lines of evidence,
these authors obtain a range close to the one of IPCC, which we will retain as a basis. Compared to existing
literature on IAM-SCM sensitivity analysis in Butler et al. (2014), these ranges are high for forcing and low
for the climate sensitivity.

Finally, the rest of the parameters, traducing the temperature dynamics, are part of a third group con-
stituted of apparently less studied parameters. There seems to be considerably less available work on these.
By default, we proceed as Butler et al. (2014), and apply a 10% variation to the annual heat transfer coeffi-
cients. The range of temperature responses of TIAM-World are compared against MAGICC6 for the 4 RCPs
scenarios, accounting for the uncertainty of all parameters. The results are presented in Figure 13 (it reads
as Figure 12).

The final nominal values and ranges for the climate parameters are presented in Figure 3 along with the
values kept in Butler et al. (2014) for comparison purposes.
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Figure 13: TIAM-World climate module: Uncertainty in the global mean temperature against MAGICC6 ranges for the four
RCP scenarios

Table 3: Nominal values for climate parameters and comparison with Butler et al. (2014)

Parameter Description
Nominal

value
(this paper)

Lower/Upper
bound

(this paper)

Nominal
value

(Bulter)

Lower/Upper
bound
(Butler)

φa−u
Atmosphere to upper layer carbon transfer
coefficient (annual) 0.046 0.04393 0.189288 0.223288

φu−a
Upper layer to atmosphere carbon transfer
coefficient (annual) 0.0453 0.0473385 0.097213 derived

φu−l
Upper to lower layer carbon transfer coefficient
(annual) 0.0146 0.013943 0.05 0.025

φl−u
Lower to upper layer carbon transfer coefficient
(annual) 0.00053 0.00055385 0.003119 derived

γ Radiative forcing from doubling of CO2 3.7 4.5 3.8 3.9
CS Climate sensitivity from doubling of CO2 2.9 4.5 3 8
σ1 Adjustment speed of atmospheric temperature 0.024 0.0264 0.22 0.24
σ2 Heat loss from atmosphere to deep ocean 0.44 0.396 0.3 0.27
σ3 Heat gain by deep ocean 0.002 0.0018 0.05 0.045

Appendix C Implementation details for the worst-case oracle in TIAM-
World model

For simplicity of exposure, we describe the procedure for solving Problem (14) when the respective worst-
case extreme value (between minimum and maximum) for each parameter can be identified a-priori (either
analytically or using common sense). Following the information presented in Table 1, we can describe the
uncertainty as follows:

ψa−u := ψ̄a−u − ψ̂a−uz1 ψu−a := ψ̄u−a + ψ̂u−az2

ψu−l := ψ̄u−l − ψ̂u−lz3 ψl−u := ψ̄l−u + ψ̂l−uz4

γ := γ̄ + γ̂z5 (1/Cs) := (1/C̄s)− (Ĉs/(C̄
2
s + C̄sĈs))z6

σ1 := σ̄1 + σ̂1z7 σ2 := σ̄2 + σ̂2z8

σ3 := σ̄3 + σ̂3z9 ,
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where the “bar” annotated parameter refers to the nominal value and the “hat” annotated parameter refers
to the magnitude of the perturbation needed to get to the chosen extreme value. We also modeled the
perturbation on the term 1/Cs using an additive formulation, namely:

1/Cs :=

{
1/C̄s if z6 = 1

1/(C̄s + Ĉs) otherwise
.

Based on the definitions of A and F , one should notice that these two matrices are not linear functions of
the uncertainty z1, z2, . . . , z9. This can be remedied by replacing the nonlinearities with additional binary
variables. In particular, when studying the effect of z on each term of A, one might realize that the following
expressions come into play:

γψa−u =γ̄ψ̄a−u − γ̄ψ̂a−uz1 + ψ̄a−uγ̂z5 − γ̂ψ̂a−uz1z5

γψu−a =γ̄ψ̄u−a + γ̄ψ̂u−az2 + ψ̄u−aγ̂z5 + γ̂ψ̂u−az2z5

σ1γψ
a−u =σ̄1γ̄ψ̄

a−u − σ̄1γ̄ψ̂
a−uz1 + σ̄1γ̂ψ̄

a−uz5 + σ̂1γ̄ψ̄
a−uz7

− σ̄1γ̂ψ̂
a−uz1z5 − σ̂1γ̄ψ̂

a−uz1z7 + σ̂1γ̂ψ̄
a−uz5z7 + σ̂1γ̂ψ̂

a−uz1z5z7

σ1γψ
u−a =σ̄1γ̄ψ̄

u−a + σ̄1γ̄ψ̂
u−az2 + σ̄1γ̂ψ̄

u−az5 + σ̂1γ̄ψ̄
u−az7

+ σ̄1γ̂ψ̂
u−az2z5 + σ̂1γ̄ψ̂

u−az2z7 + σ̂1γ̂ψ̄
u−az5z7 + σ̂1γ̂ψ̂

u−az2z5z7

σ1γ/Cs =σ̄1γ̄θ̄ + σ̄1γ̂θ̄z5 − σ̄1γ̄θ̂z6 + σ̂1γ̄θ̄z7

− σ̄1γ̂θ̂z5z6 + σ̂1γ̂θ̄z5z7 − σ̂1γ̂θ̄z6z7 − σ̂1γ̂θ̂z5z6z7

σ1σ2 =σ̄1σ̄1 + σ̂1σ̄1z7 + σ̄σ̂2z8 + σ̄1σ̄2z7z8 ,

where θ̄ := 1/C̄s and θ̂ := Ĉs/(C̄
2
s + C̄sĈs). By making the replacement v0jk := zjzk and vijk := zizjzk, one

would instead get the following set of linear representations:

γψa−u =γ̄ψ̄a−u − γ̄ψ̂a−uz1 + ψ̄a−uγ̂z5 − γ̂ψ̂a−uv015

γψu−a =γ̄ψ̄u−a + γ̄ψ̂u−az2 + ψ̄u−aγ̂z5 + γ̂ψ̂u−av025

σ1γψ
a−u =σ̄1γ̄ψ̄

a−u − σ̄1γ̄ψ̂
a−uz1 + σ̄1γ̂ψ̄

a−uz5 + σ̂1γ̄ψ̄
a−uz7

− σ̄1γ̂ψ̂
a−uv015 − σ̂1γ̄ψ̂

a−uv017 + σ̂1γ̂ψ̄
a−uv057 + σ̂1γ̂ψ̂

a−uv157

σ1γψ
u−a =σ̄1γ̄ψ̄

u−a + σ̄1γ̄ψ̂
u−az2 + σ̄1γ̂ψ̄

u−az5 + σ̂1γ̄ψ̄
u−az7

+ σ̄1γ̂ψ̂
u−av025 + σ̂1γ̄ψ̂

u−av027 + σ̂1γ̂ψ̄
u−av057 + σ̂1γ̂ψ̂

u−av257

σ1γ/Cs =σ̄1γ̄θ̄ + σ̄1γ̂θ̄z5 − σ̄1γ̄θ̂z6 + σ̂1γ̄θ̄z7

− σ̄1γ̂θ̂v056 + σ̂1γ̂θ̄v057 − σ̂1γ̂θ̄v067 − σ̂1γ̂θ̂v567

σ1σ2 =σ̄1σ̄1 + σ̂1σ̄1z7 + σ̄σ̂2z8 + σ̄1σ̄2v078 ,

Hence it becomes possible to represent U as:

U :=

(A,F ) ∈ Rw×w × Rw×n

∣∣∣∣∣∣∣∣∣∣

∃z0 = 1 , z ∈ {0, 1}m , v ∈ {0, 1}|S|∑m
i=1 zi ≤ Γ

A = Ā+
∑m
i=1 Âizi +

∑
(i,j,k)∈S Ãijkvijk

F = F̄ +
∑m
i=1 F̂izi +

∑
(i,j,k)∈S F̃ijkvijk

zi + zj + zk − 2 ≤ vijk ≤ (1/3)(zi + zj + zk) , ∀ (i, j, k) ∈ S


where

S := {(0, 1, 5), (0, 1, 7), (0, 2, 5), (0, 2, 7), (0, 5, 6), (0, 5, 7), (0, 6, 7), (0, 7, 8), (1, 5, 7), (2, 5, 7), (5, 6, 7)} ,

and where Ā+
∑
i Âizi +

∑
(i,j,k)∈S Ãijkvijk and F̄ +

∑
i F̂izi +

∑
(i,j,k)∈S F̃ijkvijk are the respective linear

matrix representations of A and F . Furthermore, the set of linear constraints that take the form:

zi + zj + zk − 2 ≤ vijk ≤ (1/3)(zi + zj + zk) ,
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are simply a convenient way of representing the nonlinear equality constraint vijk = zizjzk.

Having this representation for U in hand, Problem (14) can be described as:

max
y,z,v

yt − wt

s.t yτ+1 = (Ā+
∑
i

Âizi +
∑

(i,j,k)∈S

Ãijkvijk)yτ

+ (F̄ +
∑
i

F̂izi +
∑

(i,j,k)∈S

F̃ijkvijk)xτ , ∀ τ = 1, . . . , t

∑
i

zi ≤ Γ

zi + zj + zk − 2 ≤ vijk ≤ (1/3)(zi + zj + zk) , ∀ (i, j, k) ∈ S
z ∈ {0, 1}m, v ∈ {0, 1}|S|

which is still a mixed integer nonlinear program due to the cross-terms ziyτ and vijkyτ .

In order to facilitate the resolution, we apply a second step of linearization by employing additional
variables Z ∈ Rm×t and V ∈ R|S|×t such that Zi,τ := ziyτ and Vijk,τ := vijkyτ . This leads to the following
mixed integer linear program:

max
y,z,v,Z,V

yt

s.t. yτ+1 = Āyτ +
∑
i

ÂiZi,τ +
∑

(i,j,k)∈S

ÃijkVijk,τ + F̄ xτ +
∑
i

F̂ixτzi +
∑

(i,j,k)∈S

F̃ijkxτvijk

F̄ xτ +
∑
i

F̂ixτzi +
∑

(i,j,k)∈S

F̃ijkxτvijk

−M1zi ≤ Zi,τ ≤M2zi

yτ −M2(1− zi) ≤ Zi,τ ≤ yτ +M1(1− zi)
−M1vi ≤ Vi,τ ≤M2vi

yτ −M2(1− vi) ≤ Vi,τ ≤ yτ +M1(1− vi)∑
i

zi ≤ Γ

zi + zj + zk − 2 ≤ vijk ≤ (1/3)(zi + zj + zk) , ∀ (i, j, k) ∈ S
z ∈ {0, 1}m, v ∈ {0, 1}|S|,

where M1 and M2 are large enough constants that are known to capture −M1 ≤ y∗τ ≤ M2. One can easily
verify that the “big M” constraints on Zi,τ and Vijk,τ ear equivalent to imposing that Zi,τ := ziyτ and
Vijk,τ := vijkyτ .

Appendix D Monte-Carlo simulations of the temperature

For readability reasons, we plot only 100 trajectories (to calculate the CVaR, we have realized 2,000 draws).
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Figure 14: Temperature trajectories (2 ◦C and 3 ◦C emission pathways with Γ = 0 and Γ = 3)

Figure 15: 2100 Temperature delta (2 ◦C and 3 ◦C emission pathways with Γ = 0 and Γ = 3) – Density functions and CVaR
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