
Les Cahiers du GERAD ISSN: 0711–2440

Pattern-based stochastic simulation
using Restricted Boltzmann Machine

Y. Mu, F. Ferrie,
R. Dimitrakopoulos

G–2016–107

November 2016

Cette version est mise à votre disposition conformément à la politique de
libre accès aux publications des organismes subventionnaires canadiens
et québécois.

Avant de citer ce rapport, veuillez visiter notre site Web (https://www.
gerad.ca/fr/papers/G-2016-107) afin de mettre à jour vos données
de référence, s’il a été publié dans une revue scientifique.

This version is available to you under the open access policy of Canadian
and Quebec funding agencies.

Before citing this report, please visit our website (https://www.gerad.
ca/en/papers/G-2016-107) to update your reference data, if it has
been published in a scientific journal.

Les textes publiés dans la série des rapports de recherche Les Cahiers du
GERAD n’engagent que la responsabilité de leurs auteurs.

La publication de ces rapports de recherche est rendue possible grâce au
soutien de HEC Montréal, Polytechnique Montréal, Université McGill,
Université du Québec à Montréal, ainsi que du Fonds de recherche du
Québec – Nature et technologies.

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2016
– Bibliothèque et Archives Canada, 2016

The authors are exclusively responsible for the content of their research
papers published in the series Les Cahiers du GERAD.

The publication of these research reports is made possible thanks to the
support of HEC Montréal, Polytechnique Montréal, McGill University,
Université du Québec à Montréal, as well as the Fonds de recherche du
Québec – Nature et technologies.

Legal deposit – Bibliothèque et Archives nationales du Québec, 2016
– Library and Archives Canada, 2016

GERAD HEC Montréal
3000, chemin de la Côte-Sainte-Catherine

Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca

https://www.gerad.ca/fr/papers/G-2016-107
https://www.gerad.ca/fr/papers/G-2016-107
https://www.gerad.ca/en/papers/G-2016-107
https://www.gerad.ca/en/papers/G-2016-107

Pattern-based stochastic
simulation using
Restricted Boltzmann
Machine

Yanyan Mu a

Frank Ferrie a

Roussos Dimitrakopoulos a

a GERAD & COSMO Stochastic Mine Plan-
ning Laboratory, Department of Mining and
Materials Engineering, McGill University, FDA
Building, 3450 University Street, Montreal,
Quebec, H3A 2A7, Canada

yanyanmu@cim.mcgill.ca

ferrie@cim.mcgill.ca

roussos.dimitrakopoulos@mcgill.ca

November 2016

Les Cahiers du GERAD

G–2016–107

Copyright c© 2016 GERAD

ii G–2016–107 Les Cahiers du GERAD

Abstract: For pattern-based simulation methods such as SIMPAT, filtersim, wavesim, ect, patterns are
stored by scanning a training image with a sliding template. Dimensional reduction and pattern clustering
are then preformed to generate a set of cluster prototypes. During simulation, the conditional data is matched
to the best cluster by subsequent similarity measurements and a pattern is randomly sampled from that class.
In this paper, a multiple-point, pattern-based, stochastic simulation algorithm using Restricted Boltzmann
Machine (RBMSim) is proposed. In the learning phase of RBMSim, the clusters are learned by a contractive
divergence learning algorithm which aggregates the two steps of dimensional reduction and pattern clustering.
In simulation phase of RBMSim, the two steps of classification and sampling are also aggregated with an
efficient Gibbs sampling algorithm. The contributions of this paper are: the learning and simulation are
embedded within a mathematically well-defined probabilistic model which represents the entire configuration
space; and the learning and simulation phases share the same Markov chain, Monte Carlo based sampling
algorithm which explores the entire configuration space efficiently.

Keywords: Pattern based simulation, generative model, Restricted Boltzmann Machine, Gibbs sampling

Training images are widely used in spatial stochastic simulation methods based on multiple points (Wu et al., 2008)

or high-order statistics (Mustapha and Dimitrakopoulous, 2010) as they act as an explicit prior of the

geological structures.

Pattern-based simulation algorithms extract multiple-point statistics from the training pattern database to build a

probabilistic model to mathematically represent the geological structure over the multiple-points as a joint distribution

over the configuration space. Given hard data, realizations can be generated from the model by sampling these joint

distributions. For example, given a pattern database 𝑣{𝑖𝑚𝑔} which contains patches taken from training images, the

multiple-point statistics can be defined as the joint distribution 𝑝(𝑣{𝑖𝑚𝑔}; ∅) which is learned from 𝑣{𝑖𝑚𝑔}, where ∅

are the parameters of the probabilistic model. Given hard data 𝑣{ℎ𝑎𝑟𝑑}, the missing pixels in the current simulating

pattern can be drawn by sampling from the conditional distribution 𝑝(𝑣{𝑚𝑖𝑠𝑠in 𝑔}|𝑣{ℎ𝑎𝑟𝑑}; ∅). In the extreme case,

where no hard data exists in the pattern, simulation could be generated by drawing samples from the joint distribution

𝑝(𝑣{𝑖𝑚𝑔}; ∅) unconditionally.

The early development of pattern-based simulation is based on searching. These methods create a search tree that

predicts the missing value based on input hard data. In these methods, the conditional pdf 𝑝(𝑣{𝑚𝑖𝑠𝑠in 𝑔}|𝑣{ℎ𝑎𝑟𝑑}) is

modeled directly. The Snesim algorithm (Strebelle, 2002; Strebelle and Cavelius, 2014) builds a search tree to store

all the patterns from the training pattern database. The algorithm is improved by implementing a compact search tree

(Zhang et al., 2012) or a list (Straubhaar et al., 2011) to increase the search efficiency and memory utilization. When

the exact reproduction doesn’t exist in the pattern database, some points in the hard data are discarded.

Another early development in the field of multiple point simulation is based on similarity measure, such as SIMPAT

(Arpat and Caers, 2005). This algorithm uses a pre-defined proximity transform distance function to find the best

pattern within the training database given the conditioning data event. Unlike SNESIM, exact replicates are not

required and conditioning data is never ignored, but the search will span the entire configuration space. An improved

version of this distance-based method is presented in Arpat and Caers, 2007 which increases the search efficiency by

limiting the search space. The pattern configuration space is reduced to a lower dimension then partitioned into

several clusters.

The state-of-the-art pattern-based simulation methods are feature-based, such as FilterSim (Wu et al., 2008) and

WaveSim (Chatterjee et al., 2012). The two algorithms are very similar but use different sub-algorithms at each step.

They both map the pattern configuration space to a lower dimensional feature space by filtering the patterns with pre-

defined features or wavelets and then partition this subspace into several clusters. The conditioning data event is then

classified to the best matched cluster by some similarity measure (distance functions) between the conditioning data

event and the cluster prototypes. Finally, a pattern is randomly sampled from that class.

These feature-based methods have the following disadvantages: the pre-defined feature (filters or wavelets)

extractors may not yield the maximum entropy coding solution of the training data and the joint distribution over the

configuration space of the multiple points is a centroid based “multi-modal” distribution. As a result, the sampling

during the simulation is bounded within the single best match class rather than the entire configuration space which

reduces the stochasticity of the simulation. Future more, the algorithm suffers from a lack of mathematical formulation.

As long as the pattern database is given and a random path is defined, WaveSim runs the following steps sequentially:

1) dimensional reduction by wavelet decomposition; 2) clustering the Wavelet coefficients by K-means; 3)

classification of hard data by minimum distance; 4) drawing of a realization by sampling the conditional distribution

in the selected cluster. The first two steps are implemented once whereas the last two steps are repeated for each

position along the random path. Each step in the algorithm implements different sub-algorithms independent from each

other. The first step is working in the pattern configuration space and the second step is working in the wavelet

coefficient space. Pattern-based stochastic simulation using Restricted Boltzmann Machine (RBMSim) proposed in

this paper simultaneously incorporates these steps in one model, which work in the same configuration space and share

the same sampling algorithm. This allows for consistency between learning and simulating and a computationally

efficient framework.

Restricted Boltzmann Machine (RBM), is a mathematically well-defined probabilistic graphical model applied to

model the joint distribution 𝑝(𝑣{𝑖𝑚𝑔}, ∅) over the configuration space by learning directly from training pattern

database. The parameter ∅ in RBM contains a weight matrix and two bias vectors. Previous graphical models (Colin,

2004) use Markov Random Fields (MRF) and Gibbs sampling, however, their MRF don’t include hidden layers which

limit the performance of the simulation.

Similar to the WaveSim algorithm, the RBMSim contains two phases: the learning phase and the generating phase.

The learning phase is applied once for each simulation task; the generating phase is repeated for each position along

the random path. In the learning phase, the features are learned from the training pattern database; this ensures that

these learned features are the most-likely descriptors for reconstructing the training patterns. Also, the peaks of

𝑝(𝑣{𝑖𝑚𝑔}, ∅) correspond to the center of clusters, so explicit pattern clustering is not necessary. The learning result

𝑝(𝑣{𝑖𝑚𝑔}, ∅) is a continuous distribution in the pattern configuration space rather than an isolated centroid based

“multi-modal” distribution (e.g. the prototypes in WaveSim). In the generating phase, the realizations can be generated

efficiently with or without the conditioning data. The Gibbs sampling will ‘push’ the input conditioning data along the

learned probability 𝑝(𝑣{𝑖𝑚𝑔}, ∅) to the more probable configuration. Finally, the sampling process has the possibility

to explore the entire configuration space rather than sampling within a single cluster ensuring better stochasticity.

RBMSim integrates multiple steps of stochastic simulation jointly to one unified algorithm. The steps of this algorithm

are as follows: 1) learn the features from the geological structures; 2) model the patterns by the learned features; 3)

reduce the dimensionality of the patterns using a non-linear mapping from Cartesian space to hidden space; 4) apply

pattern classifications to the modeled patterns. RBMSim borrows concepts from both HOSIM (Mustapha and

Dimitrakopoulous, 2010) and WAVESIM in that it learns a continuous distribution in the pattern configuration space

and also simulates multiple points simultaneously.

This paper is organized as follows. Section 2 briefly reviews RBM learning algorithms. Section 3.1 describes RBM

as a density model with the mathematical formulation of the RBM learning algorithm in Section 3.2. Section 3.3

defines the link between the learning and simulating algorithms. The learned features, conditional and unconditional

simulations are shown in Section 4. The sensitivity of the pattern size is presented in Section 5. Section 6 compares

the mathematical formulation of RBM with the conventional algorithm of multiple point simulation followed by

conclusions and future work.

Restricted Boltzmann Machines (RBM) are undirected graphical models. Like all undirected models, the log-

likelihood gradient of a RBM contains two terms: expectation with respect to the data distribution (positive phase) and

expectation with respect to the model distribution (negative phase). The second term is intractable; the following

algorithms apply different approximations.

RBM learning algorithms are based on variations of alternating Gibbs sampling. The most popular one is the

Contrastive Divergence (CD) algorithm (Hinton, 2002). To do the learning, a Gibbs chain is initialized from a sample

of the training data and alternating the Gibbs chain over several iterations, the last sample from the last iteration of the

chain is used to approximate the intractable model expectation. The Persistent Contrastive Divergence (PCD)

algorithm (Tijmen, 2008) also uses Gibbs sampling to approximate the model expectation. However, PCD doesn't reset

to a training data after updating the weights, the state of the chain 'persists' from the previous iteration. By simply

running a few iterations of the chain, these changes would be sufficient to track the samples from the 'updated' model

distribution. The Fast Persistent Contrastive Divergence (FPCD) algorithm (Tieleman and Hinton, 2009) aims to

achieve faster mixing of the Gibbs chain. It maintains a separate set of parameters that work with a higher learning rate

for sampling only. This learning simply pushes the chain out of the local mode. Another popular method to train RBM

is the Parallel Tempering (PT) algorithm (Desjardins et al., 2010) which uses an advanced technique; Replica Monte

Carlo. It runs several chains in parallel under different temperatures rather than a single Gibbs chain. As the temperature

increases, the Gibbs distribution becomes smoother and the mixing of corresponding chain becomes simple and direct.

In general, PT (Desjardins et al., 2010; Brakel et al., 2012) yields a better approximation with less bias but requires

a heavier computational cost than CD (Hinton, 2002).

Notation and terminology

𝑣𝑖 The activation of visible units.

ℎ𝑗 The activation of the hidden units.

𝑏𝑖, 𝑏𝑗 The bias terms associated with the visible and hidden units respectively.

𝑤𝑖𝑗 The weights of connections between the visible and hidden units.

𝐸(𝑣, ℎ) The joint energy of the network for the configuration of visible and hidden units.

𝑝(𝑣, ℎ) The joint distribution of the network for the configuration of visible and hidden units.

𝑝(𝑣), 𝑝(ℎ) The marginalized distribution of visible/hidden units respectively.

𝜀 Learning rate of gradient descent.

Figure 1. Restricted Boltzmann Machine.

As shown in Figure 1, a Restricted Boltzmann Machine (RBM) is a generative model with a bipartite structure.

RBM is analogous to a Markov Random Field (MRF), it has two layers, a visible layer and a hidden layer. The units

between the two layers are fully connected, but different from MRF that RBM has no lateral connections within each

layer. RBM is also analogous to regular feed-forward neural network with one layer of binary stochastic hidden units

and tied weights. The parameters of an RBM consist of weight matrix 𝑤𝑖𝑗 associated with the connection between

hidden unit ℎ𝑗 and visible unit 𝑣𝑖, as well as two bias weight vectors, 𝑏𝑖 for the visible units and 𝑏𝑗 for the hidden units

respectively.

 
j

jj

i

ii

ji

jiij hbvbhvwhvE
,

),(
(1)

Z

e
hvp

hvE),(

),(


 (2)

 
hv

hvEeZ
,

),(
(3)

An RBM is also an energy-based model. The energy over the configuration over all visible and hidden units is

defined by (1); the probability distribution which is associated with the energy is defined by (2); and the normalizing

factor is the sum over all configurations and called the partition function (3).

)1(
1

...
1

...
1

1
),()(

1 2

21

1 2

,

),(



  

 

















j

vw

h h h

vwvwvw

h h h j

vw

h

hvw

h

hvE

h

i

iij

n

i

iin

i

ii

i

ii

n

i

iij

ji

jiij

e
Z

eee
Z

e
Z

e
ZZ

e
hvpvp

(4)

Similarly,)1(
1

),()(



i

hw

v

j

jij

e
Z

hvphp (5)

The marginalized distribution of visible units (input layer) is factored by (4) and (5), to simplify the equation,

temporally ignoring the two bias vectors 𝑏𝑖 and 𝑏𝑗. Given the absence of lateral connections, an RBM is a “product of

expert” model (Hinton, 2002), the joint distribution of all visible units is combined with each individual visible

unit multiplicatively.






























j

j

j

h

hvw

hvw

j h

hvw

j

hvw

h

hvw

hvw

h

vhp

e

e

e

e

e
Z

e
Z

hvp

hvp
vhp

j

i

jiij

i

jiij

j

i

jiij

i

jiij

ji

jiij

ji

jiij

)|(

1

1

),(

),(
)|(

,

,

 (6)

 (7)

The conditional distribution of hidden units (hidden layers) given the visible units (input layer) is factored by (6)

and (7). Due to the absence of lateral connections, hidden units are independent given the state of the visible units and

vice versa.

)()|(
j

ijjii whbSigmoidhvp
(8)

)()|(
i

ijijj wvbSigmoidvhp
(9)

Activation probability for each individual unit is as shown in function (8) & (9). This activation probability

(conditional probability of a single unit) is also analogous to a regular feed-forward neural network (Caers and

Ma, 2002).

Learning an RBM is an unsupervised learning task which models the data distribution by tuning the related parameters.

The typical approach is to find the parameters by “maximum likelihood estimation”. The log-likelihood gradient of an

RBM with respect to the weights is given by (10):

),()|(

,

),(

,
),(

,

),(

),(

),(

,

),(

),()|(

)),((1)),((1

)(log)(log
)(log

hvpjivhpji

hv

ji

h

ji

ij

hvE

hv
hvE

hv

ij

hvE

h
hvE

h

hvE

hvij

hvE

hijij

hvhvhvhvphvvhp

w

hvE
e

ew

hvE
e

e

e
w

e
ww

vp















































(10)

Angle brackets: < ⋅ >𝑝(ℎ|𝑣) mean expectation with respect to the data distribution and < ⋅ >𝑝(ℎ|𝑣) means

expectation with respect to model distribution.

The log-likelihood gradient of an RBM with respect to the bias terms (11) and (12):

),()|(

)(log
hvpivhpi

i

vv
b

vp




 (11)

),()|(

)(log
hvpjvhpj hh

bj

vp





 (12)

The first term in (10) is the expected value under the joint distribution (model distribution); the second term in (10)

is the expected values under the conditional distribution of hidden units given the training sample feed-into the visible

units (data distribution). Both expected values are intractable because they are exponential in the number of units.

However, the expected values can be approximated by sampling over the corresponding distributions with Markov

Chain Monte Carlo (13).

)(
)(log

modeljidataji

ij

ij hvhv
w

vP
w 




 

(13)

Alternating Block Gibbs Sampling: As shown in function (8) and (9), the units in the visible and hidden layer are

both conditionally independent. In this way, all units in one layer can be sampled simultaneously. Thus, the sampling

of an RBM involves two alternating steps: sampling the hidden units based on visible units (8) and sampling the visible

units based on the hidden units (9). The outline of the learning phase of the algorithm can be summarized below.

The Maximum Likelihood (ML) learning of RBM:

1. Get one training sample from the training dataset.

2. Feed this training sample into the visible units; update all of the hidden units in parallel.

3. Compute (𝑣𝑖ℎ𝑗)
𝑑𝑎𝑡𝑎

 by taking the outer product of v and h.

4. Update all of the visible units in parallel to get a “reconstruction”.

5. Update all of the hidden units again.

6. Repeat 4 and 5 many times (run the chain for several steps).

7. Compute (𝑣𝑖ℎ𝑗)
mod 𝑒𝑙

 by taking the outer product of v and h.

8. Go back to step 1 using a different training sample.

9. Compute average < 𝑣𝑖ℎ𝑗 >𝑑𝑎𝑡𝑎 and < 𝑣𝑖ℎ𝑗 >mod 𝑒𝑙 over all training samples, then update parameters.

Contractive divergence learning of RBM:

By alternating Block Gibbs sampling, the Markov chain could be run “infinite” steps until it reaches its stationary

distribution and compute (𝑣𝑖ℎ𝑗)
mod 𝑒𝑙

. Instead of running many steps, Contrastive Divergence (CD) learning takes only

one step (CD-1) to speed up.

It’s the same as ML if you removed step 6 and only executed (4) and (5) one time.

Given the training image and hard data, learning is required only once. After learning, multiple simulations can be

generated by sampling the learned distribution.

Figure 2. Learn a general appearance model: Learn the model distribution of RBM as the prior distribution of p(v) given the patterns
extracted from training image.

As shown as Figure 2, this phase involves two steps:

1. Training samples extraction: Scan the training images using pre-defined patch size and store the patches in a

database as training samples.

2. RBM Learning: Learn the model parameters 𝑏𝑖 𝑏𝑗 and 𝑤𝑖𝑗 by contractive divergence learning.

Prior to generating simulations, a patch-wise random path is defined that covers the conditioning data image.

Figure 3. Generating simulation given conditioning data.

As shown in Figure 3, the generating phase involves three repeated steps for each position in the random path:

1. Feed the current conditional data patch (hard data) into the visible units of the trained RBM. The remaining

visible units with unknown pixels and all hidden units are randomly initialized.

2. By running several steps of Gibbs sampling, the chain reaches a certain local energy minimum. The values of

the visible units are the realization for the current local patch. The visible units where the hard data or simulated

values (overlap-patches) are clamped are never updated (frozen).

3. Move to the next location alone the random path, repeat steps 1 and 2. The pattern of the current location could

be slightly (less than 25%) overlapped with the pattern of the previous location.

For unconditional simulation, all visible units are associated with unknown pixels. All the visible and all hidden

units are randomly initialized. Using Gibbs sampling, RBMSim is able to generate realizations over the entire

configuration space.

The Standford V Reservoir Data Set is used as the training set for unconditional simulation. It contains 30 vertical

slices each 100x100 pixels with intensity varying between 0 and 1. One slice of the three-dimensional reservoir data

is randomly selected and used for training. The training patch size is 16x16 yielding a total of 7225 training patches.

The dominant parameter of RBM is the weight matrix 𝑤𝑖𝑗 . It contains the weights on connections between 256

visible units and 500 hidden units. Taking the connections from a single hidden unit (one export) to 256 visible units

and reshaping it to represent as 2D feature for visualization. These 500 features are the basis of the simulation operation.

Figure 4. RBM with 500 hidden units and 256 visible units.

Training image is shown in Figure 5a. The channels in the training image are unique but share similar structures.

(b)

(a) (c)

Figure 5. (a) Training image. (b) The weight 𝒘𝒊𝒋 matrix rendered as 2D features. (c) Two independent unconditional simulations,

100x100 pixels each.

The weights of RBM after training are as shown in Figure 5b in the form of 2D bases. From the figure, it’s clear

that there are three types of bases: ridgelet, circular, and grating bases. These learned features are similar to those

learned from natural images, and they appear to be consistent with other feature learning algorithms (Olshausen et al.,

2009). Specifically, the ridgelets are orientated differently, the circular bases are at different locations; and the gratings

are of different frequencies.

Two independent, unconditional simulations are shown in Figure 5c. The simulated channels both share similarities

with the structures in the training image but are significantly different from one another. The simulated channels are

primarily orientated in the horizontal and diagonal direction and the size and shape are analogous to the training image.

The intensity histograms among the training and simulated images are compared in Figure 6, which also reassures

that the simulations are consistent with the training data.

The same Standford V Reservoir data set is used as the training set for conditional simulation using an RBM with

identical structure to the previous unconditional simulation.

As shown in Figure 8a, another slice of the three-dimensional reservoir data is used for training. The training results

are shown in Figure 7 in the form of 2D basis. From the figure, it can be seen that the learned bases are comparable to

the learned bases in the unconditional simulation case in that the same three types of bases have emerged.

Figure 6. Histogram of three training and two simulation images.

Figure 7. The weight matrix rendered as 2D features.

The conditioning data is taken from the training image shown in Figure 8b, the RBMSim results at different sub-

sampling inputs are shown in Figure 8c. For comparison, the WaveSim results using the same simulation conditions

are shown in Figure 8d. 3 different conditioning scenarios were explored, where 10% 5% and 2% of the training image

data was retained as hard data”. While the input hard data is sub-sampled at densities of 10% and 5%, as shown the

first two rows in Figure 8 c&d, both algorithms tend to yield reasonable simulation results. However, even in those

cases, RBMSim yields a better localization with lower noise.

The most notable discrepancy is sumlation quality between the two simulation methods becomes apparent at the

data density of 2%. RBMSim is still able to capture much of the structure visible in Row 3, although there is some

degradation in the fine structure. In contrast, most of the structure information is lost in the WaveSim results.

RBM is sensitive to two architecture parameters, the number of visible and hidden units. The number of visible units

corresponds to the pattern size. Generally speaking, a larger pattern size tends to better maintain the main geological

structure in the simulations; however, the detailed local textures are smoothed out. A smaller pattern size will better

reproduce the texture, but at the expense of poor continuity. The number of hidden units largely depends on the number

of visible units. The more hidden units, the finer distribution the model can represent. However, the possibility of over

fitting is increases, especially when simulating complex geological structures when training data is limited. The ideal

configuration of visible and hidden units is far from solved; future research will aim to address this problem.

(a) (b)

(c) (d)

Figure 8 .(a) Training image for conditional simulation. (b) Testing image from which the hard data is sampled. (c)&(d) simulation
results: From top to bottom, each row contains two independent conditional simulation on hard data sub-sampled at densities of 10%,
5% and 2% respectively. RBMSim on (c) and WaveSim on (d).

A comparison of RBMSim with different number of visible units is shown as in Figure 9. Three RBMs with 64/200,

256/500 and 1024/2000 visible/hidden units respectively are trained by the same training image and simulations are

generated with the same hard data. The training image is the same as conditional simulation in 4.2 which is shown in

Figure 7a. The test image is shown in Figure 9a. The hard data is sub-sampled at densities of 20%. The simulation

result of RBMSim with 64/200, 256/500 and 1024/2000 visible/hidden units are shown in Figure 9b,c,d. The simulation

results using the 8x8 pattern size and 200 hidden units (64/200) are quite poor; the overall structural continuity is lost,

and many pattern boundary artifacts are observed. When the pattern size is 16 x 16 with 500 hidden units, the simulation

is well balanced between the local texture and overall structure. The cumulant maps between 9a and 9c are very similar.

Using a pattern size of 32x32 and 2000 hidden units reproduces the main structure well, but the detailed texture

information is smoothed out. The cumulant map shows that the simulation has stronger local correlation than the testing

image due to this smoothing effect.

(a) (b)

(c) (d)

Figure 9. Simulations and their x-y (L shape) cumulant maps. (a) Original testing image and its cumulant map. (b) Simulation by RBM
has 64 visible and 200 hidden units (8x8 pattern size) and its cumulant map. (c) Simulation by RBM has 256 visible and 500 hidden
units (16x16 pattern size) and its cumulant map. (d) Simulation by RBM has 1024 visible and 2000 hidden units (32x32 pattern size)
and its cumulant map.

We will discuss the algorithms step by step and compare the difference between RBMSim and other pattern-

based simulation.

The algorithm for pattern-based (multiple points) simulation is usually executed in the following way:

1) Pattern Extraction

2) Dimensional Reduction of Patterns

3) Pattern Clustering

4) Define a random path

5) Classification for the current patch

6) Random sampling in the class

7)

The first three steps aim to learn the joint distribution and the last three generate the sequential simulation. Each of

these steps is detailed below:

Pattern extraction: Scan the training image with a patch (of fixed size) over all spatial locations and store them in a

pattern database.

Dimensional reduction: In the configuration space of the training patterns, which is a large multidimensional space,

locate the sub-space where the samples of training patches are densely located.

Define a random path: Define a path that visits the entire simulation grid.

Pattern clustering: Partition that subspace from the dimensional reduction into several clusters. The cluster centre is

the prototype of each class.

Classification for the current patch: For each patch containing hard data in the random path, allocate to a cluster

using some similarity measure measurement with the class prototypes;

Random sampling in the class: Sample that cluster for a pattern and freeze the realization to the grid. This introduces

the stochasticity in many simulation algorithms.

Each of these steps in different simulation algorithm, (e.g. SimPat/FilterSim/WaveSim) use different sub-

algorithms to achieve the desired goal. RBM organises the process in a coherent way and shares the same simple

sampling algorithm. For comparison, the RBMSim framework will now be detailed in the context of the traditional

pattern-based approach.

The first three steps of the conventional work flow are combined into to the learning phase of the RBSim framework.

The first step consists of simply gathering the training data, which is not formally part of the learning algorithm; the

main algorithm involves the two remaining steps: dimensional reduction and pattern clustering. RBM aggregates the

two steps together and returns a feature-based representation.

Generally speaking, the most popular linear dimensionality reduction technique is principle component

analysis (PCA). While using linear units rather than sigmoid units, RBM would behave quite similar to PCA. After

learning, the bases weight vectors in the weight matrix will span the same subspace as the first k component as in PCA.

Here the stochastic binary (sigmoid) units are used so RBM can be conceived as a non-linear variant of PCA. RBM

has been used for dimensionality reduction of multiple datasets (Hinton and Salakhutdinov, 2006). The bases are the

key for Dimensional Reduction; WaveSim is very sensitive to the selected wavelet basis. The advantage of learning

the features is that it guarantees that the learned features are the best bases for representing the training patterns.

Clustering is an approach for partitioning a large space to a number of sub-regions. The K-means clustering algorithm

partitions the space with linear decision boundaries (lines, planes or hyper-planes etc.). RBM models the input

configuration space with an energy surface, after learning, there would be finite number of local energy minima. Those

local energy minima act as the “prototype” of each cluster. In contrast to K-means, which partition the space explicitly,

RBM partition the space implicitly. On the energy surface of RBM, the local minima are bounded by the surrounding

ridges. These ridges are the non-linear decision boundaries between local minima.

There are several advantages to this “soft” partitioning. First, the tedious section of the hyper parameter, k, is

avoided altogether. Secondly, it increases the stochasticity of the simulation in that it’s possible to generate samples at

different, but nearby, local energy minim on the energy surface. This flexibility will increase the variation of the

simulation, especially when there is strong ambiguity.

The final three steps of the conventional framework are simultaneously combined in the generation phase of RBSim.

Similar to the learning phase, where RBMSim does not have an explicit partitioning (clustering), and the generation

phase of RBMSim does not have an explicit classification process (similarity measure). RBMSim aggregates the two

steps in simulation (classification and sampling) with single sampling algorithm. The patterns are reproduced directly

by sampling from the model distribution. RBM can sample over the entire configuration space. While the subspace of

the conditional data has several local minima, RBMSim is capable of generating samples from each of them rather

than just generating samples from one class.

The Gibbs chain is able to jump from one local energy minimum to a nearby local energy minimum, which allows

for the exploration of multiple clusters within the configuration space without re-initialization. In contrast, WaveSim

would first find a single best-match class then samples only using the conditional cumulative distribution function of

that particular class rather than the entire configuration space.

In this paper, a learning based probabilistic graph model for multiple points simulation is proposed (RBMSim). In

RBMSim, the pattern database is mathematically formalized by an energy surface (a distribution) over the

configuration space of RBM; searching for the best matched pattern, given conditional data, is mathematically

formalized using Gibbs sampling. The algorithm is verified by performing conditional and unconditional two-

dimensional simulation of naturally occurring channels (or however they’re formally described). The algorithm

reproduces the continuity of the channels while maintaining the underlying similarity to the training data. A theoretical

discussion and experimental comparison with WaveSim is also explored.

The main weakness of the proposed algorithm is that the learning phase takes a very long time especially when the

training pattern database is large. As the learning is done, for each incoming conditioning data, the simulation is almost

real time.

RBMSim suffer from the limitation as the other pattern based simulation methods. It’s a training image driven

algorithm rather than data driven. Therefore, while there are conflicts between training and hard data, the simulation

results compromise the statistic of both.

Arpat, B., & Caers, J. (2007). Conditional simulation with patterns. Mathematical Geology, 39, 177–203.

Arpat, G. B., & Caers, J. (2005). A multiple-scale pattern-based approach to sequential simulation. Geostatistics Banff 2004, 255–264.

Brakel, P., Dieleman, S., & Schrauwen, B. (2012). Training Restricted Boltzmann Machines with Multi-tempering: Harnessing Parallelization.

Artificial Neural Networks and Machine Learning, 92–99.

Caers, J., & Ma, X. (2002). Modeling Conditional Distributions of Facies from Seismic Using Neural Nets. Mathematical Geology, 34, 143–167.

Chatterjee, S., Dimitrakopoulos, R., & Mustapha, H. (2012). Dimensional Reduction of Pattern-Based Simulation Using Wavelet Analysis.

Mathematical Geosciences, 44, 343–374.

Colin, D. (2004). Higher Order Models using Entropy, Markov Random Fields and Sequential Simulation. Geostatistic Banff 2004, 215–224.

Desjardins, G., Courville, A. C., Bengio, Y., Vincent, P., & Delalleau, O. (2010). Tempered Markov chain Monte Carlo for training of restricted
Boltzmann machines, 145–152.

Hinton, G. (2002). Training products of experts by minimizing contrastive divergence. Neural computation, 14, 1771–1800.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the Dimensionality of Data with Neural Networks. Science, 313, 504–507.

Mustapha, H., & Dimitrakopoulous, R. (2010). High-order Stochastic Simulation of Complex Spatically Distributed Natural Phenomena. Math

Geosci, 42, 457–485.

Olshausen, B., Cadieu, C., & DK, W. (2009). Learning real and complex overcomplete representations from the statistics of natural images. SPIE
Proceedings, 7446.

Straubhaar, J., Renard, P., Mariethoz, G., Froidevaux, R., & Besson, O. (2011). An improved parallel multiple-point algorithm using a list approach.

Mathematical Geosciences, 43, 305–328.

Strebelle, S. (2002). Conditional simulation of complex geological structures using multiple-point statistics. Mathematical Geology, 34, 1–21.

Strebelle, S., & Cavelius, C. (2014). Solving Speed and Memory Issues in Multiple-Point Statistics Simulation Program SNESIM. Mathematical

Geosciences, 46, 171–186.

Tieleman, T., & Hinton, G. (2009). Using fast weights to improve persistent contrastive divergence. Proceedings of the 26th Annual International
Conference on Machine Learning, 1033–1040.

Tijmen, T. (2008). Training restricted Boltzmann machines using approximations to the likelihood gradient. Proceedings of the 25th international

conference on Machine learning, 1064–1071.

Wu, J., Zhang, T., & Journel, A. (2008). Fast FILTERSIM Simulation with Score-based Distance. Mathematical Geosciences, 40, 773–788.

Zhang, T., Pedersen, S. I., Knudby, C., & McCormick, D. (2012). Memory-efficient categorical multi-point statistics algorithms based on compact

search trees. Mathematical Geosciences, 44, 863–879.

	GERAD2016107_ENG
	G16107_WORD

