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Abstract: We consider engineering design optimization problems where the objective and/or constraint
functions are evaluated by means of computationally expensive blackboxes. Our practical optimization strat-
egy consists of solving surrogate optimization problems in the search step of the Mesh Adaptive Direct Search
(MADS) algorithm. In this paper, we consider locally weighted regression models to build the necessary sur-
rogates, and present three ideas for appropriate and effective use of LOcally WEighted Scatterplot Smoothing
(LOWESS) models for surrogate optimization. First, a method is proposed to reduce the computational cost
of LOWESS models. Second, a local scaling coefficient is introduced to adapt LOWESS models to the density
of neighboring points while retaining smoothness. Finally, an appropriate order error metric is used to select
the optimal shape coefficient of the LOWESS model. Our surrogate-assisted optimization approach utilizes
LOWESS models to both generate and rank promising candidates found in the search and poll steps. The
“real” blackbox functions that govern the original optimization problem are then evaluated at these ranked
candidates with an opportunistic strategy, minimizing CPU time significantly.

Computational results are reported for four engineering design problems with up to six variables and six
constraints. The results demonstrate the effectiveness of the LOWESS models as well as the order error
metric for surrogate optimization.

Keywords: Local regression, order error, surrogate models, derivative-free optimization, MADS
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1 Introduction

We consider engineering design optimization problems of the form

min
x∈X

f(x)

subject to cj(x) ≤ 0, j = 1, 2, ...,m,
(P )

where x ∈ Rn is the vector of design optimization variables and X is a subset of Rn possibly unbounded defined

by some box constraints. At least one (but typically many) of the functions {f, c1, . . . , cm} is evaluated using

computational procedures known as blackboxes. Functions evaluated using blackboxes may be nonsmooth

and nonconvex, and their derivatives (if they exist) may be very hard to approximate in a computationally

practical and dependable manner. The Mesh Adaptive Direct Search (MADS) algorithm [6, 7] is designed

for such problems, and is supported by a hierarchical convergence analysis ranging from no assumptions at

all on the functions defining the problem, to local Lipschitz continuity. Moreover, a blackbox evaluation

is often expensive in terms of CPU time, may crash or fail to return a meaningful value in case a hidden

constraint [11, 34] is violated.

Computationally expensive blackboxes pose serious practical challenges to simulation-based engineering

design optimization problems. A possible strategy to deal with such practical challenges can be the use of

surrogate models. However, surrogate optimization should be conducted carefully; it should be used to assist

the process of optimizing the original problem, not substitute it entirely.

1.1 Surrogate-assisted optimization

Our strategy to deal with blackbox optimization problems is based on the feature of the MADS algorithm

allowing the user to explore practical alternatives to solving the problem in an optional, so-called search step

at every iteration of the algorithm (which then proceeds to the mandatory poll step to generate (additional)

candidates before determining the next iterate). We use the search step to formulate and solve surrogate

problems of the original problem by building and using surrogates of the blackboxes. The solution(s) of the

surrogate problems are considered together with the design points suggested by the poll steps as candidates of

the next iterate. The surrogates are also used to rank the poll-generated candidates. The ranked candidates

are then evaluated using the blackboxes to determine the next iterate. This approach reduces the use of

blackboxes, and thus CPU time, significantly.

Specifically, when the blackbox output is known at p different data points X = {x1,x2, . . . ,xp} ⊂ X ,

we build surrogate models {f̂, ĉ1, . . . , ĉm} of the objective and the constraints to estimate their value for a
design x /∈ X. In this document, we use single and double hats to denote surrogate functions and cross-

validation values, respectively. We then generate a candidate solution to Problem (P ) by solving the surrogate

optimization problem

min
x∈X

f̂(x)

subject to ĉj(x) ≤ 0 ∀j ∈ 1, 2, ...,m.
(P̂ )

If surrogates provide an accurate representation of the blackbox output, then a minimizer of the surrogate

problem (P̂ ) will be a good candidate for the solution of the main problem (P ). This leads to two questions:

1) how to quantify the accuracy of a surrogate model in the context of surrogate assisted optimization, and

2) which surrogate modeling technique to use? Section 3 proposes a metric to answer the first question, and

Section 4 gives computational evidence to answer the second question.

1.2 Locally Weighted Regression

In previous work, we investigated the suitability of Polynomial Response Surfaces (PRSs) [2, 43, 47] and

Kernel Smoothing (KS) models [2, 30] to surrogate optimization [8]. We concluded that, while useful, these

models have certain limitations: PRSs do not fit data of underlying multimodal functions well, even when a

large number of data points is available. KS computes weighted averages of blackbox outputs; consequently,

KS models have a tendency to undershoot because predictions are always bounded by observations.
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In this work, we consider LOcally WEighted Scatterplot Smoothing (LOWESS) [13, 14, 15, 16] models,

which constitute a combined generalization of PRSs and KS models. LOWESS builds local polynomial

models that emphasize the data points in the vicinity of the point ξ ∈ X where the blackbox functions f

and {cj}j=1...m are to be estimated by assigning larger weights to data points close to it than to points that

are further away from it. Specifically, the weight of a data point x ∈ X in a local regression model will be

φ(λ‖x − ξ‖2/dq(ξ)), where φ is a kernel function, λ > 0 is a user-defined shape coefficient and dq(ξ) is a

scaling distance that takes into account the distance of the q data points necessary for the construction of

the local regression at ξ.

Locally weighted regression was first used as early as 1931 for fitting time series [36]. In 1979, Cleve-

land [13] introduced locally weighted local regression for univariate data, and presented an iterative method

for robust regression. This method was then made available as a FORTRAN code [14]. The equivalence

between LOWESS models and kernel smoothing when the number of observations tends toward infinity was

established in [42]. The method was then generalized to multivariate data and applied to data exploration

and diagnostic checking [15, 16]. The detailed and asymptotic properties of these models are investigated

in [48, 35, 21, 20], and an overview is given in [44]. The method was then implemented in the SAS/STAT

software under the name LOESS [17], applied to hydrological forecast in the Great Salt Lake [32] and to

robotic control learning algorithms [50].

In preliminary studies, we observed that LOWESS models generate promising results in surrogate assisted

optimization. However, their main drawback is that they require the solution of a linear system for each

model prediction. In particular, if the local polynomial regression is quadratic, then one prediction in ξ ∈ Rn
requires solving a linear system of size (n+ 1)(n+ 2)/2, which has a computational cost of O(n6). Therefore,

LOWESS models are only practical for relatively small size design optimization problems, or when blackboxes

are exceptionally expensive to exercise.

1.3 Contributions

The first novel element of this work is a computationally efficient method for solving the aforementioned linear

system: the computation cost is made independent from the number of blackbox output and is reduced by

using information available from previous model predictions and by an educated choice between an iterative

or direct solution method.

The second novel element of this work is the use of a statistical method to estimate the scaling distance

dq(ξ). In the existing literature, dq(ξ) is the distance of the qth closest data point to ξ [13, 15, 16]. This leads

to dq(ξ) not being differentiable everywhere on X , which is detrimental to the smoothness of the surrogate

model (see ∂ŷ/∂ξ in Figure 2 of Section 3.1). We observe that the values {‖x− ξ‖22}x∈X are well fitted by a

Gamma distribution. The value dq(ξ) is then computed so that the expected number of data points within

this distance from ξ is q. The resulting estimate of scaling distance dq(ξ) is differentiable everywhere, which

allows for differentiable and reliable models ŷ.

The third contribution of this work is pertinent to the selection of the shape parameter λ > 0, which

controls the decrease of the weights. It has the same value for all weights wi(ξ), i = 1, ..., p, all prediction

points ξ ∈ X and all blackbox output {f, c1, . . . , cm}.

In previous work, we showed that order errors are relevant indicators of the accuracy of a surrogate

model [8]. Order errors aim at quantifying how well the solution to the surrogate problem (P̂ ) matches

that of the the original problem (P ). In [8] we used an error metric for each of the m+ 1 surrogate models

corresponding to the m+ 1 outputs of the blackbox. This metric can be used to fine-tune the model for each

blackbox output. This is not possible here since the parameter λ has the same value for each of the m + 1

surrogate models. As a consequence, we need to define a metric that quantifies the quality of the multi-output

model ξ → {f̂(ξ), ĉ1(ξ), . . . , ĉm(ξ)}. Therefore, we propose a generalization of the order error to multi-output

surrogates. This order error quantifies how frequently the surrogate model is able to correctly predict which

of two points is best in terms of feasibility and optimality. Moreover, the order error used in this work relies
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on leave-one-out cross-validation, which enables a robust assessment of the predictive capability of the model

outside the set X. The global shape coefficient λ is selected to minimize this order error.

The paper is structured as follows. In Section 2, we present the precursors of the LOWESS method

(polynomial regression and kernel smoothing), the LOWESS model itself, and a method to efficiently fit

the output of a blackbox. Section 3 presents the method for computing the weight of each data point: we

introduce a statistical method to estimate the scaling distance dq(ξ), and a metric specifically designed to

quantify the efficiency of a multi-output model in surrogate optimization. Section 4 shows computational

results for four relatively small size engineering design problems, and in Section 5 we draw conclusions and

discuss possible directions of future work.

2 LOWESS models

As a convention, we denote ξ ∈ X ⊆ R
n the point of the design space where we want to predict the value of

a function y, which can be either the objective function f or a constraint function cj (with j = 1...m).

Locally Weighted Scatterplot Smoothing (LOWESS) models build a local polynomial regression at the

point ξ where the value of a function y is to be estimated [5, 13, 14, 15, 16]. This local regression is denoted

ŷξ(x) and emphasizes data points that are close to ξ. The value of the LOWESS model at ξ is then defined

as ŷ(ξ) = ŷξ(ξ). It is important to understand that the actual value of the local regression ŷξ is only

calculated at ξ.

2.1 Precursors: Quadratic regression and Kernel smoothing

Consider the quadratic regression

ŷ(ξ) = z(ξ)>α,

where α ∈ Rk is the vector of coefficients of the quadratic function, k = (n + 1)(n + 2)/2 is the number of

basis functions, and the vector z : Rn → R
k is defined as

z(x) =
[

1︸︷︷︸
constant
term

x1 . . . xn︸ ︷︷ ︸
linear
terms

x21 . . . x
2
n︸ ︷︷ ︸

quadratic
terms

x1x2 . . . xn−1xn︸ ︷︷ ︸
bilinear
terms

]>
. (1)

The functions {zj}j=1,...,k form a basis of the quadratic polynomials in R
n. The matrix Z is determined by

calculating z at each data point:

Z =
[
z(x1) . . . z(xp)

]>
∈ Rp×k.

The vector α is computed such as to minimize

‖Zα− y‖22 + ‖α‖2J,

where y = [y(x1) . . . y(xp)]
>, ‖α‖2J = α>Jα, J ∈ Rk×k is a diagonal matrix such that J1,1 = 0, Ji,i = r

for i = 2, 3, . . . , k, and r ≥ 0 is a regularization parameter. The Tikhonov regularization term ‖α‖2J ensures

uniqueness and existence of an optimal value for α [45]. In this study, we use a default value of r = 10−3.

The value J1,1 = 0 allows the regression to be scale-invariant, which means that for any two functions y and

y′ such that y′ = ay + b, with a ∈ R and b ∈ R, we have ŷ′ = aŷ + b. The optimal value for α is found by

solving the normal equations

(Z>Z + J)α = Z>y.

Kernel Smoothing models (KS) use a weighted sum of all the data points,

ŷ(ξ) =

∑p
i=1 w

KS
i (ξ)yi∑p

i=1 w
KS
i (ξ)

,
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where wKSi (ξ) quantifies the importance of the observation [xi, y(xi)] for a prediction in ξ. The general rule

is that wKSi (ξ) decreases when the distance between ξ and xi increases. KS models rely on a kernel function

φ : R→ R
+, which must be even and non-increasing, and on a user-defined parameter λKS :

wKSi (ξ) = φ(λKS‖ξ − xi‖2).

Several kernel functions are available in the NOMAD package and, to make them comparable and interchange-

able, they are normalized so that φ(0) = 1 and, if integrable,
∫
R
φ = 1. In this study, we use the Gaussian

kernel φ(d) = exp(−πd2). The advantage of KS models is that the computation is immediate. It does not

require the solution of a linear system. However, KS models have a tendency to “undershoot” (low values

will be predicted higher, high values will be predicted lower) since the prediction is always bounded by the

observations.However, despite their tendency to undershoot, KS models generally tend to respect the order

(i.e. which of two points is best) or sign of the output [8].

2.2 Construction of the local polynomial regression

The local regression around ξ is

ŷξ(x) = z>ξ (x)αξ. (2)

There is a certain similarity to polynomial regression, so we note two major differences. First, the coefficients

of the polynomial are different for each value of ξ. Indeed, the fundamental principle of LOWESS models

is to build a different polynomial regression at each prediction point ξ. The second difference is that the

basis functions are different for each ξ, which will be useful later to reduce computation time. Moreover, to

increase the robustness of the regression, we use a number q of basis functions that is strictly smaller than

the number of data points p. Specifically, depending on the value of p, zξ only uses the q < p first terms of

the vector z defined in Equation (1). Table 1 lists the values of q based on p, and indicates the resulting type

of local regression.

Table 1: Set of basis functions based on the number of data points.

Condition on p q Type of regression

p ≤ n+ 1 N.A. No model construction
n+ 1 < p ≤ 2n+ 1 n+ 1 Linear regression

2n+ 1 < p ≤ (n+1)(n+2)
2 2n+ 1 Quadratic regression without bilinear terms

(n+1)(n+2)
2 < p (n+1)(n+2)

2 Quadratic regression

This leads to the set of basis functions:

zξ(x) =

 z1(x− ξ)
...

zq(x− ξ)

 ∈ Rq,
where the functions {zi}i=1,...,q are defined in Equation (1). Note that zξ(ξ) = [1 0 . . . 0]>. We then define

the design matrix Zξ

Zξ =
[
zξ(x1) . . . zξ(xp)

]>
∈ Rp×q

and compute the coefficients of the local regression αξ ∈ Rq to minimize

‖Zξαξ − y‖2Wξ
+ ‖αξ‖2J , (3)

where Wξ is a diagonal matrix such that (Wξ)i,i ∝ wi(ξ) ≥ 0, with trace(Wξ) = 1. The constraint on the

trace of Wξ ensures that the ratio between the two terms of (3) remains the same for all ξ. The details of

the computation of wi(ξ) are described in Section 3. Using the normal equations, αξ can be obtained by

solving the symmetric system: (
Z>ξ WξZξ + J︸ ︷︷ ︸

Aξ

)
αξ = Z>ξ Wξy. (4)
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We observe that this system generalizes the two types of models described in Section 2.1. On the one

hand, if there is only one constant basis function (i.e., q = 1, zξ(x) = 1 and Zξ = [1 . . . 1]>), we recover KS

models. On the other hand, if the weights are chosen to be constant (i.e., wi(ξ) = 1/p, ∀i = 1, ..., p), we

recover polynomial regression models.

2.3 Computing predictions for several outputs

In the context of surrogate constrained optimization problems, it is necessary to predict the function values of

objective and constraints. That means that m+ 1 predictions must be made, which requires m+ 1 solutions

of the linear system (4), or the explicit computation of the inverse of Aξ. This section shows that the

predictions at ξ for all blackbox outputs can be performed by solving a single linear system.

Equation (2) yields

ŷ(ξ) = ŷξ(ξ) = zξ(ξ)>αξ

= e>1 αξ with e1 = [1 0 . . . 0]> ∈ Rq

= αξ,1,

which means that we only need to compute the first component of αξ to make a prediction at ξ. Then, we

define uξ ∈ Rq as the first column (or the transpose of the first row) of A−1ξ . This vector uξ can be calculated

by solving the linear system

Aξuξ = e1. (5)

Using Equation (4), we obtain

ŷ(ξ) = u>ξ Z
>
ξ Wξ y.

By replacing the vector y by the matrix Y ∈ Rp×(m+1) in which each row stores the values of the blackbox

outputs for one data point:

Y =

 f(x1) c1(x1) . . . cm(x1)
...

...
...

f(xp) c1(xp) . . . cm(xp)


we can make the predictions of all the blackbox outputs all at once:

ŷ(ξ) =
[
f̂(ξ) ĉ1(ξ) . . . ĉm(ξ)

]
= u>ξ Z

>
ξ WξY.

2.4 Solving the linear system directly or iteratively

Many different methods can be used to solve the linear system (5). The important question is whether it

is more efficient to solve this problem directly or iteratively. Taking into account that Aξ is symmetric and

positive-definite, we consider two methods: a direct method based on the Cholesky decomposition and an

iterative method based on conjugate gradients.

In the context of surrogate-assisted optimization, the model ŷ(ξ) is evaluated at a large number of points

ξ that get closer and closer to each other as the solution of the surrogate problem (P̂ ) unfolds. Let us denote

the last point where the model ŷ(ξ) was evaluated at with ξ0. If the distance between ξ0 and ξ is small

enough, then the value uξ0
is assumed to be a good starting point for solving the linear system (5) with an

iterative method.

Figure 1 depicts the computational effort required for solving a linear system with both methods. The

plot on the left compares computation time depending on ‖ξ−ξ0‖2 for n ∈ {2, 4, 8, 16}. The plot on the right

compares computation time depending on the initial residual ‖Aξuξ0
− e1‖2. The tolerance on the residual

for the iterative method is 10−9. From this figure, we conclude that the iterative method is more efficient if

‖Aξuξ0
− e1‖2 ≤ 10−4 or if n = 2. Consequently, in order to reduce the computational cost of the LOWESS

models, the iterative method is used if the initial residuals are smaller than 10−4 and the direct method is

used otherwise.
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Figure 1: Comparison of computation time for the solution of the linear system with direct and iterative methods.

3 Weights computation in LOWESS models

The weight wi(ξ) quantifies the relative importance of the data point xi in the construction of the local

regression at ξ:

wi(ξ) = φ

(
λ
‖ξ − xi‖2
dq(ξ)

)
,

where φ(d) = e−πd
2

is the Gaussian kernel function, λ > 0 is a parameter that controls the general shape

of the model, and dq(ξ) is a local scaling coefficient that estimates the distance of the qth closest data point

to ξ. References [13, 15] suggest the use of a kernel function with compact support (namely, the tri-cubic

function φ(d) = (1−d3)3), but we found that in our context this can lead to ill-posed systems for some values

of λ and dq(ξ), hence our choice of the Gaussian kernel. In addition to this choice of ours, we introduce two

novel ideas for the calculation of dq(ξ) and λ, described in the next two subsections.

3.1 Using the Gamma distribution to compute the scaling distance dq(ξ)

The empirical method of computing dq(ξ) as the distance between ξ and the qth closest data point to ξ leads

to dq(ξ) and ŷ not being differentiable everywhere (see Figure 2). We propose to compute dq(ξ) so that

it satisfies

E

[
card

{
xi : xi ∈ X, ‖ξ − xi‖2 ≤ dq(ξ)

}]
= q. (6)

In other words, the expected number of data points within this distance from ξ is q.

Such statistical criteria requires the modeling of ‖ξ − xi‖2 as a random variable. In the preliminary

stages of this study, we investigated which distribution would fit these data well. The first idea was to

use a noncentral chi (or chi-square) distribution but such distribution does not handle the case where the

coordinates of the data points {x1, ...,xp} are correlated and we are not aware of any closed-form distribution

that is strictly defined to handle this case.

However, we observed that the values
{
‖ξ − xi‖22

}
i=1,...,p

can be well fitted by a Gamma distribution,

whose parameters are denoted kξ (shape parameter) and θξ (scale parameter). To estimate these parameters,

we first compute the empirical mean and variance

µξ =
1

p

p∑
i=1

‖ξ − xi‖22 and σ2
ξ =

1

p− 1

p∑
i=1

(
‖ξ − xi‖22 − µξ

)2
.

Then, the parameters of the Gamma distribution are obtained from

kξ =
µ2
ξ

σ2
ξ

and θξ =
σ2
ξ

µξ
.
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If µξ > 0 and σξ > 0, then kξ and θξ are continuous and differentiable with respect to ξ. The highly

unlikely case where σξ = 0 occurs when all the data points are located at an equal distance from ξ. In this

case, we set wi(ξ) = 1/p for all i = 1, ..., p. This behavior does not introduce discontinuities in Wξ when

0 < q < p and also handles the even more unlikely case where µξ = 0 since µξ = 0 implies that σξ = 0.

Note that there are more accurate methods to estimate the parameters of the Gamma distribution [12, 40,

51]. However, these methods have drawbacks. They might require the use of a logarithm, which is problematic

when a distance is close to zero. They might be iterative and more computationally expensive. For these

reasons, we prefer the method proposed above, which is simple and leads to very smooth values of kξ, θξ
and, as a result, dq(ξ). We believe that these benefits outweigh the disadvantages of the estimation bias.

Once these two parameters are obtained, Equation (6) leads to

dq(ξ) =

√
g(−1)

(
kξ, θξ;

q

p

)
,

where g(−1)(k, θ; .) is the inverse function of the cumulative density function of a Gamma distribution with

parameters (k, θ).

Figure 2 compares two LOWESS models obtained using the empirical method and the Gamma distribution

for the calculation of dq(ξ). For both models, the global shape parameter λ is set to 1. The plot at the top

of the figure depicts the data points and the two LOWESS models. The two models are very similar. The

plot in the middle of the figure depicts the value of dq(ξ) as computed by the two methods. As expected, the

empirical method leads to “sawtooth” behavior. The Gamma distribution yields a smooth function but tend

to overestimate dq(ξ). The plot at the bottom of the figure depicts the derivative of the model (approximated

by means of finite differences). The Gamma distribution yields much smoother values.
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Figure 2: Comparison of LOWESS models obtained using empirical and Gamma distribution methods for the computation of dq(ξ).

Figure 3 compares the value of dq(ξ) in the context of surrogate-assisted optimization. We display the

values obtained during the 7 first iterations for the Lockwood optimization problem (see Section 4), which

has n = 6 variables. The plot on the left of the figure depicts the values of dq(ξ) with both methods for

each of the first 12,000 LOWESS model evaluations. It shows that there is an excellent correlation (99.9%)

between the two methods. The plot on the right of the figure shows the evolution of dq(ξ) as the optimization

unfolds, as well as the number of training points and basis functions.
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Figure 3: Comparison of the value of dq(ξ) obtained using empirical and Gamma distribution methods in the context of surrogate-
assisted optimization.

3.2 Computing λ using order error minimization

For multi-output models, it is impossible to compute different values of λ for each blackbox output. Therefore

we compute the scalar λ that minimizes an error metricM(λ), which reflects the overall predictive capability

of the multi-output model
[
f̂(ξ) ĉ1(ξ) . . . ĉm(ξ)

]
. Specifically, we propose a novel approach that utilizes the

order error metric introduced in [8], based on the fact that Problems (P ) and (P̂ ) have the same minimizer(s)

when the following two conditions are satisfied:

f(x) ≤ f(x′)⇔ f̂(x) ≤ f̂(x′), ∀x,x′ ∈ X (7)

cj(x) ≤ 0⇔ ĉj(x) ≤ 0, ∀x ∈ X ,∀j = 1, 2, ...,m. (8)

The metric proposed in [8] quantifies the violation of these conditions for each blackbox output. To adapt

this metric to multi-output models, we use the aggregate constraint violation function [22, 7]

h(x) =

m∑
j=1

max{0, cj(x)}2.

The reason why this function is defined as a sum of squares rather than a sum of violations is to preserve

the smoothness of the constraint functions without introducing additional non-smoothness. Furthermore, we

define the order operators

x ≺ x′ ⇔

 h(x) < h(x′)
or
h(x) = h(x′) and f(x) < f(x′)

x � x′ ⇔ not(x′ ≺ x)

which are transitive. In particular, a minimizer x∗ of Problem (P ), i.e. a feasible design with the best

objective, or the least infeasible design with the best objective, is such that x∗ � x, ∀x ∈ X . Note that this

operator differs from the dominance operator often used in multiobjective optimization.

By the same principle, we define the operator ≺̂ by using f̂(x) and ĥ(x) instead of f(x) and h(x), where

ĥ(x) =

m∑
j=1

max{0, ĉj(x)}2.

Conditions (7) and (8), which guarantee the equivalence between Problems (P ) and (P̂ ), can then be

completely reformulated as:

x ≺ x′ ⇔ x ≺̂ x′, ∀x,x′ ∈ X , (9)
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and we can define the aggregate order error (AOE) metric, which quantifies the violation of (9) on the

data points:

MAOE =
1

p2

p∑
i=1

p∑
j=1

xor
(
xi ≺ xj ,xi ≺̂ xj

)
,

where xor is the exclusive or operator (i.e., xor(A,B) = 1 if the booleans A and B differ and 0 otherwise).

This error metric is 0 if the model is able to correctly predict which of two points is best for any pair of data

points in X. However, to quantify the predictive capacity of the model outside of the data points X, we

introduce an error metric based on cross-validation [2, 8, 19, 49]. As above, and using the convention that

a Leave-One-Out (LOO) cross-validation value ˆ̂y(xi) is the value of a model built without using the data

point xi, we obtain the functions ˆ̂f and ˆ̂h, and the operator ̂̂≺ . We then define the aggregated order error

with cross-validation (AOECV) metric:

MAOECV =
1

p2

p∑
i=1

p∑
j=1

xor
(
xi ≺ xj ,xi ̂̂≺ xj

)
.

The shape parameter λ is chosen to minimize MAOECV (λ) + log(λ)/p3. In the case where several values

of λ lead to the same value ofMAOECV (because of the piecewise-constant nature of the metric), the second

term will favor smaller values of λ, and thus smoother models. The term 1/p3 ensures that the smoothness

term will always be an order of magnitude smaller than MAOECV .

4 Examples

We test the efficiency of LOWESS models in solving four engineering design optimization problems: the

tension compression string design (TCSD) problem defined in [4, 9, 24], the Vessel problem [24], the Lockwood

problem [28, 31, 37, 38, 27, 46] and the Solar 6 problem, which is the 6th instance of the Solar benchmark

collection [25]. Table 2 describes the main properties of these problems (all computations were performed on

Intel Xeon X5675 (3.07GHz) processors, with 96Gb of RAM). The four budgets of evaluations range from

100(n+ 1) to 1000(n+ 1), and were chosen according to corresponding blackbox execution time.

Table 2: Parameters of the test problems. f∗ denotes the best solution found among all runs of all solvers and tmax = evaluation
budget × mean execution time. Note that the present work could slightly improve the best known solution of the Vessel problem.
There was no previously best known objective function value for the Solar 6 problem.

Problem TCSD Vessel Lockwood Solar 6

n 3 4 6 5
m 4 3 4 6
f∗ 0.0126653 5885.3328 22 739.90 ($) 43.9554 (M$)
Best known objective 0.0126652 [24] 5885.4033 [24] 22 739.67 ($) [31] 43.9554 (M$)
Mean execution time 0.075 sec 0.02 sec 2.4 sec 265 sec
Evaluation budget 4000 5000 3000 600
tmax 300 sec 100 sec 2 hours 44.17 hours

The TCSD problem aims at minimizing the weight of a tension compression spring under four mechanics

constraints. The Vessel problem aims at minimizing the production cost of a pressured vessel under me-

chanical constraints. The Lockwood problem minimizes the cost of the extraction of liquid pollutant from

the ground in the Lockwood Solvent Ground Water Plume, in Montana. The Solar 6 problem considers the

minimization of the cost of the thermal storage in a solar farm under constraints that ensure the feasibility of

the design and the ability of the system to sustain a certain electrical power output during a nychthemeron.1

4.1 Optimization strategy and algorithm

We use the MADS algorithm [6, 7] available in the NOMAD package version 3.8 [1, 33] to solve Prob-

lem (P ) using a surrogate-assisted optimization strategy. MADS is based on a search-and-poll paradigm [10]:

1A nychthemeron is a time period of 24 consecutive hours.
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the (optional) search step provides the chance to the design engineer to solve the problem in any heuristic

or systematic manner. The poll consists of generating candidates in a neighborhood of the incumbent so-

lution by means of positive spanning theory, and ensures the convergence properties of the algorithm. Our

surrogate-assisted optimization strategy utilizes the search step to build a surrogate model of the blackbox

and solve the Problem (P̂ ) in order to generate a candidate that is then evaluated with the blackbox. We also

use the surrogate model to sort the poll candidates in a computationally cost-effective manner. We then use

the blackbox to evaluate the sorted candidates opportunistically, which means that the sequential evaluations

process is aborted once a candidate is found to lead to an improved solution. This surrogate-assisted (as

opposed to surrogate-based) approach improves the efficiency of MADS.

We compare seven optimization strategies. The three first strategies come from the Dakota solver, ver-

sion 6.6 [3]: the division of rectangles (Dakota DiRect) algorithm [23], a single objective genetic algorithm

(Dakota SOGA) [26] and an evolution algorithm based on colonies (Dakota EA) [29].

The Quadratic models strategy uses a local quadratic model and a trust region in the search and the

sorting of the poll candidates [18]. The other three strategies are based on the procedure described in [8]

but the surrogate modeling technique differs. In the Kernel Smoothing strategy, the surrogate model is the

kernel smoothing method described in Section 2.1, with a Gaussian kernel where the shape coefficient λKS

is optimized as described in Section 3.2. The LOWESS Linear and LOWESS Quadratic strategies are the

LOWESS models described in this work where the local regression is linear and quadratic, respectively. The

scaling distance dq(ξ) is computed using the Gamma distribution method, and the shape parameter λ is

selected using the order error metric described in Section 3.2.

Figure 4 compares the computational overhead for each of the seven strategies, depending on the dimension

of the problem.
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Figure 4: Computational overhead for each of the seven solvers depending on the dimension of the problem

As expected, the LOWESS model with quadratic local regression grows very quickly with the dimension

of the problem. As the seven solvers have different computational overhead, they will not be able to perform

the same number of blackbox evaluations in a given period of time. In this paper, we propose methods

that should be applied to expensive blackboxes. In that case, only the number of blackbox evaluations is of

interest. However, to be fair, we also display the evolution of the objective function value with respect to

elapsed time. In particular, the right column of Figure 5 represents the distribution of the objective function

value at time tmax, where

tmax = Evaluation budget× Blackbox mean execution time.

In other words, tmax is a time limit that does not take into account the computation overhead generated by

the solver.
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4.2 Results

For each of the four problems, we generate ρmax = 50 initial guesses by means of Latin Hypercube sam-

pling [39]. We then conduct an optimization for each of these initial guesses. To alleviate the fact that some

solvers are independent from the starting point, each run also uses a different random seed. Once every

optimization run ρ has been completed, we denote by fs,ρ,i the objective function value of the best design

found by strategy s after i blackbox evaluations (excluding evaluations of surrogates). We assign fs,ρ,i = +∞
if no feasible design is found. The best solution found among all runs of all solvers is denoted f∗. We then

define the relative discrepancy between f∗ and the best solution for optimization run ρ of strategy s after i

blackbox evaluations as

δs,ρ,i =
fs,ρ,i − f∗

f∗
≥ 0.

This definition is appropriate for all four considered problems because their objective function (weight or

cost) represent a positive quantity. For each set of runs, we present the value of the median discrepancy

after i blackbox evaluations. The use of the median is motivated by the wide ranges of magnitude that the

discrepancy values can take; moreover, discrepancy can take the value of zero or infinity, which makes the

use of the geometric or arithmetic means, respectively, impossible.

For a given tolerance τ ≥ 0, the ratio of problems solved for strategy s after i blackbox evaluations is

calculated as

rs,i(τ) =
1

ρmax
card{i : δs,ρ,i ≤ τ, i = 1, ..., ρmax}.

The data profile represents the ratio of solved problems after i evaluations [41]. For each set of optimization

runs, we present the data profiles for τ ∈ {10−1, 10−2, 10−3}. When inspecting the median discrepancy curve,

smaller values indicate a better performance. On the contrary, for the data profiles, the larger the better.

Figure 5 describes the distribution of the discrepancy over the 50 runs when the function evaluation budget

is exhausted (left column) and when the computation time budget is exhausted (right column). In this

figure, it becomes apparent that the LOWESS methods are mainly relevant for very expensive blackboxes.

Figures 6, 7, 8 and 9 depict median discrepancy curves and data profiles for the four problems.

Figure 10 presents aggregate performance profiles [41] for all 200 runs (50 for each of the 4 problems).

Plots in the left (resp. right) column represent the performance ratio when the computational effort is

measured in number of blackbox evaluations (resp. in wallclock cpu time). This figure demonstrates that

the LOWESS model performs very well if only the number of blackbox evaluations is considered (as can be

the case for very expensive blackboxes). However, when the cpu time is considered, the LOWESS methods

perform well only if a large cpu time is allowed or if a small tolerance is required.

In general, the strategies provided by Dakota perform poorly, except for the Lockwood problem where

the DiRect strategy always provide a feasible solution within τ < 0.1.

Among the MADS-based strategies, when only the number of blackbox evaluations is considered (and not

the actual computation time), the LOWESS models outperform the quadratic and kernel smoothing models

in nearly all cases.

When considering the performance depending on the computation time, the LOWESS methods require

more time than Kernel Smoothing which itself requires more time than the quadratic model. This is par-

ticularly obvious in the TCSD problem, for which the blackbox evaluation time is short. In the Lockwood

problem, the LOWESS methods lead to a significant improvement of convergence rate, which makes these

methods efficient even though blackbox evaluation time is moderate. In the Solar 6 problem, the longer

blackbox evaluation time makes LOWESS computation time insignificant. All solvers have a comparable

performance, with the exception of the LOWESS models which have a better ratio of solved problem for

small values of τ .
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Figure 5: Median discrepancy at exhausted evaluation budget (left column) or exhausted time budget (right column); smaller
values indicate better performance. The circles represent the minimum and maximum values, the box represents the 10th and
90th percentiles and the thick vertical line represents the median value. “Not represented” indicates that even the best objective
function value over 50 runs for this strategy is worst that the rightmost value of the x-axis.
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Figure 6: TCSD problem results; for the plots at the top row, smaller discrepancy indicates better performance; for the remainder
of the plots, larger percentage indicates better performance.
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Figure 7: Vessel problem results; for the plots at the top row, smaller discrepancy indicates better performance; for the remainder
of the plots, larger percentage indicates better performance.
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Figure 8: Lockwood problem results; for the plots at the top row, smaller discrepancy indicates better performance; for the
remainder of the plots, larger percentage indicates better performance.
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Figure 9: Solar 6 problem results; for the plots at the top row, smaller discrepancy indicates better performance; for the remainder
of the plots, larger percentage indicates better performance.
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Figure 10: Agreggate performance profiles for all 200 runs (50 for each of the 4 problems). Plots on the left column consider
the performance in terms of number of blackbox evaluations. Plots on the right column consider the performance in terms of
wallclock cpu time. Larger percentage indicates better performance.
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Finally, for all four problems and for each of the performance metrics, the best final score (at exhausted

evaluation budget) is always achieved by one of the LOWESS methods. The LOWESS methods improve the

ratio of solved problems by up to 22%, compared to Dakota solvers or quadratic models.

The LOWESS model with linear local regression is more efficient than with quadratic regression. It is

also the best solver in most of the cases. Thus, it seems particularly useful for expensive blackboxes. This

performance can be explained by the fact that it relies on a smaller number of basis functions. LOWESS

with quadratic local regression performs better on the Lockwood problem and slightly better on the Solar 6

problem. An interesting strategy could be to alternate the use of these two models.

Considering the overhead induced by these methods, using LOWESS is less advantageous for inexpensive

blackboxes or large problems.

5 Concluding summary

LOWESS models are computationally expensive to build. We have proposed ways to reduce the computation

time necessary to build LOWESS models by choosing appropriate techniques for solving linear systems. Using

the Gamma distribution to compute the local scaling distance dq(ξ) allows to build smoother models with

an equivalent predictive capacity. The use of an order error to optimize the global shape coefficient λ leads

to models that are highly suitable to surrogate optimization. For inexpensive blackboxes, the use of linear

LOWESS models is recommended whereas for expensive blackboxes, the performance of quadratic LOWESS

models overcomes the long computation time required to build them. This optimization framework is available

in the NOMAD package version 3.8 [1, 33].

LOWESS models, as presented in this paper, could easily be used for other algorithms besides MADS,

for example in a surrogate optimization framework, or for data analysis. However, we believe that opti-

mization should be assisted by surrogates, not based on them. The unique feature of MADS that allows

user-defined experimentation in the search step makes such a surrogate-assisted (as opposed to surrogate-

based) approach possible.

Future work could consider using the order error to optimize the shape parameter and/or the regularization

coefficient of other types of multi-output surrogate models (e.g., radial basis function (RBF) and Kriging

models). Moreover, the multi-output order error proposed in this work can be generalized to statistical

surrogate techniques like Kriging or to multiobjective optimization. Finally, as the use of the Gamma

distribution allows for the construction of differentiable models, it would be interesting to use the derivatives
of the LOWESS models to solve the surrogate problem using efficient gradient-based algorithms.
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