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Montréal (Québec) Canada H3T 2A7

Tél. : 514 340-6053
Téléc. : 514 340-5665
info@gerad.ca
www.gerad.ca





Multiple-point simulation of
Olympic Dam Copper Deposit,
Australia, using wavelet analysis

Murilo Teixeira a

Roussos Dimitrakopoulos a,b

a COSMO – Stochastic Mine Planning Laboratory, Depart-
ment of Mining and Materials Engineering, McGill University,
Montreal (Quebec) Canada, H3A 2A7

b and GERAD

murilo.teixeira@mail.mcgill.ca

roussos.dimitrakopoulos@mcgill.ca

September 2015

Les Cahiers du GERAD

G–2015–91

Copyright c© 2015 GERAD



ii G–2015–91 Les Cahiers du GERAD

Abstract: Traditional geostatistical simulation methods assume that the first two order statistics are suf-
ficient to model mineral deposits. However, these methods are not able to model some complex pattern
present in geological environments and the spatial connectivity of high values. So, multiple-point simulation
(MPS) methods were developed as an attempt to overcome these limitations. In this work a MPS approach
based on wavelet analysis is applied to Olympic Dam deposit, to simulate both material types and grades.
The method, termed wavesim, work as follows: first, it scans a training image with a template to generate a
pattern database; then this database has its dimension reduced by applying wavelet analysis; after that, the
patterns are divided into classes using k-means clustering algorithm, considering the approximate sub-band
image; and finally the grid is simulated by comparing the conditioning data event in each node with the
classes prototypes and choosing a pattern from that class. Olympic Dam’s simulation results show that
wavesim can be applied successfully to a large instance. The resulting simulated realizations are analysed
and validated in terms of histograms, variograms and high-order statistics, the latter being performed by
using high-order spatial cumulants (HOSC).
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1 Introduction

Geostatistical simulations provide a technical framework to spatially model attributes of interest in mineral

deposits, and provide means to quantify geological uncertainty both in terms of grades and material types.

Sets of simulated models of these geological attributes can then be considered as inputs for stochastic op-

timization in mining planning using stochastic optimization methods, hence enhancing the decision making

process.

Traditionally, geostatistical simulations are generated through two-point simulation algorithms, such as

sequential Gaussian simulation and sequential in indicator simulation (Goovaerts, 1997). Two-point statistics

or variogram based methods present an important limitation: they are unable to model complex spatial

patterns, such as curvilinear patterns and connectivity of extreme values. Multiple point simulations (MPS)

methods, which rely on a training image instead of variograms, are developed to overcome these limitations.

Early efforts include the snesim algorithm (Strebelle, 2002) which is based on extended normal equation

simulation (Guardiano and Srivastava, 1993). In snesim, the conditional probability distribution is retrieving

from a search tree, which is generated according to a training image or analogue. More recent improvements

to snesim algorithm include removal of stationary assumptions (Strebelle and Zhang, 2005), parallelization

and use of lists instead of search trees (Straubhaar et al., 2011), adjustments in order to decrease memory

demand and increase speed (Strebelle and Cavelius, 2014), and GPU programming (Li et al., 2013). Modelling

geological units in mineral deposits using snesim are shown in Jones et al. (2013), Boucher et al. (2014),

Goodfellow et al. (2012) and Osterholt and Dimitrakopoulos (2007). Simulation of continuous attributes

using MPS is introduced in filtersim algorithm (Zhang, Switzer and Journel, 2006) where the idea of grouping

similar patterns into classes is presented, so that the pattern database is scanned just once, before simulation

takes place. The grouping is performed based on some filter scores of the patterns. This reduces drastically the

computational time of the algorithm and makes possible the application for relatively large size simulations.

Other well known MPS methods include simpat (Arpat and Caers, 2007), distpat (Honarkhah and Caers,

2010), cdfsim (Mustapha et al., 2104) and direct sampling (Mariethoz et al., 2010).

Extension of the two-point statistics to high-order spatial statistics in geostatistical simulations is pre-

sented in Dimitrakopoulos et al. (2010). The proposed method tries to reproduce the high-order spatial

cumulants (HOSC) from the data and training image in the simulated realizations. The main advantages of

this methodology over the MPS ones showed before are being data-driven and to explicitly reproduce the

high-order statistics of samples in the simulated realizations.

Since the simulation method used herein is based on wavelet analysis, it is important to define what it

is. Wavelet analysis is widely used, and some examples of its application are signal processing and data

compression. (Bénéteau and Fleet, 2011) present and intuitive introduction to this subject, and Mallat

(1998) shows it in more detail. The idea in wavelet analysis applied to image compression is to decompose

an image in two types of information: 1) average type information of the nearby pixels, called approximate

sub-band of the image; and 2) how these pixels depart from local average. Both of them together keep all

the information about the image, but the first one keeps most of its variability. Hence, the approximate

sub-band is usually a sufficient representation of the complete image for several applications, and can be used

in instead of the original image. The advantage of using the sub-band image instead of the original one is

related to less memory requirements and efficiency, in computational terms. Gloaguen and Dimitrakopoulos

(2009) apply wavelet transformation to geostatistical simulation, exploring the inter-scale dependency in the

wavelet domain. Although the direct conditioning to hard data is simple in this technique, it is difficult to

fitting the conditioning data in wavelet domain. Chatterjee et al. (2011) and (2012) also use wavelet analysis

to simulate both continuous and categorical attributes from mineral deposits, termed wavesim. This method

is described in detail in the next section.

In this paper, the wavesim algorithm is used to simulate both geological units and copper grades at the

Olympic Dam, a copper deposit located in southern Australia. It has been exploited since 1988 and it is the

fourth largest producer of copper in the world nowadays. Olympic Dam is a huge breccia complex, hosted

by deformed and highly brecciated granite, which is slightly older than the mineralization. There are two
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types mineralization: the strata-bound bornite-chalcopyrite-pyrite one; and chalcocite-bornite in lenses and

cross-cutting veins. Four geological domains are defined according to the content of copper minerals.

In the following sections, the wavelet simulation method used here is outlined. Then, the application of

such method to Olympic Dam deposit is presented and discussed. Finally, conclusions follow.

2 Multiple-point simulation using wavelet analysis

The wavelet transformation based simulation method of Chatterjee et al. (2012) is outlined in this section,

pointing at the differences between categorical and continuous simulations, where appropriate.

2.1 Pattern database generation

The first step of the method used herein is to scan the training image with a given spatial template tiT (u),

which is a multiple-point vector centered in u. Its definition is presented in (1).

tiT (u) = {ti (u) , ti (u+ h2) , . . . , ti (u+ hα) , . . . , ti (u+ hnT )} (1)

Here, hα are lag vectors that define the geometry of the template containing nT nodes, and α = {1, 2, . . . , nT}.
It is noteworthy that the pattern database built is independent of the pattern locations.

For the continuous simulation cases, the patterns are stored exactly as they appear in the training image.

However, for a categorical training image with M categories, the training image is first transformed into M

sets of binary values, according to:

Im (u) =

{
1, if u belongs to category m

0, otherwise.
(2)

Accordingly, each location is represented by a vector of binary values, where the mth element is 1 if that

node belongs to category m, and 0 otherwise. Thus, for each node, there is exactly one element equal to 1.

2.2 Pattern database decomposition

Before splitting the pattern database into classes, the dimension of each of the patterns is reduced through

discrete wavelet transformation (DWT) (Mallat 1998), so the classification can be done more efficiently. The

dimension of the patterns is reduced by DWT by selecting the scale of wavelet decomposition, defined as the

resolution or support size on which a given wavelength of a training image or analog is defined.

A pattern can be decomposed into a series of orthogonal basis function through DWT Mallat (1998), which

provides both frequency and spatial information. The wavelet function provides a series of orthonormal base

functions by scaling and shifting the original basis function, known as the mother wavelet function. Three-

dimension data sets are decomposed into eight components, where one is the scaling and the other seven are

the high-frequency components. A pattern tiT with dimensions N ×N can be decomposed as:

tiT =

Nj−1∑
i,l=0

aJ,i,lφ
LL
J,i,l +

∑
B∈D

J∑
j=1

Nj−1∑
i,l=0

ωBj,i,lψ
B
j,i,l (3)

where D = {LH,HL,HH}, L and H are low-pass and high-pass filters, Nj = N/2j , J is the number of

scales, N = p when p is even and N = (p + 1) when p is odd, φj is the scaling function and ψBj are the

wavelet functions. The coefficients aj−1 and ωj−1 are calculated by taking the inner products between a

pattern (tiT ) and scaling (φj) and wavelet functions
(
ψBj
)
, respectively.

aj−1 = 〈 tiT , φj〉
ωBj−1 =

〈
tiT , ψ

B
j

〉 (4)
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The Haar wavelet is use as basis function, and is defined as follows:

ψH (x) =


1 0 ≤ x < 1/2

−1 1/2 ≤ x < 1

0 otherwise

and φL (x) =

{
1 0 ≤ x < 1

0 otherwise
(5)

The size of the scaling image for a M categories data set is:

LN =

(
N

2j

)d
xM (6)

where d is the dimension of the image, and j is the number of scales. As the size of the original image is(
Nd xM

)
, the reduction factor is 2jd. Therefore, there is a substantial gain in computer efficiency if only

the scaling component is used for the classification step.

2.3 Classification of the pattern database

After the patterns had their dimensionality reduced, they are divided into classes, using the k-means clus-

tering algorithm (Hartigan and Wong, 1979; Lloyd, 1982). First, the number (k) of clusters needs to be

provided. Then, k patterns are randomly chosen from the pattern database to be the initial centroids of the

classes. Subsequently, the database is visited and each pattern is compared to the initial centroids; the class

corresponding to the most similar centroid is the chosen one for that pattern. Then, the k new centroids

are calculated by averaging all elements within each of the classes. This is performed iteratively, until the

position of the centroids does not change any longer, which is when the final configuration of the clusters is

reached. At each iteration, the objective is to minimize the following function:

Z =

k∑
j=1

n∑
i=1

∥∥∥t(j)i − cj∥∥∥2

(7)

where Z is the sum over all distances between the patterns and their respective class centroid, t
(j)
i represents

patterns i classified in cluster j, cj is the centroid of class j and ‖t(j)i − cj‖
2

is the squared Euclidean distance

between t
(j)
i and cj . When this process is completed, each class is labeled by its prototype, which is the

average over all patterns in that class (same as centroid).

2.4 Simulation

Once the patterns are classified, spatial simulation is carried out based on the sequential simulation approach

(Goovaerts, 1997). At each node to be simulated, the conditioning data event is retrieved by placing the

same spatial template used for the generation of the pattern database on the realization grid. The data event

comprises samples and previously simulated nodes. A distance function (Eq. 8 below) is used to compare the

similarity between the conditioning data event and each of the classes’ prototypes. The closest prototype,

associated to a given class of patterns, is retrieved. In this application, L2-norm is used for the dissimilarity

calculation between data events and classes prototypes:

d (x, y) =

3∑
i=1

ωi∗
 1

ntype

ntype∑
j=1

(x (j)− y (j))
2

 (8)

3∑
i=1

ωi = 1 (9)

Here, x(j) represents each node of the conditioning data event, y(j) represents each node of the class proto-

type, ntype is the amount of data of a given data type and ωi is the weight associate of data type i. Three data

types are considered here: hard data, previously simulated node inside inner patch and previously simulated
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node outside inner patch. The weight associated with hard data is the highest, and the one associate with

previously simulated node outside inner patch is the lowest.

After that, a pattern from this best-matched class has to be drawn, and then pasted onto the simulation

grid (an inner patch is used to identify the nodes of the pasted pattern that are frozen and no longer visited

during the sequential simulation). For categorical simulation cases, a cumulative distribution function (cdf)

relative to the central node is built for that class. Then, a Monte-Carlo sampling is done in that cdf in

order to choose the category of the central node only. After that, a pattern is randomly chosen among the

ones which have the central nodes belonging to the same category drawn in the Monte-Carlo sampling. For

continuous simulations, a pattern is randomly drawn from the best matched class; no cdf is generated. This

procedure is repeated until all nodes of the realization grid are simulated.

In summary, the steps wavesim algorithm follows are:

1. Generate the pattern database by scanning the training image with a given template.

2. Decompose the patterns using wavelet analysis.

3. Group these patterns into classes using k-means algorithm.

4. Calculate the prototypes of each class.

5. Define random path to visit all nodes to be simulated.

6. Compare data event to prototypes.

7. Choose a pattern from best matched.

8. Past it back onto simulation grid.

9. Repeat steps 6 to 8 until all nodes are simulated.

10. Repeat steps 5 to 9 to generate multiple realizations.

2.5 Training image generation

In this section, the methods used to generate both categorical and continuous training images to be used in

the case studies are presented.

2.5.1 Categorical training image

The generation of categorical training images may be based on different information, according to its avail-

ability. Some examples are: outcrops, photographs of present day deposits or depositional systems, drawings
from experts and geological and geophysical interpretation (Caers and Zhang, 2002). Boucher (2008) dis-

cusses the importance of training images for capturing various features of the area to be modeled, as well as

some intricacies in its generation.

In mining, categorical training images are usually generated through a geological interpretation using drill

hole data and geological background information (Jones et al., 2013; Boucher et al., 2014; and Goodfellow

et al. 2012), as was the case of this work. Exhaustive information may also be used as in Osterholt and

Dimitrakopoulos (2007), in which case information from a previously mined area from the same mine was

available.

2.5.2 Continuous training image

The continuous training image used in the case study was generated using low rank tensor completion (LRTC)

(Yahya, 2012 and Liu et al., 2013). The goal of tensor completion methods is to determine values for missing

elements, considering all the information available.

Low-rank tensor completion (LRTC) can be formulated as an optimization problem as follows:

min

n∑
i=1

αi
∥∥X(i)

∥∥
∗

s.t. XΩ = TΩ

(10)
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where αi
∥∥X(i)

∥∥
∗ is the trace norm of tensor X, α are constants satisfying

∑n
i=1 αi = 1 and αi ≥ 0 and X(i)

represents the unfolded tensor along each mode. In this problem, the matrices X(i) share the same entries

and as a result, they cannot be optimized directly. Therefore, additional matrices M1, . . . ,Mn are introduced

and the problem can be relaxed:

min

n∑
i=1

αi
∥∥M(i)

∥∥
∗ +

βi
2

∥∥X(i) −Mi

∥∥2

F

s.t. XΩ = TΩ

(11)

where βi ≥ 0 and ‖.‖F is the Frobenius norm operator of a matrix. As this problem is convex, but non-

differentiable, the block coordinate descent (BCD) can be used for its optimization. The basic idea of BCD

is to optimize a group (block) of variable while the rest are fixed. The variables are divided in n+ 1 blocks:

X, M1, M2, . . . ,Mn.

The optimal solution of X with all the other variables fixes is given by:

min
n∑
i=1

βi
2

∥∥Mi −X(i)

∥∥2

F

s.t. XΩ = TΩ

(12)

And the solution is:

Xi1,...,in =


(∑

i βifoldi(Mi)∑
i βi

)
i1,...,in

(i1, . . . , in) /∈ Ω

Ti1,...,in (i1, . . . , in) ∈ Ω

Finally, Mi is given by solving the following:

min

n∑
i=1

αi
∥∥M(i)

∥∥
∗ +

βi
2

∥∥X(i) −Mi

∥∥2

F
≡

n∑
i=1

αi
βi

∥∥M(i)

∥∥
∗ +

1

2

∥∥X(i) −Mi

∥∥2

F

(13)

hence, the optimal Mi is given by Dτ

(
X(i)

)
, where Dτ (.) is the shrinkage operator and τ = αi/βi.

3 Simulation of the Olympic Dam Copper Deposit, South Australia

3.1 The deposit

Olympic Dam deposit is part of Gawler Craton, and it is located in Australia, in the center of the province

South Australia, approximately 520 km NNW of Adelaide. It is a very large (6 km × 3 km × 800 m)

polymetallic orebody, containing Cu, U, Au and Ag. Nowadays, it is the fourth largest producer of copper

and the largest producer or uranium (“Olympic Dam Mine”, InfoMine Inc.). In this case study, only copper

will be considered in the simulation. Olympic Dam is a huge breccia complex, hosted by deformed and highly

brecciated granite, which is slightly older than the mineralization. It is covered by 300 meter layer of flat-lying

sedimentary rocks. This deposit is a copper-gold type of mineralization: it presents a complex copper mineral

zoning pattern, centered on a structurally controlled barren quartz-hematite breccia. There are two types

mineralization: 1) the strata-bound bornite-chalcopyrite-pyrite one, confined to the Olympic Dam formation,

and 2) chalcocite-bornite in lenses and cross-cutting veins in both Olympic Dam and neighboring formations.

Moving outward/downward, the following copper minerals are more common: chalcocite-bornite, bornite,

chalcopyrite-bornite, chalcopyrite and chalcopyrite-pyrite, where the highest grades are usually associated

with bornite ± chalcopyrite. Sulfide mineral assemblages in the Olympic Dam deposit are demonstrably

in equilibrium with ubiquitous hematite (Fe2O3) alteration of the granite host rock that is thought to be

older than the sulfide deposition. The disappearance of chalcocite in favor of chalcopyrite and subsequently

bornite for pyrite mark the locations where these reactions proceed to completeness (Roberts and Hudson,

1983, Skirrow et al., 2007, Belperio and Freeman, 2004, and Hahn, 2008).
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3.2 Simulation of material types

3.2.1 Data and training image

The drill hole data set consists of 5-m composites and the total of sulfides is calculated as the sum of

the following minerals: chalcocite (Cu2S), bornite (Cu5FeS4), chalcopyrite (CuFeS2) and pyrite (FeS2). As

mention before, the sulfides are zoned from inner bornite ± chalcocite through bornite ± chalcopyrite to

outer chalcopyrite ± pyrite. The mineral content is calculated based on copper and sulfide sulfur assays, and

they are believed to be at the same level of accuracy as the underlying assays. Sulfide-bearing intervals are

defined as greater than or equal to 0.05 % of total sulfides, which is a somewhat arbitrary threshold value.

Table 1 shows how the material types to be simulated are defined. In this table, BN, CC, PY and CPY

mean, respectively, bornite, chalcocite pyrite and chalcopyrite. Domains 1 and 2 are the most important.

Domain 3 also contains important amount of copper and, finally, domain 0 is mostly waste.

Table 1: Definition of material types used to classify data into categories. BN, CC, PY and CPY mean,
respectively, bornite, chalcocite pyrite and chalcopyrite.

Geological Domain Definition

0 Total Sulfides < 0.10%
1 (BN+CC) ≥ 0.05 and (PY+CPY) < 0.05
2 (BN+CC) ≥ 0.05 and (PY+CPY) ≥ 0.05
3 (PY+CPY) ≥ 0.05 and (BN+CC) < 0.05

Figure 1 shows the samples within the study area. The colors correspond to the definitions in Table 1.

Figure 1: Drill hole samples of Olympic Dam copper deposit, colored according to material types defined in
Table 1.

The training image is generated through a geological interpretation, as mentioned in Section 3.1, using

the data in Figure 1. Figure 2 shows three sections of the training image generated, whereas Figure 3 displays

the spatial configuration of material types 1 and 2, so that it is possible to see the spatial complexity of these

units.

The training image is discretized in a grid of 15 m × 15 m × 5 m, resulting in 120 × 150 × 170 nodes in

X, Y and Z directions, respectively and a total of 2,813,670 nodes. The deposit to be simulated is discretized

the same way as the training image.
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Figure 2: Cross-sections of the training image (X = 96, Y = 118 and Z = 51).

a) 

b) 

Figure 3: Spatial visualization of wireframes representing domains 1 and 1, in the training image: a) domain
1; and b) domain 2.
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3.2.2 Simulation results

The number of cluster and template size are defined through trial and error. It is important to note that,

the larger the template and the number of cluster, the better the results tend to be, however the run time of

the algorithm becomes longer. Hence, the values to be used for these parameters are the ones showing the

best trade-off between quality of results and computational time. Table 2 shows the parameters that were

chosen through testing to simulate Olympic Dam deposit’s material types.

Table 2: Parameters used in simulation.

Parameter Value

Template 11 × 11 × 5
Inner Patch 5 × 5 × 3

Number of Clusters 500
Number of Realizations 20

Template, inner patch and number of clusters are defined in Sections 2.1, 2.4 and 2.3, respectively. Figure 4

displays 3 sections of two simulated realization. These sections are the same ones shown for the training image

in Figure 2.

Figure 4: Two simulations of material types. The sections are the same than in Figure 2.
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Comparison between training image and simulations section shows that both present the same regional

configuration: same categories tend to appear in the same regions. However, as expected, the simulated

realizations are smooth, presenting more variable patterns. Figure 5 shows the histogram of the 3 mineralized

categories in the 20 simulations, compared to training image and declustered samples.
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Figure 5: Histogram of 20 material types’ simulations compared to data and training image.

According to Figure 5, simulations reproduce well the proportions of the 3 material types. It also shows

the effect of the training image on the simulations’ histograms. In this case study, the simulations reproduced

data’s histogram as opposed to training image’s one due to the large amount of samples available. Figures 6, 7

and 8 show the direct variogram for the 3 material types, in 3 directions: East-West (EW), North-South

Figure 6: Variograms of 20 simulations of material types (light blue line), samples (black dot) and training
image (red line), for material type 1.
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Figure 7: Variograms of 20 simulations of material types (light blue line), samples (black dot) and training
image (red line), for material type 2.

Figure 8: Variograms of 20 simulations of material types (light blue line), samples (black dot) and training
image (red line), for material type 3.
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(NS) and vertical. The cross-correlograms between these 3 material types for EW, NS and vertical directions

are displayed in Figures 9, 10 and 11.

All results suggest a reasonable reproduction of training image’s and samples’ variograms and cross-

variograms by the simulated realizations of the 3 material types at Olympic Dam. As the simulation was

performed with a training image driven method, it was expected that simulations’ variograms were closer to

training image’s ones. However, as there are a large amount of samples in this case study, they are more

similar to data’s variograms. Validations are also performed in terms of high-order statistics, which are

analyzed through cumulant maps, as shown in De Iaco and Maggio, 2011. In order for the cumulant maps to

be calculated, spatial templates have to be defined. In this case, an L-shape template was used to calculate

3th order cumulant {(1,0,0); (0,1,0)} and for the 4th one, the template {(1,0,0); (0, 1, 0); (0,0,1)} was used.

Figures 12 and 13 show cumulant maps calculated considering material types 1, 2 and 3. As it may be noted,

the simulations’ cumulant maps can be seen as being “in between” samples’ and training image’s ones: they

show a similar general pattern to latter, but with lesser continuity, due to influence of the former.

3.3 Simulation of copper grades

3.3.1 Data set and training image

Having defined material types of Olympic Dam deposit through categorical simulation, copper grades are

simulated within these boundaries, using the same wavelet based method. Figure 14 and Table 3 show,

respectively, the histograms and statistics of copper grade for each material type, separately. Material types

1 and 2 are the richest ones; type 3 also contains high copper grade samples; and finally type 0 is mostly

waste and, as result, it is not simulated.

The training image used in this case study is generated through low rank tensor completion (Liu et al.,

2013), as described in Section 3.2. The algorithm works better for higher density of samples, hence the

Figure 9: Cross-correlograms of 20 simulations of material types (light blue line), samples (black dot) and
training image (red line), for material types 1 and 2.
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Figure 10: Cross-correlograms of 20 simulations of material types (light blue line), samples (black dot) and
training image (red line), for material types 1 and 3.

Figure 11: Cross-correlograms of 20 simulations of material types (light blue line), samples (black dot) and
training image (red line), for material types 2 and 3.
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   (a) (b) 

      (c) (d) 

Figure 12: Third-order cumulant maps for a) samples; b) training image; c) and d) two realizations. Direction
of cumulant: {(1,0,0); (0,1,0)}.

Table 3: Statistics of copper grade per domain.

Statistics Cat0 Cat1 Cat2 Cat3

Mean 0.104 0.733 0.741 0.453
Stand. Dev. 0.372 1.137 1.012 0.614

Variance 0.139 1.292 1.023 0.377
Kurtosis 67.301 7.318 5.854 5.250
Skewness 7.655 2.567 2.249 2.139
Minimum 0.005 0.005 0.005 0.005
Maximum 4.58 7.66 6.866 4.08
10th Perc. 0.007 0.020 0.024 0.010
25th Perc. 0.014 0.109 0.123 0.071
50th Perc. 0.030 0.200 0.256 0.180
75th Perc. 0.059 0.858 0.993 0.621
90th Perc. 0.114 2.184 2.125 1.259
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Figure 13: Fourth-order cumulant maps for a) samples; b) training image; c) and d) two realizations. Direction
of cumulant: {(1,0,0); (0, 1, 0); (0,0,1)}.

training image was generated based on the densest sampled part of the deposit, as shown in Figure 15.

Figure 16 displays 3 cross-sections of the training image. Its dimensions in X, Y and Z direction are 80, 80

and 111, respectively.

The continuous simulation is performed as follows. To simulate material type 1, for example, only patterns

which lie inside the wireframe related to this material, as defined in Figure 3(a), are taken from the training

image. Then, these patterns are pasted on the simulation grid, but only on the nodes which lie inside

the simulated wireframe related to this material type, according to the simulation of material types in the

previous section. The same procedure is then repeated to simulate copper grades for categories 2 and 3.

3.3.2 Simulation results

The parameters used to simulate the copper grades within each material type are displayed in Table 4. As

in the simulation of material types, the simulation grid is discretized by 15 m × 15 m × 5 m, resulting in

120 × 150 × 170 nodes in X, Y and Z directions respectively, and a total of 2,813,670 nodes.

The template size and the number of clusters to be used are defined based on trial and error. Several

values are tested, their results are analyzed and the values of these parameters which present the best trade-

off between good quality results and computational time are chosen. The tendency is that, the bigger the
template and number of clusters, the better the results are and the longer it takes to run. Figures 17, 18
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Figure 14: Declustered copper grade histograms for each geological domain.

Figure 15: Data set colored regarding copper grade. Samples used to build training image is highlighted.

Table 4: Parameters used for the copper simulations.

Parameter Value

Template 11 × 11 × 9
Inner Patch 5 × 5 × 5

Number of Clusters 500
Numnber of Realizations 3

and 19 show cross-sections in X, Y and Z directions respectively for 2 simulations, at point support. The 3

material types are being displayed together.

The gray color corresponds to the category 0, which was not simulated. It is possible to see that, despite

of presenting different shapes, due to be related to different categorical simulations, the copper simulations

above tend to present the same spatial pattern; i.e. coincident rich and poor areas. Figures 20, 21 and 22

display the histograms of the 3 simulated realizations compared to training image and hard data, for material

types 1, 2 and 3, respectively.
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Figure 16: Cross-sections of the continuous training image (X = 0, Y = 0 and Z = 0).

Figure 17: Cross-section (X = 40) showing realizations of copper grades (%), for 2 simulations.
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Figure 18: Cross-section (Y = 120) showing realizations of copper grades (%), for 2 simulations.

Figure 19: Horizontal view (Z = 80) showing realizations of copper grades (%), for 2 simulations.
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Figures 20, 21 and 22 show that the simulated copper realizations present very similar histograms, com-

pared to both samples and training image. It is noteworthy that the histograms of samples and training image

are very similar: it is important to multiple-point simulation techniques, including the method used herein,

that the training image presents similar statistics to the hard data. Otherwise, the simulated realizations

may show conflicting features. Figures 23, 24 and 25 show the copper grades variograms in the east/west,

north/south and vertical directions for material types 1 and 2 and 3, respectively.

Figure 20: Copper histogram of material type 1. Comparison between training image, hard data and simu-
lations.

Figure 21: Copper histogram of material type 2. Comparison between training image, hard data and simu-
lations.



Les Cahiers du GERAD G–2015–91 19

Figure 22: Copper histogram of material type 3. Comparison between training image, hard data and simu-
lations.

Figure 23: Copper grade variograms of 3 simulations (light blue line), samples (black dot) and training image
(red line) for material type 1.
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Figure 24: Copper grade variograms of 3 simulations (light blue line), samples (black dot) and training image
(red line) for material type 2.

Figure 25: Copper grade variograms of 3 simulations (light blue line), samples (black dot) and training image
(red line) for material type 3.



Les Cahiers du GERAD G–2015–91 21

Simulated realizations show good reproduction of samples’ and training image’s variograms. Here, it

is possible to note, again, the tendency of realizations to present their variograms in between the ones of

samples and training image. Besides, the variograms of training image and samples are very similar to each

other. Figures 26 and 27 show, cumulant maps of copper grade regarding each material type for samples,

training image and two simulated realizations.

   (a) (b) 

   (c)                                                                 (d)  

Figure 26: Copper grade third-order cumulant maps of a) training image; b) and c) two realizations. Direction
of cumulant: {(1, 0, 0); (0, 1, 0)}. Distance in meters.

Figures 26 and 27 show how similar realizations’ and training image’s maps are, but with less continuity.

This is due to the influence of more discontinuous samples’ maps over their cumulant maps. When comparing

samples’ cumulant maps to simulation’s and training image’s ones, it is important to recall that the samples

contains much less replicates for each lag. This may cause it to have some local artifacts, such as the

discontinuities seen in the Figures 26 and 27, which probably would not happen if more data were available.
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Figure 27: Copper grade fourth-order cumulant maps of a) training image; b) and c) two realizations. Direc-
tion of cumulant: {(1, 0, 0); (0, 1, 0); (0, 0, 1)}.

4 Conclusions

In this work, a multiple-point simulation method based on wavelet analysis is applied to Olympic Dam

copper deposit, located in southern Australia, in order to evaluate both volumetric and grades uncertainty.

Olympic Dam presents 4 different material types and the training image used to simulate the orebody model

is obtained through geological interpretation. Then, 3 of those categorical realizations are retained for the

simulation of copper grades, which is performed considering one material type at a time. The continuous

training image was generated through low rank tensor completion. The result is a set of equiprobable orebody

models which accounts for volumetric and grade uncertainty. The validation of the simulations’ results is

performed for low order statistics (histograms and variograms) and also for high-order statistics, through

third and fourth-order spatial cumulant maps. This validation suggested that method tested herein can be

successfully applied to real sized deposits, since Olympic Dam was discretized in 2,813,670 nodes. In all the

cases, the statistics of the realizations were compared to both training image’s and samples’ statistics. This

comparison showed an interesting point, which is common to all multiple point simulation methods, since

they are training image driven: the statistics values of the realization tend to be in between training image’s

and data’s ones. Because of that, conflicting information between training image and data samples has a

negative impact on the simulation’s results. Therefore, the training image has to be representative of the

deposit to be simulated.
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