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Abstract: In the literature, graphs are often studied in terms of invariants, for instance the number of
vertices or edges, the stability number, the chromatic number. . . However, it is common to study Graph
Theory not only through invariants but also using subgraphs. Nevertheless, both concepts may be used
together. Perfect graphs and cographs are two well-known examples of such line of study. In this paper, we
present a computer software dedicated to the study of graphs and their induced subgraphs.
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1 Introduction

Let G = (V,E) be a simple graph, where V is the set of vertices and E the set of edges eventually joining

them. The use of graphs for modeling purpose, where objects may be related to each other, is natural and

of growing importance. The study of the properties of graphs and classes of graphs forms the graph theory.

One important concept in graph theory is that of invariant, a function that associates a numerical value to

each graph regardless its labeling (regardless the way its vertices are numbered or drawn). Among invariants,

the number of its vertices n = |V |, or its order, is likely the most natural one altogether with the number of

its edges m = |E|. Invariants may, however, correspond to more complex properties such as the chromatic

number, the minimum number of colors needed to assign each vertex a color such that both ends of any edge

have different colors, or the stability number, the maximum number of vertices that are pairwise disjoint.

Invariant represents a key feature in graph theory and in applications such as chemistry, where an invariant

is usually called a molecular descriptor [19]. The number of graph invariants is now very large and still

growing. The study of graph theory by the mean of invariants is quite an active topic, and it is not surprising

to notice that computers now play an important role in that study. Indeed, since the 1980’s, the use of

computers in graph theory keeps growing. The most important computer systems dedicated to the study of

graph theory are likely the system graph [7, 8], Graffiti [9], AutoGraphiX [4, 5] and GraPHedron [15]. To

the best of our knowledge, the system graph was the first system dedicated to graph theory. Graffiti was

widely used as it suggested conjectures that attracted the attention of researchers and proposed important

results whose the most famous is probably Fan Chung’s Theorem [6]. Beside these two leader software, lots of

others were developed more recently, we mention only two of them as they propose some innovative approach.

AutoGraphiX uses optimization to find conjectured extremal graphs while GraPHedron is based upon the

definition of a convex hull bounding the values of invariants.

However, graph theory is not only based upon the concept of invariants. Another key feature in graph

theory is the concept of induced subgraph. Let G = (V,E) be a graph. A graph G′ = (V ′, E′) is called a

subgraph of G if V ′ ⊆ V and E′ ⊆ E. It is then possible to build G′ from G by removing some vertices

and edges. Of course, removing vertices implies also the removal of their adjacent edges. If only the removal

of vertices is considered, the subgraph G′ is called induced subgraph. In other words, an induced subgraph

G′ = (V ′, E′) of G is a subgraph of G such as E′ = {uv ∈ E|u, v ∈ V ′}. Naturally, the graph G is called a

supergraph, resp. an induced supergraph, of G′ if G′ is a subgraph, resp. an induced subgraph, of G. The

best example of graph theory problem related to induced subgraphs is likely the Ramsey problem [18], which

consists in, for every integer r and s, finding the minimum number R(r, s) such that every graph on R(r, s)

vertices must have either an induced clique (set of vertices pairwise connected) on r vertices or an induced

stable set (set of vertices among which none are adjacent) on s vertices.

If subgraphs are often implicitly considered and used in computer systems (mainly because some invariants

are defined by the mean of subgraphs), no computer software is designed specifically for the study of graphs

and their subgraphs. In this paper, we present the system GraphsInGraphs (GIG), which was specially

designed to study graphs through their induced subgraphs.

In the second and in the third section, we present the main principles underlying the software and the

associated data structure. Some direct applications and results are presented in Section 4, Section 5 and

Section 6 while the last section concludes the paper.

From now on, in this paper, by abuse of appellation, we omit the word ”induced” when we mention

induced subgraph(s) or induced supergraph(s).

2 Description of the system

Identifying all subgraphs of order k in a graph G on n vertices may seem a tedious task. Indeed, in such a

case, there are
(
n
k

)
subgraphs to consider. The number of subgraphs of a given graph on n vertices is bounded

by
∑n

k=0

(
n
k

)
= 2n. Searching for all subgraphs of all graphs of order n then seems unrealistic. However, this
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way to proceed yields a lot of redundancy. In this section, we explain how our computer system avoids this

redundancy.

Table 1: Number of non isomorphic graphs with n vertices

n # graphs

1 1
2 2
3 4
4 11
5 34
6 156
7 1 044
8 12 346
9 274 668

10 12 005 168

Let us start by recalling the number of non isomorphic (and non-necessarily connected) graphs according

to their number of vertices as shown in Table 1. It is instructing to notice that the number of graphs grows

very quickly, following an exponential behavior [10].

To avoid several times searching subgraphs of the same graph, we proceed by an implicit induction. Notice

that, from a graph G, removing a vertex at a time will provide a family of n subgraphs on n− 1 vertices. If

all subgraphs from this family are already known, the task is complete.

The remaining critical point is the identification of those graphs. A canonical graph representation is

used to quickly identify the subgraphs on n−1 vertices corresponding to any given graph on n vertices. This

representation is based on the software Nauty developed by Brendan Mckay [12]. Once all the graphs on n

vertices are associated to their subgraphs on n− 1 vertices, it is possible to go a step further and proceed to

the search for graphs on n + 1 vertices.

The all-subgraph-enumeration algorithm may be described as a recurrence relation as follows :

1. Initialization

From a practical point of view, we start by the list of graphs on 2 vertices as being the first non obvious

case (there are 2 such graphs). Then, each graph is represented in a canonical way.

2. First step

Consider the list of all graphs on 3 vertices and represent them in a canonical way. Each of the 4 graphs

on 3 vertices will be associated to 3 subgraphs on 2 vertices (by removing one vertex from the original

graph). Again, a canonical representation of the subgraphs allows a fast identification in the list of

2-vertex graphs and we establish a link between 3-vertex graphs and 2-vertex subgraphs.

3. Main step

Suppose that, for k = 3 to n − 1, all the subgraphs on k − 1 vertices of each graph on k vertices are

linked. We enumerate all graphs on n vertices and represent them in a canonical way. For each of these

graphs, we build a list of all n subgraphs on n − 1 vertices, by removing one vertex from the original

graph. The canonical representation of these subgraphs allows a fast identification from the existing

dataset and we link all n-vertex graphs with all (n−1)-vertex subgraphs. After this step, all subgraphs

of k − 1 vertices associated to each graph on k vertices are known for k = 3 to n.

Repeating the main step for n = 5 to the desired value n0 build a data structure that is then used

for finding all subgraphs of order k ≥ 2 of any graphs on n ≤ n0 vertices, and conversely for finding all

supergraphs of order n ≤ n0 of any graphs on k ≥ 2 vertices.
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3 The network

The data structure used in the system could be described as a meta-graph of graphs. In order to avoid

confusion, in the remaining of the paper, we will refer to this meta-graph as the network. Each considered

graph is represented by a vertex in the network, and an edge between two vertices of that network indicates

that one corresponding graph is a direct subgraph of the other, where a graph G′ is a direct subgraph of G if

G′ may be obtained from G by removing only one vertex, i.e. G′ is a (n− 1)-vertex subgraph of the n-vertex

graph G. Similarly, G is a direct supergraph of G′ if G′ is a direct subgraph of G. Notice that in the network,

we do not have all relations between graphs and subgraphs. Indeed, an edge links only a graph and one of

its direct subgraphs.

Still keeping the notation simple, we note sub(G) the set of edges between G and its direct subgraphs in

the network. Similarly, sup(G) the set of edges between G and its direct supergraphs. By a slight abuse of

notation, when the context is clear, sub(G) may also represent the set of direct subgraphs of G while sup(G)

may represent the set of its direct supergraphs.

As it may happen that a direct subgraph appears more than once in a given graph : each edge e = GG′

of the network has a weight we that represents the multiplicity of the corresponding direct subgraph G′ of

G, i.e. the number of the distinct vertices that may be removed from G to obtain G′. Then we always have∑
e∈sub(G)

we = n,

if the graph G has n vertices. The network for n0 = 4 is represented in Figure 1. For instance, sub( ) is

{ , } and sup( ) is the set of graphs called B, C, D, F, G and H.

The described network was built for all graphs on 2 ≤ n ≤ 10 vertices, i.e. n0 = 10. The graph generator

geng [11] was used to generate these graphs. We developed a specific C++ program to build a list of the

n subgraphs on n − 1 vertices, for each n-vertex graph G. The so obtained direct subgraphs of G as well

as G were then rewritten in a canonical way using the routine labelg from the nauty package [12]. Based on

this data, the network builder writes a file describing the complete network. In user mode, the network is

loaded from the disk and the analysis may be achieved. As expected, the construction phase is more time

consuming than the exploitation, but in both cases, few minutes are enough.

4 Finding subgraphs and supergraphs

Let F denote a family of graphs to be used as a starting point. Depending of the search, F may represent

the family of graphs in which subgraphs or supergraphs are studied.

Algorithm 1 identifies all subgraphs belonging to at least one graph from the family F . Our algorithm is

based on Breadth-first search [16].

Remark: If only subgraphs on a given order k are to be considered, lines 7 and 8 in Algorithm 1 may be

replaced by the following instructions:

if G′ has k vertices then

S ← S ∪ {G′}
else

Ft ← Ft ∪ {G′}

With our network, we can solve various questions on subgraphs. For instance, we can determine the

common subgraphs of a family F of graphs by computing, separately, with Algorithm 1, families of all

subgraphs for each graph of F and by intersecting these families. It is easy to recognize the union of

subgraphs of graphs, as Algorithm 1 does, regardless the number of graphs in the initial family, but the

running-time of the intersection depends on the number of graphs in the initial family. In the same spirit,

we could establish diverse subgraphs : (common) subgraphs of a family of graphs which are not subgraphs

of every (or any) graph of another family.
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Figure 1: The network for graphs on 2 to 4 vertices, where the label displayed on each edge is its weight (unit
weights are omitted).

The case of finding supergraphs containing (or not) graphs from F is achieved in exactly the same way

as finding subgraphs of graphs in F . The only difference is that sup(G) should be used instead of sub(G)

(for instance, line 6 of Algorithm 1). By mixing both notions of subgraph and supergraph, we can also search

graphs belonging (or not) to the union (or the intersection) of sub/supgraphs from a family of graphs. These

capabilities make the system a useful tool for studying small graphs according to forbidden and/or required

sub/supgraphs. As an illustration, our system can find all subgraphs of any graph from a family F , of order

at most 10, which do not contain a triangle (i.e. a clique on 3 vertices).

5 Counting graphs

Our system allows to count small graphs under diverse constraints. We present here two of these counts.

5.1 Given 2 graphs, counting subgraphs

In this section, we introduce how to count the number N(G′, G) of times that a given k-vertex subgraph G′

appears in a fixed n-vertex graph G = (V,E), i.e. the number of subsets V ′ of V such that the subgraph

induced by V ′ is isomorphic to G′. Notice that it is possible that multiple paths, i.e. ways of removing



Les Cahiers du GERAD G–2016–10 5

input : A family of graphs F
output: The family S of all subgraphs of graphs from F

1 Fc ← F ;
2 S ← ∅;
3 while Fc 6= ∅ do
4 Ft ← ∅;
5 foreach G ∈ Fc do
6 foreach G′ ∈ sub(G) do
7 S ← S ∪ {G′};
8 Ft ← Ft ∪ {G′};
9 end

10 end
11 Fc ← Ft;

12 end
13 return S ;

Algorithm 1: Find all subgraphs.

vertices, in the network lead to the very same subgraph. Therefore, it is required to know how many paths

lead to a subgraph constructed by the same set of vertices, i.e. the number of sequences of removed vertices,

i.e. (n− k)! ways.

Let P(G′, G) be the set of shortest paths in the network between G′ and G. Consider then E(P ) the set

of edges in a shortest path P from G′ to G. The multiplicity of this path P is

wP = Πe∈E(P )we,

where we denotes the weight of the edge e, because each edge of the network may be associated with more

than a direct subgraph. Thus, the number of ways of successive removing vertices to obtain G′ from G is

given by

wG′,G =
∑

P∈P(G′,G)

wP .

Property 1 The number N(G′, G) of times that the k-vertex subgraph G′ appears in the n-vertex graph G′ is:

N(G′, G) =
wG′,G

(n− k)!

where (n− k)! denotes the number of permutations of n− k elements.

5.2 Counting graphs with given subgraphs

The first natural example of the use of the system is to count the number of graphs on n vertices according

to the presence or not of some subgraphs (or a combination of those). For instance, the number of graphs

on n = 10 vertices with either X (rows) or Y (columns) as a subgraph is given in Table 2. Graphs A to K

are depicted in Figure 1.

It is not surprising to notice that the graph F , the path on 4 vertices, appears in a larger number of

graphs since F is its own complement and its density equals 1/2. By definition of the logical “OR”, Table 2
is symmetric according to the main diagonal (AA to KK), but observe that this table also does according

to the other diagonal (AK to KA), since the graph A is the complement to K, B to J , and so on.

6 Restricting the network to some families of graphs

The question may arise to know if it is possible to adapt the network in order to speed up the search when

restricting to some families of graphs, particularly, if the family of graphs is closed by subgraphs. For instance,
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Table 2: Number of 10-vertex graphs containing either subgraph X or subgraph Y, both on 4 vertices, where
labeled graphs A, . . . , K are drawn in Figure 1.

X/Y A B C D E F G H I J K

A 9110536 9094115 8948489 9110304 9101193 9106722 9078244 9097916 8928280 8996995 6319610
B 9094115 11890828 11696136 11890526 11870792 11886610 11858489 11878249 11689758 11776536 8996995
C 8948489 11696136 11803486 11791936 11770631 11800704 11777310 11791229 11612608 11689758 8928280
D 9110304 11890526 11791936 11992500 11970414 11988312 11958474 11979914 11791229 11878249 9097916
E 9101193 11870792 11770631 11970414 11970874 11966865 11936734 11958474 11777310 11858489 9078244
F 9106722 11886610 11800704 11988312 11966865 12000544 11966865 11988312 11800704 11886610 9106722
G 9078244 11858489 11777310 11958474 11936734 11966865 11970874 11970414 11770631 11870792 9101193
H 9097916 11878249 11791229 11979914 11958474 11988312 11970414 11992500 11791936 11890526 9110304
I 8928280 11689758 11612608 11791229 11777310 11800704 11770631 11791936 11803486 11696136 8948489
J 8996995 11776536 11689758 11878249 11858489 11886610 11870792 11890526 11696136 11890828 9094115
K 6319610 8996995 8928280 9097916 9078244 9106722 9101193 9110304 8948489 9094115 9110536

such families are bipartite graphs, forests or graphs with bounded maximum degree. In that case, not only

previous operations are still available for this subnetwork but also it is possible to expect the system to handle

larger graphs.

7 Concluding remarks and open questions

We present, in this paper, the fundaments of the software GraphsInGraphs, with various applications. To

date, the software is still a prototype that will be implemented and made available as soon as possible.

GraphsInGraphs will be the first computer system allowing survey of graphs depending on their induced

subgraphs.

The research avenues in Graph Theory are manifold. Indeed, one of the unsolved problems in mathematics

concerns the Reconstruction Conjecture [14, 17, 20], which states that any two graphs (on at least 3 vertices)

with the same family of direct subgraphs and the same associated multiplicities are isomorphic. McKay [13]

verified the Reconstruction Conjecture for all graphs with at most 11 vertices. However, GraphsInGraphs

should point out some properties and observations that could be helpful in the study of this conjecture.

From another point of view, investigating graphs and their induced subgraphs are intimately related to

graph invariants. A famous example is perfect graph [1]. These graphs are defined by the equality of the

value of two invariants for all induced subgraphs. Similarly, other research questions may also be handled

by the system GraphsInGraphs. In addition, we should implement the comparison between the values of

distinct invariant for all induced subgraphs, or the comparison between the values of an invariant for a graph

and for its induced subgraphs, as it is the case for PoC-critical graphs [2, 3].

In brief, GraphsInGraphs is an innovative system for computer aided Graph Theory based on the concept

of graphs and induced subgraphs.
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[7] D. Cvetković, I. Gutman, The computer system GRAPH: A useful tool in chemical graph theory, Journal of
Computational Chemistry 7 (1986), 640–644.



Les Cahiers du GERAD G–2016–10 7
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